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L1-Norm Low-Rank Matrix Factorization
by Variational Bayesian Method

Qian Zhao, Deyu Meng, Member, IEEE, Zongben Xu, Wangmeng Zuo, Member, IEEE, and Yan Yan

Abstract— The L1-norm low-rank matrix factoriza-
tion (LRMF) has been attracting much attention due to
its wide applications to computer vision and pattern recognition.
In this paper, we construct a new hierarchical Bayesian
generative model for the L1-norm LRMF problem and design
a mean-field variational method to automatically infer all the
parameters involved in the model by closed-form equations. The
variational Bayesian inference in the proposed method can be
understood as solving a weighted LRMF problem with different
weights on matrix elements based on their significance and with
L2-regularization penalties on parameters. Throughout the
inference process of our method, the weights imposed on the
matrix elements can be adaptively fitted so that the adverse
influence of noises and outliers embedded in data can be largely
suppressed, and the parameters can be appropriately regularized
so that the generalization capability of the problem can be
statistically guaranteed. The robustness and the efficiency of the
proposed method are substantiated by a series of synthetic and
real data experiments, as compared with the state-of-the-art
L1-norm LRMF methods. Especially, attributed to the intrinsic
generalization capability of the Bayesian methodology, our
method can always predict better on the unobserved ground
truth data than existing methods.

Index Terms— Background subtraction, face reconstruction,
low-rank matrix factorization (LRMF), outlier detection,
robustness, variational inference.

I. INTRODUCTION

LOW-RANK matrix factorization (LRMF) is one of the
fundamental problems in computer vision and pattern

recognition and has wide applications including structure
from motion (SFM) [1], shape from varying illumina-
tion [2], motion estimation [3], and object tracking [4].
Representing the observation data as an m × n matrix X

Manuscript received October 24, 2013; revised August 4, 2014 and
October 27, 2014; accepted December 18, 2014. Date of publication Janu-
ary 15, 2015; date of current version March 16, 2015. This work was supported
in part by the National Basic Research Program (973 Program) of China under
Grant 2013CB329404, in part by the National Natural Science Foundation of
China under Contract 61373114, Contract 11131006, and Contract 91330204,
and in part by the Civil Aviation Administration of China under
Grant U1233110.

Q. Zhao, D. Meng, and Z. Xu are with the Institute for Information
and System Sciences, School of Mathematics and Statistics, Xi’an
Jiaotong University, Xi’an 710049, China, and also with Beijing Center
for Mathematics and Information Interdisciplinary Sciences, Beijing 100048,
China (e-mail: timmy.zhaoqian@gmail.com; dymeng@mail.xjtu.edu.cn;
zbxu@mail.xjtu.edu.cn).

W. Zuo is with the School of Computer Science and Technology,
Harbin Institute of Technology, Harbin 150001, China (e-mail:
cswmzuo@gmail.com).

Y. Yan is with the Department of Information Engineering and Computer
Science, University of Trento, Trento 38123, Italy (e-mail: yan@disi.unitn.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2014.2387376

with entries xi j s, LRMF aims to factorize the matrix into two
smaller ones U ∈ R

r×m and V ∈ R
r×n , where r � min(m, n),

such that

X ≈ UT V. (1)

This can be achieved by solving the optimization problem

min
U,V

‖X − UT V‖p (2)

where ‖A‖p = (
∑

i, j |ai j |p)1/p denotes the L p-norm of a
matrix. To deal with missing data problem in real applications,
the above optimization is often reformulated as

min
U,V

‖W � (X − UT V)‖p (3)

where � denotes the Hadamard product (the component-wise
multiplication), and the element wi j in the indicator
matrix W ∈ R

m×n equals 1 if the corresponding element xi j

in X is known, and 0 otherwise.
Under the assumption of Gaussian noises, it is natural to

utilize the Frobenius norm (i.e., p = 2), which has been
extensively studied in LRMF literatures. A unique approx-
imation UT V can be easily attained by the well-known
singular value decomposition (SVD) method [5], which is
the global minimizer of the cost function (2). For the more
difficult problem (3), although the global minimum cannot be
guaranteed in general, there have already been a variety
of methods to solve it effectively [6]–[10]. For example,
Srebro and Jaakkola [6] proposed an expectation maximization
(EM)-based method to solve the problem and applied it to
collaborative filtering. Buchanan and Fitzgibbon [7] presented
a damped Newton algorithm, using the information of second
derivatives with a damping factor, and achieved satisfactory
performance in computer vision applications. Mitra et al. [8]
converted the original problem into a low-rank semidefinite
programming, which can be solved efficiently, and gave good
results on heavy missing data cases. Okatani and Deguchi [9]
extended the Wiberg algorithm to this problem, and this
approach has been further improved by Okatani et al. [10]
via incorporating a damping factor to the conventional Wiberg
algorithm.

As is well known, however, the L2-norm minimization is
sensitive to non-Gaussian noises and outliers, which is often
the case in real problems due to the mechanism of data acqui-
sition. To address this robustness issue, a common approach
is to replace the L2-norm with the L1-norm [11]–[13],
resulting in the following problem:

min
U,V

‖W � (X − UT V)‖1. (4)
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Due to its nonconvex and nonsmooth properties, however,
(4) is generally difficult to solve. Some researchers devoted
to reformulate it into other robust formulations to simplify the
problem. For example, de la Torre and Black [14] adopted
a robust function instead of the L1-norm and used iterative
reweighted least squares algorithms. Ding et al. [15]
employed the rotational invariant R1-norm defined by
‖X‖R1 = ∑n

i=1(
∑d

i= j x2
j i)

1/2 to replace the L1-norm.
Kwak [16] proposed another approach to suppressing the
influence of outliers by maximizing the L1 dispersion of
the data for this problem. Very recently, Meng et al. [17]
modeled the noise as a mixture of Gaussians to make the
model adaptable to a wide range of noise types. In contrast,
some methods were designed to solve (4) directly.
Ke and Kanade [11] presented an alternative linear/quadratic
programming (ALP/AQP) method by decomposing the
problem into a sequence of convex subproblems and then
alternatively solving them by linear/quadratic programming.
Eriksson and van den Hengel [12] designed the L1-Wiberg
method by extending the traditional Wiberg algorithm to
L1-norm setting. To further enhance the computational effi-
ciency, Zheng et al. [13] proposed a RegL1-ALM method
by adding a convex trace-norm regularization term to the
objective function of (4) and solving it by the augmented
Lagrange multiplier (ALM) method, resulting in higher accu-
racy and faster convergence. Recently, Wang et al. [18] pro-
posed a probabilistic model for L1-norm LRMF and utilized
the conditional EM (CEM) algorithm to solve the problem,
obtaining high accuracy with less time consumption. Wang
and Yeung [19] also extended it to the Bayesian framework
and used Markov chain Monte Carlo sampling method to do
inference. Besides, Meng et al. [20] proposed a novel cyclic
weighted median method, which can solve the problem with
high computational efficiency.

