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Is Extreme Learning Machine Feasible?
A Theoretical Assessment (Part I)

Xia Liu, Shaobo Lin, Jian Fang, and Zongben Xu

Abstract— An extreme learning machine (ELM) is a feedfor-
ward neural network (FNN) like learning system whose connec-
tions with output neurons are adjustable, while the connections
with and within hidden neurons are randomly fixed. Numerous
applications have demonstrated the feasibility and high efficiency
of ELM-like systems. It has, however, been open if this is true
for any general applications. In this two-part paper, we conduct
a comprehensive feasibility analysis of ELM. In Part I, we
provide an answer to the question by theoretically justifying
the following: 1) for some suitable activation functions, such
as polynomials, Nadaraya–Watson and sigmoid functions, the
ELM-like systems can attain the theoretical generalization bound
of the FNNs with all connections adjusted, i.e., they do not
degrade the generalization capability of the FNNs even when
the connections with and within hidden neurons are randomly
fixed; 2) the number of hidden neurons needed for an ELM-
like system to achieve the theoretical bound can be estimated;
and 3) whenever the activation function is taken as polynomial,
the deduced hidden layer output matrix is of full column–rank,
therefore the generalized inverse technique can be efficiently
applied to yield the solution of an ELM-like system, and, further-
more, for the nonpolynomial case, the Tikhonov regularization
can be applied to guarantee the weak regularity while not
sacrificing the generalization capability. In Part II, however, we
reveal a different aspect of the feasibility of ELM: there also
exists some activation functions, which makes the corresponding
ELM degrade the generalization capability. The obtained results
underlie the feasibility and efficiency of ELM-like systems, and
yield various generalizations and improvements of the systems
as well.

Index Terms— Extreme learning machine (ELM), feasibility,
generalization capability, neural networks.

I. INTRODUCTION

LEARNING abounds in the sciences and engineering.
One of the main tasks of learning is to synthesize a

function that can present an unknown but definite relation
between the input and output. Given a finite number of input–
output samples, a learning system is normally developed for
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defining the function and yielding an estimator. The learning
system comprises a hypothesis space, a family of parameter-
ized functions that regulate the forms and properties of the
estimator to be found, an optimality criterion, in the sense
that the estimator can be defined, and a learning strategy
or an algorithm that numerically yields the parameters of
the estimator. The performance of the learning system is
then measured by its approximation capability, generalization
capability and computational burden. It is known that there
exists a dilemma in the approximation capability and general-
ization capability, and the generalization capability is usually
one of the most important factors to be considered in many
applications. Therefore, we focus on measuring a learning
system in terms of generalization capability and computational
burden in this paper.

There have been many types of learning systems. Artificial
feedforward neural networks (FNNs) are, for instance, the
well developed learning systems whose hypothesis spaces are
functions represented as the multilayer neuron-like structured
networks (the parameters are the synaptic connection weights
among the neurons). FNNs can approximate any integrable
functions provided the hidden neurons are sufficiently large
[1], [2]. With appropriate training schemes, FNNs also have
promising generalization capability [3]. Training a FNN is,
however, by no means easy, especially when the activation
function of neuron is discontinuous. Although many effective
algorithms, such as the back-propagation [4], are available,
training a FNN with all connection weights adjustable is
usually time consuming, and is of high computational burden
in general.

To overcome such difficulty, a useful learning scheme,
called the extreme learning machine (ELM), was suggested
in [5] and subsequently extended and applied in [6]–[16].
Different kinds of ELM variations have been studied in fields
as metal temperature prediction [17], palmprint and hand-
witten character recognition [18], [19], and face recognition
[20], [21]. Furthermore, ELM has been successfully applied
to gene selection and cancer classification [22]. In essence,
ELM is an FNN-like learning system whose connections with
output neurons are adjustable, while the connections with
and within hidden neurons are randomly fixed. With such
settings, ELM then transforms the training of an FNN with
all connections adjustable into a linear problem in which only
connections with output neurons are adjusted. Thus, the well-
known generalized inverse technique can be directly applied
for the solution [23], [24]. The similar idea has been adopted
earlier in [25]–[27] as the echo state network method and
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in [28] as the random vector functional-link networks method.
However, it is still open whether ELM is feasible and efficient
for general applications. In particular, one would like to ask
the following questions.
(Q1) FNN defines an estimator through adjusting all the

possible connections among all neurons, while ELM
searches for the estimator only by adjusting the con-
nections with output neurons. Thus, does ELM degrade
the generalization capability of FNN when the hidden
connections are randomly fixed?