Most of the existing L1-norm LRMF methods aim to well
fit the partial observations of X, while they do not consider
the generalization of their results on the unobserved ground
truth data. Although high approximation accuracy on the
known observations of the input matrix might be attained by
these methods, large deviations on the unobserved elements
in X can also be simultaneously conducted, especially when
outliers or heavy noise exist. This is essentially the well-known
overfitting problem. To alleviate this issue, in this paper, we
propose a new method for solving L1-norm LRMF under
the Bayesian framework. We first reformulate the problem
as a hierarchical Bayesian generative model by virtue of the
Gaussian scale mixture representation for the Laplace distri-
bution. Then, we employ the mean-field variational inference
method to infer the posteriors. The true matrix underlying the
corrupted and incomplete input data can then be well fitted
with high accuracy as verified by extensive experiments.

The rest of this paper is organized as follows. In Section II,
we first formulate the L1-norm LRMF as a hierarchical
Bayesian model, and then compare it with the optimization-
based approach and other probabilistic models. In Section III,
we present the mean-field variational inference method for
the model, together with the evaluation for its lower bound,
and analyze its computational complexity. Section IV provides

Fig. 1. Comparison of the PDFs of Gaussian and Laplace distributions with
zero mean and unit variance.

the empirical evaluation for the proposed method on
various problems. We then conclude this paper in Section V.
Throughout this paper, we denote matrices, vectors, and scalars
by the upper-case bold-faced letters, lower-case bold-faced
letters, and lower-case nonbold-faced letters, respectively.

II. HIERARCHICAL BAYESIAN MODEL FOR L1-NORM

LOW-RANK MATRIX FACTORIZATION

In the following, we first discuss the L1-norm LRMF prob-
lem in the maximum likelihood estimation (MLE) viewpoint,
and then present our Bayesian formulation for the problem.

A. MLE Interpretation for L1-Norm LRMF

Consider the generative model

xi j = uT
i v j + εi j (5)

where xi j is the element of X in its i th row and j th column,
and ui and v j are the i th column of U and the j th column of V,
respectively. Assume that the noise εi j follows the Laplace
distribution with zero mean:

εi j ∼ p(εi j |0, b) (6)

where

p(y|μ, b) = 1

2b
exp

{

−|y − μ|
b

}

(7)

is the probability density function (PDF) of the Laplace dis-
tribution, the log-likelihood function with respect to U and V
can then be written as

L(U, V) =
∏

(i, j )∈�

ln p
(
xi j − uT

i v j |0, b
)

= −1

b

∑

i, j

wi j
∣
∣xi j − uT

i v j
∣
∣ + C

= −1

b
‖W � (X − UT V)‖1 + C (8)

where � denotes the set of the indices of the nonmissing data
elements and C is a constant independent of U and V. We can
thus conclude that the L1-norm LRMF problem is intrinsically
equivalent to the MLE under the Laplace distributed noise.

As shown in Fig. 1, the Laplace distribution has a larger
PDF value than the Gaussian distribution at the tail part, and
thus it is known as a heavy-tailed distribution. It means that the
Laplace distribution can better fit heavy noises and outliers as
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compared with the Gaussian distribution in MLE. This is the
intrinsic reason that the L1-norm LRMF methods are always
more robust than the L2-norm ones on real data.

B. Hierarchical Bayesian Model Formulation

We aim to extend the aforementioned MLE framework for
L1-norm LRMF to a Bayesian formulation in this section.
This is motivated by the fact that the Bayesian theory calls
for the use of the posterior distribution to do predictive
inference on unobserved data, and then the overfitting prob-
lem can thus always be alleviated [21]. To this aim, we
first assume the Laplace distribution on the noise term εi j

in (5) as

εi j ∼ Laplace(0,
√

λ/2). (9)

However, due to the absolute value factor in its PDF as in (7),
the Laplace distribution is inconvenient for posterior inference
within the Bayesian framework. A commonly utilized strategy
is to reformulate it as Gaussian scale mixtures with expo-
nential distributed prior to the variance, as indicated in [22].
That is

p(x |μ,
√

λ/2)

= 1

2

√
2

λ
exp

(

−
√

2

λ
|x − μ|

)

=
∫ ∞

0

1√
2πz

exp

(

− (x − μ)2

2z

)
1

λ
exp

(
− z

λ

)
dz

=
∫ ∞

0
N (x |μ, z)p(z|λ)dz (10)

where p(z|λ) = (1/λ) exp (−(z/λ)) is the PDF of the expo-
nential distribution. Substituting (9) into the above equation,
we have

p(εi j |0,
√

λ/2) =
∫ ∞

0
N (εi j |0, zi j )p(zi j |λ)dzi j . (11)

Therefore, we can impose a two-level hierarchical prior,
instead of a single-level Laplace prior, on each εi j

εi j ∼ N (0, zi j ), zi j ∼ Exponential(λ). (12)

To get a complete Bayesian model, we also need to
introduce prior distributions for U and V. As the conventional
Bayesian methodology, we place two-level hierarchical priors
to them: in the first level, the columns of U and V are set
as Gaussian priors with zero means, and in the second level,
Gamma priors are specified on the precision parameters of
these Gaussian distributions. The generative model can then
be constructed as

ui ∼ N (
0, τ−1

u I
)
, v j ∼ N (

0, τ−1
v I

)

τu ∼ �(a0, b0), τv ∼ �(c0, d0) (13)

where a0, b0, c0, and d0 are the hyperparameters of the
Gamma distributions, and can be easily specified by small
values (e.g., 10−6) in a noninformative fashion [21].
By combining (5), (12), and (13), a hierarchical Bayesian
model (denoted as Model I) is constructed.

Fig. 2. Graphical models of (a) Model I and (b) Model II.

To make the model more flexible to real heterogeneous
cases, we can further vary priors for different ui s and v j s
as [referred to as Model II together with (5) and (12)]

ui ∼ N (
0, τ−1

ui
I
)
, v j ∼ N (

0, τ−1
v j

I
)

τui ∼ �(a0, b0), τv j ∼ �(c0, d0). (14)

For easy visualization, Fig. 2 shows the graphical models
for the two Bayesian formulations of L1-norm LRMF as
aforementioned.

The next aim is then to infer the posteriors of all parameters
involved in Model I and Model II, given the observation X.
The posteriors for the proposed models can be expressed as

p(U, V, τu, τv , Z|X)

∝ p(U, V, τu, τv , Z, X)

= p(X|U, V, Z)p(U|τu)p(V|τv)p(τu)p(τv)p(Z)

=
∏

(i, j )∈�

p
(
xi j |uT

i v j , zi j
) m∏

i=1

p(ui |τu)

×
n∏

j=1

p(v j |τv)p(τu)p(τv)
∏

(i, j )∈�

p(zi j ) (15)

and

p(U, V, τu, τ v , Z|X)

∝ p(U, V, τ u, τ v , Z, X)

= p(X|U, V, Z)p(U|τu)p(V|τ v )p(τ u)p(τ v )p(Z)

=
∏

(i, j )∈�

p
(
xi j |uT

i v j , zi j
) m∏

i=1

p(ui |τui )

×
n∏

j=1

p(v j |τv j )

m∏

i=1

p(τui )

n∏

j=1

p(τv j)
∏

(i, j )∈�

p(zi j) (16)

respectively, where τu = (τu1, . . . , τum ) and
τ v = (τv1, . . . , τvn ). Before introducing the details of how
to infer both posteriors in Section III, we will first give more
explanations on the insight of the presented models and
discuss their relationship to the previous work.