(Q2) If the answer to Q1 is yes, what is the number of hidden
layer nodes needed to reach the optimal generalization
capability?

(Q3) ELM finds its estimator by applying the generalized
inverse technique, while this technique is efficient only
when the induced hidden layer output matrix is weakly
regular (i.e., is of full column rank or full row rank).
Then, how can the weak regularity of the hidden layer
output matrix be guaranteed?

All these problems are fundamental to the feasibility and
effectiveness of ELM-like systems.

The aim of this paper is to provide answers to these
questions. More precisely, we will theoretically justify
the following: 1) for some good activation functions like
polynomials, Nadaraya–Watson and sigmoid functions, the
ELM-like systems can attain the generalization bound of the
FNNs with all connections adjusted, i.e., they do not degrade
the generalization capability of the FNNs even when the
connections with and within hidden neurons are randomly
fixed; 2) the number of hidden layer nodes needed for an
ELM-like system to achieve the generalization bound is
estimated under the assumption of the smoothness of the
regression function; and 3) whenever the activation function
is taken as polynomials, the induced hidden layer output
matrix is of full column rank, therefore the generalized
inverse technique can be efficiently applied to yield the
solution. Moreover, for the nonpolynomial case, the Tikhonov
regularization can be applied to guarantee the weak regularity
without sacrificing the generalization capability. Thus,
the obtained results not only underlie the feasibility and
efficiency of ELM-like systems, but also yield some further
generalizations and improvements of the systems as well.

The remainder of this paper is organized as follows.
In Section II, we introduce the model and algorithm of
ELM-like systems. In Section III, we answer questions (Q1)
and (Q2) through developing a series of almost optimal gen-
eralization bound estimations of ELM systems, as compared
with the known lower bound estimation of the FNNs when all
connections adjusted. In Section IV, we answer question (Q3)
by showing that whenever the activation functions are
polynomials, the induced hidden layer output matrix is of full
column rank, and therefore the generalized inverse technique
can be efficiently applied. For the nonpolynomial activation
function case, we further suggest the use of regularization
technique, and show that the regularization scheme can assure
the weak regularity of the hidden layer output matrix without
sacrificing the generalization capability. We conclude this
paper in Section V with some useful remarks.

II. ELM-LIKE SYSTEMS: MODEL AND ALGORITHM

Let N be the the set of positive integers, d, l, m, n ∈ N,
X ⊆ Rd be the input space and Y ⊆ R be the output
space. Suppose that the unknown probability measure ρ on
Z := X × Y admits a decomposition ρ(x, y) = ρX (x)ρ(y|x),
here, ρ(y|x) is the conditional probability measure at x .
Let z = (xi , yi )

m
i=1 be a family of random samples, drawn

independently and identically according to ρ from Z . Without
loss of generality, we assume |yi | ≤ M and f : X → Y
is the function induced from ρ (i.e., the unknown but definite
correspondence between X and Y ). The difference between an
estimator f and the output is measured by the generalization
error

E( f ) =
∫

Z
( f (x) − y)2dρ (1)

which is known to be minimized by the regression function
fρ defined by [29]

fρ =
∫

Y
ydρ(y|x).

Because of the unknown feature of distribution ρ, the above
regression function cannot be computed and applied directly.
Learning then aims to find an approximation f ∗ of fρ in a
given hypothesis space.