C. Understanding the Proposed Models From
Optimization Perspective

Here we only consider Model I, and a similar discussion
can be easily extended to Model II. The negative logarithm of
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the full posterior of Model I [i.e., (15)] is

− ln p(U, V, τu, τv , Z|X)

= 1

2

⎧
⎨

⎩

∑

(i, j )∈�

z−1
i j

(
xi j − uT

i v j
)2 + τu

m∑

i=1

‖ui‖2
2

+τv

n∑

j=1

‖v j‖2
2 + mr ln τu + nr ln τv

⎫
⎬

⎭

+
∑

(i, j )∈�

(
1

λ
zi j − 1

2
ln zi j

)

− ln p(τu |a0, b0)

− ln p(τv |c0, d0) + C (17)

where C is a constant independent of the parameters
to be estimated. Therefore, by applying the maximum-a-
posterior (MAP) method to estimate the parameters in
the model, we can get a weighted LRMF problem with
L2-regularization, regardless of the terms irrelevant to
ui s and v j s.

By virtue of this understanding, the specificity of the
proposed models is then evident.

1) The original nonsmooth L1-norm optimization is
converted to a smooth weighted L2-norm problem,
which is easier to solve. All weights zi j s can be adap-
tively fitted to the elements xi j s of X, which makes
the proposed models capable of suppressing the adverse
effect caused by the noise or outlier elements embedded
in X.

2) L2-regularization terms are imposed on all columns ui s
and v j s of factorized matrices U and V, respectively.
Such terms are hopeful to bring statistical stability and
good generalization capability to the model.

3) The penalty parameters τu and τv on ui s and vi s can
be automatically inferred under the proposed Bayesian
framework, without any manual operation. This largely
avoids the difficulty of parameter tuning, as encountered
by many other regularized models.

4) The proposed models seek full posterior distributions
of U and V, and thus the expectation for them can be
given instead of point estimation by optimization-based
approach. By doing this average, it is expected that the
model can be less overfitted to data.

These properties explain why the proposed methods can
always achieve robust performance against the noises and out-
liers and possess good generalization capability on unobserved
data in our experiments.

D. Comparison With Previous Probabilistic
LRMF-Related Methods

In this section, we discuss the relationship and difference
between the proposed and the previous probabilistic models.

Mnih and Salakhutdinov [23] proposed a probabilistic
formulation for LRMF and utilized MAP to estimate the
factors. They also generalized the formulation to a fully
Bayesian model and adopted MCMC to infer the posterior
distributions of the factors [24]. The computational cost of
this method, however, is very high. With the variational

Bayesian approach, Lim and Teh [25] proposed an efficient
algorithm for LRMF and also achieved good performance.
To further speed up the algorithm, Nakajima et al. [26]
proposed a variational method with global analytic solution
to LRMF. However, this approach can be applied only to the
matrix without missing entries. Designed for the collaborative
filtering problem, nonparametric Bayesian techniques have
also been incorporated into the probabilistic model, e.g.,
Dirichlet process in [27] and Gamma process in [28].
With appropriate choices of parameter and likelihood dis-
tributions, nonnegative matrix factorization has also been
addressed within Bayesian framework [29] and applied to
speech processing [30]. Most of these models are constructed
under the Gaussian noise assumption, which is sensitive
to outliers and heavy noises. To address this robustness
issue, Lakshminarayanan et al. [31] proposed robust models
with Gaussian scale mixture noise, alleviating the effect of
non-Gaussian noise to a certain extent. However, this noise
assumption is less effective for handling heavy outliers as
compared with Laplace noise assumption.

Recently, Wang et al. [18] proposed a probabilistic model
for L1-norm LRMF, which looks somewhat similar to the
proposed Model I. However, this model does not impose
prior information on τu and τv , and let them fixed during
the estimation process. Moreover, this model has not inferred
the full posterior of the factors while employed the CEM
algorithm to implement point estimation, which in fact solves
the following optimization problem in each M-step:

min
U,V

∑

(i, j )∈�

z−1
i j

(
xi j − uT

i v j
)2 + τu

m∑

i=1

‖ui‖2
2 + τv

n∑

j=1

‖v j‖2
2.

(18)

As compared with our framework, this approach has not made
use of the fully Bayesian inference. For example, the parame-
ters τu and τv in [18] should be carefully preset since their
function is to balance the approximation of the parameters
to the observed data and the complexity of the parameters
themselves. If they are set too small, U and V incline to overfit
the corrupted data, and if they are set too large, the two factors
will not approximate the true data well. In contrast, in our
models, these parameters can be automatically learned from
data under the Bayesian framework. This not only automates
the parameter tuning in the proposed models but also benefits
the adaptability of our models to data.

Very recently, Wang and Yeung [19] generalized this proba-
bilistic model to the Bayesian framework and adopted MCMC
for inference, which is similar to the one used in [24] except
for the noise modeling to achieve robustness. Compared with
our formulation, which is also Bayesian, this method, how-
ever, is computational inefficient since their utilized sampling
method is generally time cumbersome. Besides, this method
has not addressed the missing data issue, which often needs
to be dealt with in practice, such as rigid and nonrigid SFM.

Bayesian approach has also been applied to principal com-
ponent analysis (PCA) [32] and robust PCA (RPCA) [33]
problems, which are closely related to LRMF since they
also work on low-rank matrices. Bishop [34] applied
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variational Bayesian method to PCA so that the number of the
principal components can be automatically determined.
Gao [35] proposed a robust version of PCA using a
similar Gaussian scale mixture likelihood as our models.
Luttinen et al. [36] extended this approach to deal with
missing entries under student-t likelihood. These methods
are designed to learn a linear transformation to map data
from the original space to a low-dimensional space. This
can be regarded as an indirect way to do matrix fac-
torization, but always less competitive than conventional
LRMF methods, which explicitly formulate the factoriza-
tion as their goal, in the sense of reconstruction quality.
Ding et al. [37] and Babacan et al. [38] formulated RPCA as
Bayesian models and used MCMC and variational methods to
infer the posteriors, respectively.1 Nakajima et al. [39] further
generalized this framework to model more complex structure
of the additive noise matrices. Very recently, Zhao et al. [41]
reformulated this problem by modeling noise as a mixture
of Gaussian to adapt its availability under different kinds of
noises. However, these methods are designed on nonmissing
data, and thus they are inappropriate to be employed in missing
data cases.

III. APPROXIMATE BAYESIAN INFERENCE

As is widely known, the exact Bayesian inference for the
posterior distributions such as (15) and (16) is intractable,
since p(X) cannot be analytically computed by marginalizing
all of the other variables, and thus approximation methods
are often used. Although sampling methods provide optimal
approximation in theory, the computational complexity is
always too high due to the large number of burn-in iterations,
and the convergence generally cannot be easily monitored.
Therefore, we adopt the well-known variational Bayesian
method [21] to approximate the full posterior distributions
involved in our models.

Before presenting the inference procedure for (15) and (16),
we first briefly introduce the general framework of the mean-
field variational technique.

A. General Framework of Variational Inference

Variational method is one of the most commonly uti-
lized tools for approximating the intractable posterior. The
method is constructed by minimizing the Kullback-Leibler
(KL) divergence between an approximation distribution q(x)
and the true posterior p(x|D) through the following variational
optimization model:

min
q∈C

KL(q‖p) = −
∫

q(x) ln

{
p(x|D)

q(x)

}

dx (19)

where KL(q‖p) denotes the KL divergence between q(x) and
p(x|D), and C denotes the set of PDFs with certain restrictions
to make the minimization tractable. Here q is generally set by
partitioning the elements of x into disjoint groups {xi}, and
then assuming that it can be factorized as q(x) = ∏

i qi (xi).

1Note that Babacan et al. also proposed a method for low-rank matrix
completion, which can handle missing data, in their paper. However, it does
not deal with the robustness problem induced by outliers.

Under these assumptions, the closed-form solution for each
group x j , with the others fixed, can be attained by

q∗
j (x j ) = exp(Ei �= j [ln p(x,D)])

∫
exp(Ei �= j [ln p(x,D)])dx j

(20)

where p(x,D) is the joint distribution of parameters x and
the observations D, and Ei �= j [·] denotes the expectation with
respect to xi s except x j . The solution to (19) can then
be approached through alternatively optimizing each q j (x j )
by (20).

Utilizing the general results above, the closed-form varia-
tional inference schemes for Model I and Model II of L1-norm
LRMF can then be derived.

B. Variational Inference for Model I

1) Estimation of U and τu: Based on the posterior dis-
tributions for U, V, τu, τv , and Z, as shown in (15), its
approximation q(U, V, τu, τv , Z) can be assumed to have the
following factorization form:

q(U, V, τu, τv , Z)=
m∏

i=1

q(ui )

n∏

j=1

q(v j )q(τu)q(τv)
∏

i j

q(zi j ).

(21)

Then by applying the general result (20) to (15) and (21) with
respect to ui and τu , respectively, we can get the following
update equations:

q(ui ) = N (
ui |μui

,�−1
ui

)
(22)

q(τu) = �(τu |a, b) (23)

with parameters

�ui = E[τu]I +
n∑

j=1

wi j E
[
z−1

i j

]
E
[
v j vT

j

]

μui
= �−1

ui

n∑

j=1

wi j xi j E
[
z−1

i j

]
E[v j ]

a = a0 + 1

2
rm, b = b0 + 1

2

m∑

i=1

E
[
uT

i ui
]
.

The expectations included in the above equations (and the
following sections) can be calculated with respect to the
current parameter values of the variational distributions.
The details are presented in Appendix.

2) Estimation of V and τv : Update equations for v j and τv

can be derived in a similar way as follows:
q(v j ) = N (

v j |μv j
,�−1

v j

)
(24)

q(τv) = �(τv |c, d) (25)

where

�v j = E[τv ]I +
m∑

i=1

wi j E
[
z−1

i j

]
E
[
ui uT

i

]

μv j
= �−1

v j

m∑

j=1

wi j xi j E
[
z−1

i j

]
E[ui ]

c = c0 + 1

2
rn, d = d0 + 1

2

n∑

j=1

E
[
vT

j v j
]
.



830 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 4, APRIL 2015

3) Estimation of zi j s: To infer q(zi j ), we can substitute zi j

with its inverse zi j = (1/yi j ) to get a transformed distribution
q(yi j ), and then infer it with the general result (20) by the
following inverse Gaussian distribution:

q(yi j ) = IG(yi j |μyi j , λy) (26)

where

μyi j =
√

2

λE
[(

xi j − uT
i v j

)2] , λy = 2

λ
.

4) Update of λ: As can be observed from (12), the para-
meter λ is directly related to the noise variance parameter zi j .
Therefore, it should be adjusted carefully to obtain reasonable
results. Although it can be preset and fixed during the whole
inference process, a better way is to make it adaptively tuned
based on the noise information extracted from data. Empirical
Bayes [21] provides an off-the-shelf tool to this aim, by
updating it through

λ =
∑

i j wi j E(zi j )
∑

i j wi j
. (27)

Using this elaborate tool, λ can be properly adapted to real
data variance.

C. Variational Inference for Model II

For Model II, the update equations are almost the same
as those for Model I, while minor differences exist in the
equations for ui , v j , τui , and τv j due to the different priors
imposed on different ui s and v j s. The updating equations are
listed as follows:

q(ui) = N (
ui |μui

,�−1
ui

)
(28)

q(τui ) = �(τui |a, bi) (29)

q(v j ) = N (
v j |μv j

,�−1
v j

)
(30)

q(τv j ) = �(τv j |c, d j ) (31)

where

�ui = E[τui ]I +
n∑

j=1

wi j E
[
z−1

i j

]
E
[
v j vT

j

]

μui
= �−1

ui

n∑

j=1

wi j xi j E
[
z−1

i j

]
E[v j ]

a = a0 + 1

2
r, bi = b0 + 1

2
E
[
uT

i ui
]

�v j = E[τv j ]I +
m∑

i=1

wi j E
[
z−1

i j

]
E
[
ui uT

i

]

μv j
= �−1

v j

m∑

j=1

wi j xi j E
[
z−1

i j

]
E[ui ]

c = c0 + 1

2
r, d = d0 + 1

2
E
[
vT

j v j
]
.

D. Variational Lower Bound

In this section, we give a theoretical evaluation for varia-
tional lower bounds for both of the models, which are useful
to assess the convergence behavior of the inference procedure.
The general formulation for variational lower bound is

L(q) =
∫

q(x) ln

{
p(x,D)

q(x)

}

dx. (32)

Applying the above equation to the complete data-
likelihood (15) and variational distribution (21), we can get
the variational lower bound for Model I as

LI(q) =
∑

(i, j )∈�

E
[

p
(
xi j |uT

i v j , zi j
)] +

m∑

i=1

E[ln p(ui |τu)]

+
n∑

j=1

E[ln p(v j |τv)] + E[ln p(τu)] + E[ln p(τv)]

+
∑

(i, j )∈�

E[ln p(zi j )] −
m∑

i=1

E[ln q(ui)]

−
n∑

j=1

E[ln q(v j )] − E[ln q(τu)] − E[ln q(τv)]

−
∑

(i, j )∈�

E[ln q(zi j )] (33)

where the expectations are taken with respect to current
variational distribution q and have the following forms:
E
[

p
(
xi j |uT

i v j , zi j
)] = 1

2

{
E
[

ln z−1
i j

] − E
[
z−1

i j

]