Let L2
ρX

be the Hilbert space consisting of all ρX square
integrable functions on X , with norm ‖ · ‖ρ . It is well known
that for every f ∈ L2

ρX
[30]

E( f ) − E( fρ) = ‖ f − fρ‖2
ρ. (2)

In ELM framework, the hypothesis space is supposed to be

Mn =
{

fn(α, β, x) =
n∑

i=1

αiφ(βi , x) : n ∈ N
}

(3)

where x ∈ X, β = (β1, β2, . . . , βn)T ∈ Rn×l with βi ∈ Rl,
α = (α1, α2, . . . , αn)T ∈ Rn, φ : Rl ×Rn → R is a nonlinear
function (say, the activation function in FNN framework, the
kernel function in kernel learning framework). Mn can be
illustrated as the multilayer FNNs with variable hidden nodes
and one output node whose hidden node parameters are β
and connections with the output nodes are α. Under the
least squares optimality criterion, FNNs define their estimator
fFNN = fn∗ (α∗, β∗, x) through

(n∗, α∗, β∗) = arg min
(n,α,β)

⎧⎨
⎩

1

m

m∑
j=1

| fn(α, β, x j ) − y j |2
⎫⎬
⎭

or, whenever the number of hidden neurons n is preset, by

(α∗, β∗) = arg min
(α,β)

⎧⎨
⎩

1

m

m∑
j=1

∣∣∣∣∣
n∑

i=1

αiφ(βi , x j ) − y j

∣∣∣∣∣
2
⎫⎬
⎭. (4)

While, as compared, ELM define its estimator fELM =
fn∗(α∗, β̃, x) through

(n∗, α∗) = arg min
(n,α)

⎧⎨
⎩

1

m

m∑
j=1

| fn(α, β̃, x j ) − y j |2
⎫⎬
⎭
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or by

α∗ = arg min
α

⎧⎨
⎩

1

m

m∑
j=1

∣∣∣∣∣
n∑

i=1

αiφ(β̃i , x j ) − y j

∣∣∣∣∣
2
⎫⎬
⎭ (5)

where β̃ are randomly preselected according to a definite
distribution μ in Rn×l .

In the traditional learning paradigm, problem (4) is solved
by using a learning algorithm minimizing variables α and β
simultaneously. In ELM methodology, however, problem (5) is
usually solved directly using the generalized inverse technique.
Denote by

H =

⎡
⎢⎢⎢⎢⎣

φ(β̃1, x1) φ(β̃2, x1) · · · φ(β̃n, x1)

φ(β̃1, x2) φ(β̃2, x2) · · · φ(β̃n, x2)

...
... · · · ...

φ(β̃1, xm) φ(β̃2, xm) · · · φ(β̃n, xm)

⎤
⎥⎥⎥⎥⎦ (6)

the hidden layer output matrix, and y = (y1, y2, . . . , ym)T .
Then, problem (5) is seen to be a standard least squares
problem minα ‖Hα − y‖2

2 /m and its solution can be explicitly
given by α∗ = H †y, where ‖·‖2 is the Euclidean norm of
Rm and H † is a Moore–Penrose generalized inverse of H .
This leads to the following standard ELM algorithm [5].

A. ELM-Like Algorithm

Given the training samples z = (xi , yi )
m
i=1, the nonlinear

function φ, and the hidden neuron number n.
Step 1: Randomly assign β̃i in Rl , i = 1, . . . , n.
Step 2: Calculate the hidden layer output matrix H .
Step 3: Calculate the output weight vector α∗ = H †y where

H † is a Moore–Penrose generalized inverse of H.

Finally, the estimator fELM is defined by

fELM(x) = fn(α∗, β̃, x) =
n∑

i=1

α∗
i φ(β̃i , x). (7)

There are many available algorithms to calculate a
Moore–Penrose generalized inverse of H , say, the orthogonal
projection method, the orthogonalization method, and the
singular value decomposition method [31]. In particular, when-
ever H is of full column rank or of full row rank, H † can be
explicitly expressed as

H † = (H T H )−1H T (8)

or

H † = H T (H H T )−1.

Nevertheless, whenever H is neither of full column rank nor
full row rank (that is, H is not weakly regular), calculating
H † is still time consuming. Many works have studied this
issue [8], [32], [33]. We will provide new solutions to this
problem in Section IV.