× E
[(

xi j − uT
i v j

)2] − ln 2π
}

E[ln p(ui |τu)] = 1

2

{
rE[ln τu]−E[τu]E

[
uT

i ui
]−r ln 2π

}

E[ln p(v j |τv)] = 1

2

{
rE[ln τv ]−E[τv]E

[
vT

j v j
]−r ln 2π

}

E[ln p(τu)] = a0 ln b0 − ln �(a0) + (a0 − 1)E[ln τu]
−b0E[τu]

E[ln p(τv)] = c0 ln d0 − ln �(c0) + (c0 − 1)E[ln τv ]
−d0E[τv ]

E[ln p(zi j )] = − ln λ − 1

λ
E[zi j ]

E[ln q(ui)] = 1

2

{
ln |�ui | − r ln 2π

− Tr
(
�ui E

[
ui uT

i

])}

E[ln q(v j )] = 1

2

{
ln |�v j | − r ln 2π

− Tr
(
�v j E

[
v j vT

j

])}

E[ln q(τu)] = a ln b − ln �(a) + (a − 1)E[ln τu]
−bE[τu]

E[ln q(τv)] = c ln d − ln �(c) + (c − 1)E[ln τv ]
−dE[τv]

E[ln q(zi j )] = 1

2

{
ln λy − ln 2π − 3E

[
ln z−1

i j

]}

− λy

2μ2
yi j

{
E
[
z−1

i j

]−2μyi j + μ2
yi j

E[zi j ]
}
.
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All the expectations involved in the above equations, except
E[ln z−1

i j ], can be easily calculated, as aforementioned. Due to
the more complex form of the variational distribution over zi j ,
E[ln z−1

i j ] cannot be calculated analytically. However, by doing
some algebra, the expression for LI(q) can be derived as

LI(q) = 2
∑

(i, j )∈�

E
[

ln z−1
i j

]+{
terms not including E

[
ln z−1

i j

]}

≤ 2
∑

(i, j )∈�

ln E
[
z−1

i j

]+{
terms not including E

[
ln z−1

i j

]}

� LApp-I(q)

where the inequality follows from the Jensen’s inequality.
Therefore, we can use LApp-I(q) as an approximation to the
true lower bound LI(q). A similar approximate lower bound
LApp-II(q) for Model II can also be obtained, and we omit the
details due to page limitation.

E. Computational Complexity

Now we give a brief discussion on the computational
complexity of the proposed variational Bayesian methods
for L1-norm LRMF. It is easy to observe that only simple
computations are involved in the variational inference of the
parameters, except that inferring each of ui s or v j s needs to
compute an inverse of a r × r matrix, leading to O((m+n)r3)
costs in total, where m and n are the number of matrix columns
and rows, and r is the rank parameter. Altogether, each infer-
ence iteration needs O((m + n)r3 + mnr2) costs, and the total
complexity of the methods is thus O(T ((m + n)r3 + mnr2)),
where T is the upper bound of iterations. Since, in general, it
holds that r � min(m, n), the proposed algorithm is always
well suited for solving large-scale L1-norm LRMF problems.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the pro-
posed methods, denoted as VBMFL1-I and VBMFL1-II
(for Model I and Model II, respectively) by experiments.
The competing methods are the state-of-the-art methods for
L1-norm LRMF, including ALP, AQP [11], L1-Wiberg [12],
RegL1-ALM [13], PRMF [18], CWM [20], and RBMF [31].
We use the publicly available toolboxes for L1-Wiberg,2

RegL1-ALM,3 PRMF,4 and CWM,5 author-provided imple-
mentation for RBMF, and write the codes for ALP and AQP
using the LP and QP solvers in MATLAB Optimization
Toolbox. All the programs were run under the MATLAB
8.0(R2012b) platform on the personal computer with Intel(R)
Core(TM) i5-3230M at 2.60 GHz (CPU), 8 GB (memory),
and Windows 8.1 64-bit (OS). For each experiment, we use
random but same initializations for all the competing methods.

A. Correctness Verification for the Proposed Methods

Since our models are constructed based on the Laplace
noise assumption, it is necessary to evaluate the behavior of
the proposed methods under this kind of noise distribution.

2http://cs.adelaide.edu.au/~anders/code/cvpr2010.html.
3http://sites.google.com/site/yinqiangzheng/.
4http://winsty.net/prmf.html.
5http://gr.xjtu.edu.cn/web/dymeng/.

Fig. 3. Approximate lower bound curves for VBMFL1-I and VBMFL1-II
on synthetic data introduced in Section IV-A.

Fig. 4. True probability density (shown with blue curve) of the noise and its
estimation (shown with red histogram) by the proposed methods on synthetic
data introduced in Section IV-A. (a) VBMFL1-I. (b) VBMFL1-II.

To this aim, we designed a synthetic data set generated as
follows: two matrices U ∈ R

4×40 and V ∈ R
4×40 were

first randomly generated with each entry drawn from the
Gaussian distribution N (0, 5), resulting in the ground truth
rank-4 matrix M0 = UT V. Then, 30% of the elements
were randomly selected and specified as missing data, and
the rest elements were mixed with noise based on (9) with
λ = 2. We implemented both of the proposed VBMFL1-I and
VBMFL1-II methods on this data set for verification.

First, we plot the curves of the variational lower bounds
for VBMFL1-I and VBMFL1-II, as derived in Section III-D,
in Fig. 3, to see their convergence property. It is easy to
observe that both the lower bound curves are monotonically
increasing during the iterative process and quickly converge
to a stable status within 40 iterations, which is consistent with
the basic principle of variational inference.

Next, we show the ability of the proposed methods
in discovering the true structure of the embedded noise.
We subtracted the estimated matrices returned by the proposed
methods from the observed matrix, and thus obtained the
estimated noise. Then, we compared the empirical density of
the estimated noise and the density of the true noise in Fig. 4.
As can be observed from this figure, the shape of the empirical
density is very close to the true Laplace density, implying that
our methods are able to accurately recover the noise structure.
Besides, the estimated values for λ are 2.0825 and 2.0851,
by VBMFL1-I and VBMFL1-II, respectively, which are very
close to its underlying true value.

We then show in Fig. 5 the pseudocolor images generated by
the ground truth data and noise matrices and their estimations
by VBMFL1-I and VBMFL1-II. As can be observed, both of
the estimated data and noise matrices are very close to the
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TABLE I

PERFORMANCE COMPARISON OF SEVEN EXISTING L1-NORM LRMF METHODS AND THE PROPOSED METHODS ON SMALL-SCALE SYNTHETIC

EXPERIMENTS. THE RESULTS ARE AVERAGED OVER 100 RUNS, AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 5. Illustration of the ground truth data and noise matrices and those
estimated by the proposed VBMFL1-I and VBMFL1-II methods on synthetic
data introduced in Section IV-A.

ground truth, indicating that the proposed methods success-
fully deliver the true data information from the corrupted
observations.

As can be observed from this simple simulation, the effec-
tiveness of the proposed methods is substantiated, especially
in terms of its ability in estimating the true noise structure,
which naturally leads to its faithful reconstruction of the true
data from the noisy observations.

B. Synthetic Experiments

We then evaluate the performance of the proposed methods
on synthetic data with both small and large scales.

1) Small-Scale Data: The data were generated as follows:
two matrices U ∈ R

4×20 and V ∈ R
4×30 were first randomly

generated with each entry drawn from the Gaussian distribu-
tion N (0, 1), resulting in the ground truth rank-4 matrix M0 =
UT V, and a certain amount of the missing entries and outliers

were then randomly specified on M0 to constitute the observa-
tion matrix M. The outliers were then independently generated
from the uniform distribution on [−5, 5], which are extremely
heavy compared with the clean data, following the settings
in [12], [13], and [20]. To make a comprehensive comparison,
we varied the missing data ratios and the outlier ratios to obtain
a series of synthetic matrices.

Six series of synthetic matrices were generated by varying
the outlier ratios and missing data ratios as (20%, 20%),
(20%, 30%), (20%, 40%), (30%, 20%), (30%, 30%), and
(30%, 40%), respectively. In each case, 100 matrices were
generated, and the average performance of each competing
method on these matrices, in terms of computational accuracy
and time, was summarized in Table I. The accuracy of the
competing method was measured by the root-mean-square
error (RMSE), which is defined by

RMSEgrd =
√

1

mn
‖M0 − ÛT V̂‖2

2

where Û and V̂ are the factors estimated by a competing
method, and M0 is the ground truth matrix. We also include
the mean absolute error (MAE) between the corrupted matrix
and the reconstructed one

MAEobv = 1
∑

i j wi j
‖W � (M − ÛT V̂)‖1

which actually corresponds to the objective function of the
L1-norm LRMF problem (4) in Table I. It should be noted
that RMSEgrd is actually what we focus on, since it measures
the difference between the estimated matrix and the true but
unobserved data matrix, while MAEobv only measures the
closeness of the estimation to the observed matrix, which is
embedded with noises/outliers.

It can be observed from Table I that although not achieving
the lowest MAEobv, the proposed VBMFL1-I and VBMFL1-II
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TABLE II

PERFORMANCE COMPARISON OF FOUR EXISTING ROBUST LRMF

METHODS AND THE PROPOSED METHODS ON LARGE-SCALE

SYNTHETIC EXPERIMENTS. THE RESULTS ARE

AVERAGED OVER 100 RUNS

methods can always perform the best in terms of RMSEgrd
while they consume reasonable time as compared with the
other methods. We also observe that several methods, e.g.,
AQP and L1-Wiberg, though they achieve a lower MAEobv,
yield very large RMSEgrds, implying that they fail to recover
the ground truth matrix in this scenario. This means that when
specifically optimizing the objective function of the L1-norm
LRMF problem (4), these methods tend to overfit the corrupted
observations, while they may not well handle the generaliza-
tion capability of the results on the unobserved elements of the
original uncorrupted matrix. As a comparison, the proposed
methods are constructed within the Bayesian framework, under
which the overfitting problem tends to be alleviated [21].
In addition, based on the relation to the optimization-based
model, as discussed in Section II-C, the proposed methods
tend to be more flexible to the data corruptions due to the
automatically tuned weights zi j s on matrix elements and
generalize better attributed to its L2-regularization penalties
on ui s and vi s. It should be noted that RBMF, which is also
based on the Baysian framework, can achieve better RMSEgrds
compared with most of the optimization-based methods, but
worse compared with our methods. This means that, on the
one hand, RBMF can alleviate the overfitting issue to a
certain extent; on the other hand, the Laplace noise assumption
adopted by our methods is more effective than that of RBMF
in the cases of existing heavy outliers.

2) Large-Scale Data: The data were generated as follows:
a ground truth matrix M0 ∈ R

1000×1000 was first randomly
generated with each entry drawn from the uniform distribution
on [0, 10]. Then, 30% of the entries were specified as missing
data, and another 30% entries were added to outliers i.i.d.
generated from the uniform distribution on [−50, 50]. Note
that the ground truth matrix here is of full rank, intending to
test a method’s ability of low-rank approximation to a full rank
matrix. This setting is similar to performing SVD or PCA to
reduce the dimensionality of data.

All competing methods except ALP, AQP, and L1-Wiberg,
suffering from the out of memory error due to their compara-
tively low scalability, were implemented. Table II summarizes
the average performance of each method with rank-30 approx-
imation, in terms of RMSEgrd and computational time, over
100 runs. It is easy to observe that the proposed methods attain
better reconstruction accuracy than other utilized methods.
It can also be observed that the proposed methods have
a comparable computational speed with existing methods.

Fig. 6. Performance comparison of five existing robust LRMF methods and
the proposed methods with rank parameter varying from 4 to 12.

Considering their better accuracy, it is rational to say that they
are efficient.

3) Sensitivity to the Rank Parameter: Now we briefly
analyze the sensitivity of the proposed methods to the rank
parameter. We generated data in a similar way as before:
two matrices U ∈ R

8×60 and V ∈ R
8×60 were first ran-

domly generated with each entry drawn from the Gaussian
distribution N (0, 1), resulting in the ground truth rank-8
matrix M0 = UT V, and then 30% of the entries were
randomly specified as missing data and another 30% were
added outliers generated from the uniform distribution on
[−5, 5]. The proposed methods, together with five existing
methods, were run on this data with rank parameter varying
from 4 to 12. Since the ground truth rank is eight, we can
observe the behavior of each method when the rank was
incorrectly set. The results in terms of RMSEgrd averaged over
100 runs were summarized in Fig. 6. We can observe that,
most competing methods’ performances degenerate when the
rank is incorrectly specified. Our methods, however, can, on
the one hand, achieve the best performance under the ground
truth rank, and the one other hand, perform at least as robust
as other competing methods under the incorrect rank.

C. Structure From Motion

SFM aims estimating 3-D structure from a sequence of 2-D
images, which may be coupled with local motion informa-
tion [1]. There are two types of SFM problems, namely, rigid
and nonrigid SFM, both of which can be formulated as LRMF
problems.

1) Rigid Structure From Motion: Rigid SFM is shown
to be an intrinsic rank-3 matrix factorization problem after
registering the image origin to the centroid of feature points in
every frame [1]. However, the method cannot be directly used
in real situations due to the missing components and noises
embedded in each frame data. The L1-norm LRMF with rank 4
is thus considered as a tool for this task [11]. We employ
the Dinosaur sequence,6 which contains 319 feature points
tracked over 36 views, of the sequence, corresponding to a data
matrix M0 of size 72 × 319 and with 76.92% missing data.
To verify the robustness of the competing methods, 30% of
the observed entries were randomly chosen and added to
outliers, generated from the uniform distribution on [−50, 50].
We have run all of the competing methods on the problem,

6http://www.robots.ox.ac.uk/~vgg/data1.html.
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TABLE III

PERFORMANCE COMPARISON OF FIVE EXISTING L1-NORM

LRMF METHODS AND THE PROPOSED METHODS ON

RIGID SFM EXPERIMENTS. THE RESULTS ARE

AVERAGED OVER 100 RUNS

TABLE IV

PERFORMANCE COMPARISON OF FIVE EXISTING L1-NORM

LRMF METHODS AND THE PROPOSED METHODS ON

SFM EXPERIMENTS WITH TRAINING/TESTING

SPLIT. THE RESULTS ARE AVERAGED

OVER 100 RUNS

while the AQP and L1-Wiberg failed to be implemented due to
the out of memory problem. The computational accuracy and
computation times, averaged over 100 runs, for all competing
methods are reported in Table III, where the accuracy measure
RMSEobv is defined by

RMSEobv =
√

1
∑

i j wi j
‖W � (M0 − ÛT V̂)‖2

2.

It is easy to observe that the proposed methods attain more
accurate results than the other utilized methods. Considering
the computational time, the proposed methods run slower than
PRMF and CWM while much faster than the other three.

Note that RMSEobv can only measure the accuracy on the
observed data, while we also care about the accuracy on
the unobserved data. Therefore, we further split the observed
data into two parts, one for training and one for testing, to
see how well a method can approximate the ground truth
matrix in this problem. Specifically, we randomly selected
80% of the observed data for training and used the rest 20%
data for testing; 30% of the training data were randomly
chosen and added to outliers from the uniform distribution
on [−50, 50]. The performances, averaged over 100 runs, for
all competing methods were reported in Table IV, where the
accuracy measure RMSEtest is defined similar to RMSEobv but
only calculated on the testing data. It can be observed that the
proposed methods achieve the lowest RMSEtest compared with
other methods, which means that they are more accurate for
recovering the unobserved data.

We also show the reconstructed tracks of different methods
in Fig. 7. It is easy to observe that all of the results returned

Fig. 7. Original incomplete, corrupted incomplete, and recovered tracks
obtained by competing methods on the Dinosaur sequence.

by competing methods are affected by the outliers embedded
in data, while our methods give a comparably better estima-
tion, which complies with their good performance in terms
of RMSEobv and RMSEtest. It should be mentioned that
the results of our methods are still far from perfect, since
solving SFM problem requires additional constraints on the
estimated matrices. We will further explore it in our future
research.

2) Nonrigid Structure From Motion: Unlike the rigid SFM
problem, the nonrigid SFM problem corresponds to an LRMF
problem with rank 3k, where k is the number of shape basis
accounting for nonrigid deformation [40]. Here, we use the
Giraffe sequence,7 which includes 166 feature points tracked
over 120 frames. The data matrix M0 is of size 240 × 166
with 30.24% entries missing; 20% of its elements were further
randomly chosen and added to outliers, generated from the
uniform distribution on [−50, 50]. We set k to 2 as in [7],
leading to a rank-6 LRMF problem. The AQP and L1-Wiberg
encountered the out of memory problem on this data set
again. Similar to rigid SFM, we also conducted two sets of
experiments: one is to run a method on all the observed data
and calculate the RMSEobv value; the other is to split the
observed data into 80% training/20% testing sets and run a
method on the training set while calculating RMSEtest on
the test set. Each of the competing methods was run on the
Giraffe sequence 100 times, and the averaged performance
and computation time are reported in Tables IV and V. It is
clear that the proposed methods get better accuracy among
all the competing methods, while they are faster than ALP,
RegL1-ALM, and RBMF, and only unsubstantially slower than
PRMF and CWM.

To further compare the performance of different methods,
we depict the recovered points in three frames of the Giraffe
sequence in Fig. 8. It is observed that the other competing
methods produced disordered reconstruction in some frames
more or less, while the proposed methods can more stably

7http://www.robots.ox.ac.uk/~abm/.
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Fig. 8. Recovered points from the Giraffe sequence in the 4th, 49th, and 50th frames of the competing methods. From left to right: the results of ALP,
RegL1-ALM, PRMF, CWM, RBMF, VBMFL1-I, and VBMFL1-II, respectively. A point in green corresponds to an outlier, blue an observed entry, and red
a missing entry. The magenta circles are the ground truth of observed points.

TABLE V

PERFORMANCE COMPARISON OF FIVE EXISTING L1-NORM

LRMF METHODS AND THE PROPOSED METHODS ON

NONRIGID SFM EXPERIMENTS. THE RESULTS

ARE AVERAGED OVER 100 RUNS

Fig. 9. (a) RMSEgrd curve and (b) running time curve for each competing
method on faces of a single subject with rank varying from 1 to 20.

recover all of the desired frames. This further verifies the
effectiveness and the robustness of the proposed methods.

D. Face Reconstruction

As shown in [42], face images taken from one subject
approximately lie on a low-dimensional subspace. Therefore,
we can test the effectiveness of LRMF methods on face
reconstruction problem, i.e., recovering face images from the
corrupted ones with missing data and outliers. The faces were
generated from the well-known Yale Face Database B [43].
We generated single-subject data as follows: 64 face images
from the first subject were extracted, and all images were
cropped to 192×168 pixels [44], resulting in the ground truth
matrix M0 of size 32256 × 64. Then, 30% randomly chosen

Fig. 10. Approximate lower bound curves for VBMFL1-I and VBMFL2-II
on faces of a single subject with rank varying from 1 to 20.

Fig. 11. From left to right: original face images, faces corrupted with
30% missing data and 30% outliers, and faces reconstructed by RegL1-ALM,
PRMF, CWM, VBMFL1-I, and VBMFL1-II.

entries of M0 were designed as missing values, and 30% of the
rest entries were added to uniform noise on [−50, 50]. All of
the nine competing methods utilized on synthetic experiments
have been tried, while four of them, including ALP, AQP,
L1-Wiberg, and RBMF, suffered from the out of memory error
or cannot converge in a reasonable time. We varied the rank
from 1 to 20 and recorded the RMSEgrd values and running
time for each method, as summarized in Fig. 9.

As shown in Fig. 9, by taking a comparable computational
time as existing methods, the proposed VBMFL1-II
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Fig. 12. Background subtraction results of the Hall sequence. From left to right: original video frames and ground truth foreground region, background and
foreground separated by VBMFL1-I and VBMFL1-II.

Fig. 13. Background subtraction results of the Bootstrap sequence. From left to right: original video frames and ground truth foreground region, background
and foreground separated by VBMFL1-I and VBMFL1-II.

achieves the lowest RMSEgrd value among the four methods
implemented for all rank configurations. It is interesting that
the RMSEgrd values tend to become large for other competing
methods as rank increasing, which implies that they are
overfitting noise and are sensible to rank settings. In contrast,
the proposed methods can stably obtain satisfactory
reconstruction.

To further analyze the behavior of the proposed methods,
we also plot the curves of variational lower bounds of the
proposed methods versus rank, as shown in Fig. 10. It can
be observed that the lower bounds keep increasing as the
rank becomes higher and tend to be stable when the rank
is larger than 8, which is consistent with tendency of the
RMSEgrd curves shown in Fig. 9. It can also be observed
that the lower bounds increase sharply before rank 4, while
they change slowly after rank 4, indicating that the intrinsic
rank should be 4 for this data set with faces of one person.
This observation coincides with the analysis in [42], and thus
suggests the potential application of our methods to model
selection of LRMF problems.

Then, we implement the competing LRMF methods to
reconstruct faces with multiperson. The data were generated
as follows: 20 face images for each of the first 10 subjects
in Yale Face Database B were randomly chosen, resulting
in a total of 200 images. Then, the images were cropped
and manually corrupted as the former experiments. Based
on our aforementioned variational lower bound estimation,
rank-40 approximation was used for this 10-person data set.
The results in terms of RMSEgrd and computational time are
summarized in Table VI. Some reconstructed faces are shown
in Fig. 11 for easy comparison. It can be observed from
Table VI and Fig. 11 that the proposed methods give better
reconstruction for faces both quantitatively and visually.

TABLE VI

PERFORMANCE COMPARISON OF THREE EXISTING L1-NORM

LRMF METHODS AND THE PROPOSED METHODS ON

FACE RECONSTRUCTION EXPERIMENTS

E. Background Subtraction

The background subtraction from a video sequence captured
by a static camera can be modeled as a low-rank matrix analy-
sis problem [33], and we thus verify the effectiveness of the
proposed methods on this application. Two video sequences
were adopted in our evaluation, including Hall and Bootstrap
provided in [45].8 Each sequence includes static back-
ground and intermittent movement in the foreground objects.
RegL1-ALM, PRMF, CWM, and the proposed VBMFL1-I
and VBMFL1-II were implemented. Since the ground truth
region for the foreground of some frames is provided [45],
we can quantitatively compare the subtraction results given
by different LRMF methods. To do this, we first extracted
two subsequences for the two sequences, respectively, each
including three frames with ground truth foreground. This
resulted in a 700-frame subsequence for Hall and a 300-frame
subsequence for Bootstrap. Then, rank-10 factorization was
implemented by each method to obtain the background.
Final subtraction was done by thresholding the absolute value
of the difference between the original frame and the estimated
background. Following [45], we use the following measure to

8http://perception.i2r.a-star.edu.sg/bk_model/bk_index.
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TABLE VII

COMPARISON OF THREE EXISTING LRMF METHODS AND THE PROPOSED

METHODS ON THE BACKGROUND SUBTRACTION EXPERIMENTS

compare the performance of the competing methods:
S(A, B) = A ∩ B

A ∪ B
where A denotes the detected region and B is the correspond-
ing ground truth region. Averaged S measure and running time
for each method are summarized in Table VII.

As can be observed from Table VII, the proposed methods
can more accurately detect the foreground region as compared
with other competing methods. For visualization, we show
the original video frames with ground truth foreground region
and corresponding subtraction results of the proposed methods
in Figs. 12 and 13. It can be observed that our methods can
properly detect most of the true region. It is also expected
to further improve the background subtraction performance
by combining our methods with some more sophisticated
techniques, e.g., Markov random field [46].

V. CONCLUSION

In this paper, we have proposed a new variational
Beyesian approach to the L1-norm LRMF problem. We have
reformulated the original problem as a hierarchical Bayesian
generative model and utilized the mean-field variational infer-
ence strategy to infer the parameters involved in the model.
By virtue of the Bayesian framework, all the parameters
can be automatically tuned to adapt to the data so that
the generalization capability can be statistically guaranteed.
A series of experimental results implemented on synthetic and
real computer vision problems substantiates the efficiency and
robustness of the proposed methods.

In our future work, we will try to further speed up the
computation for the proposed models with the newly devel-
oped fast variational inference techniques, see [47], enhancing
its applicability in more real large-scale problems. Besides,
the proposed Bayesian framework can be further extended to
other L1-norm factorization tasks, such as nonnegative matrix
factorization and tensor factorization [48], [49]. Moreover,
extending current models to scenarios where the weight
matrix W is unknown is a very interesting direction. These
problems will be further investigated in our future research.

APPENDIX

CALCULATION OF EXPECTATIONS

In the following, we show how to calculate the expectations
involved in the inference process.

The expectations utilized in Model I include: E[ui ],
E[ui uT

i ], E[uT
i ui ], E[τu], E[v j ], E[v j vT

j ], E[vT
j v j ], E[τv ],

E[z−1
i j ], and E[(xi j − uT

i v j )
2]. Among them, E[ui ], E[τu],

E[v j ], and E[τv ] can be easily attained with respect to the
current parameter values of the variational distributions by

E[ui ] = μui
, E[τu] = a

b

E[v j ] = μv j
, E[τv ] = c

d
.

E[z−1
i j ] can also be easily calculated by

E
[
z−1

i j

] = E[yi j ] = μyi j .

Now we calculate E[ui uT
i ] and E[uT

i ui ]. Note that

�−1
ui

= E[(ui − E[ui ])(ui − E[ui ])T ]
= E

[
ui uT

i

] − E[ui ]E[ui ]T

and we thus have

E
[
ui uT

i

] = �−1
ui

+ E[ui ]E[ui ]T = �−1
ui

+ μui
μT

ui
.

Let Tr(·) denote the trace of a matrix, and then we have

uT
i ui = Tr

(
uT

i ui
) = Tr

(
ui uT

i

)
.

Therefore

E
[
uT

i ui
] = E

[
Tr

(
ui uT

i

)] = Tr
(
E
[
ui uT

i

])

= Tr
(
�−1

ui
+ μui

μT
ui

) = Tr
(
�−1

ui

) + μT
ui

μui
.

Similarly, E[v j vT
j ] and E[vT

j v j ] can be calculated by

E
[
v j vT

j

] = �−1
v j

+ μv j
μT

v j

E
[
vT

j v j
] = Tr

(
�−1

v j

) + μT
v j

μv j
.

Based on the above calculations, E[(xi j −uT
i v j )

2] can be easily
attained as follows:
E
[(

xi j − uT
i v j

)2]

= E
[
x2

i j − 2xi j uT
i v j + uT

i v j vT
j ui

]

= x2
i j − 2xi j E[ui ]T

E[v j ] + E
[
Tr

(
ui uT

i v j vT
j

)]

= x2
i j − 2xi j μ

T
ui

μv j
+ Tr

(
E
[
ui uT

i

]
E
[
v j vT

j

])

= x2
i j − 2xi j μ

T
ui

μv j
+ Tr

((
�−1

ui
+ μui

μT
ui

)(
�−1

v j
+ μv j

μT
v j

))
.

The expectations for Model II can be calculated similar to
those in Model I, except E[τui ] and E[τv j ], which can be,
respectively, calculated by

E[τui ] = a

bi
, E[τv j ] = c

di
.

Finally, we discuss the calculation of E[zi j ] involved in the
update equation of λ. Note that

E[zi j ] = E
[
y−1

i j

]

and yi j follows the inverse Gaussian distribution, and then
using the result shown in [50], we can get:

E
[
y−1

i j

] = μ−1
yi j

+ λ−1
y .
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