The ELM-like algorithm exhibits the most different points
between FNNs and ELM: 1) unlike FNNs that require the
hidden-layer parameters β = {βi }n

i=1 to be trained, ELM only
randomly assigns the hidden-layer parameters, and thus saves
a great amount of computation time and 2) training an FNN is

a complicated nonlinear optimization problem, while training
an ELM is a linear least squares problem whose solution can
be directly generated by the generalized inverse of the hidden
layer output matrix. These differences certainly make the
computational complexity of ELM-like systems much lower
than that of FNNs. The problem is, however, whether such
significant complexity-deduction degrades other properties of
FNN learning? This is rational of feasibility of ELM-like
learning. Although wide range of applications of ELM have
provided positive support to the question [32]–[34], there is
still no solid theoretical assessment. We will provide such a
theoretical assessment in the subsequent sections.

III. DOES ELM DEGRADE THE

GENERALIZATION CAPABILITY?

In this section, we characterize the generalization capability
of ELM algorithm from a theoretical point of view. The
purpose is to show that ELM-like learning does not degrade
the generalization capability of FNN provided the activation
functions are appropriately chosen.

Let C0 be a positive constant, and q ∈ (0, 1], r = k + q
for some k ∈ N0 := {0} ∪ N. A function f : Rd → R is said
to be (r, C0)-smooth if for every γ = (γ1, . . . , γd), γi ∈ N0,∑d

j=1 γ j = k, the partial derivatives ∂k f /∂x1
γ1 ...∂xd

γd exist
and satisfy∣∣∣∣ ∂k f

∂x1
γ1 ...∂xd

γd
(x) − ∂k f

∂x1
γ1 ...∂xd

γd
(z)

∣∣∣∣ ≤ C0‖x − z‖q

for all x, z ∈ Rd . Denote by F (r,C0) the set of all (r, C0)-
smooth functions, and by D(r,C0) the set of all distributions
ρ(x, y) = ρX (x)ρ(y|x), with ρX being uniformly distributed
on X and fρ ∈ F (r,C0).

Given an estimator fz, by (2), its generalization capability
can be measured by the difference between fz and fρ, that
is, by

E( fz) − E( fρ) = ‖ fz − fρ‖2
ρ . (9)

This quantity depends on z and therefore has a stochastic
nature. As a result, it is impossible to say something about
(9) in general for a fixed z. Instead, we look at its behavior
in probability, say, as measured by the expected error

Eρm
(‖ fz − fρ‖2

ρ

) =
∫

Zm
‖ fz − fρ‖2

ρdρm

where the expectation is taken over all realizations z obtained
from a fixed m, and ρm is the m fold tensor product of ρ.

Let � ⊂ L2
ρX

and U(�) be the class of all Borel measures
ρ on Z such that fρ ∈ �. Due to the unknown feature of ρ,
we enter into a competition over all estimators Hm : z → fz
and define

em(�) := inf
fz∈Hm

sup
ρ∈U(�)

Eρm
(‖ fρ − fz‖2

ρ

)
.

It is easy to see that em(�) quantitively measures the gener-
alization capability of fz.

We first provide a baseline of FNN estimators, which can be
found in [35, Ch. 3] and [36]. Let 	 = {

fρ ∈ F (r,C0) :
‖ fρ‖∞ ≤ M

}
and 
 = {

ρ(x, y) ∈ D(r,C0) : |y| ≤ M
}
. It is
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obvious that 
 ⊆ 	 almost surely. Then, there holds the
following lower bound estimation:

em(	) ≥ em(
) ≥ Cm− 2r
2r+d , m = 1, 2, . . . (10)

where C is a constant independent of m. The above inequal-
ities together with the upper bound estimation of FNN
leaning [3] yield the following basic results on generalization
capability of FNNs.

Proposition 1: Whenever the activation function of a FNN
is of good property, there holds the following estimations:

C1m− 2r
2r+d ≤ em(
) ≤ em(	)

≤ sup
ρ∈U(�)

Eρm
(‖ fρ − fFNN‖2

ρ

)

≤ C2m− 2r
2r+d log m (11)

where C1 and C2 are constants independent of m.
Proposition 1 means that the FNN estimators can almost

realize the optimal generalization bound in term of (11) as long
as the activation function possesses some good properties. That
is, the activation functions should be exponential functions,
rational functions, or logistic sigmoid functions whose Fourier
transformations satisfy a certain smooth assumption. For more
details on the assumption, we refer the readers to [3].

A. Main Results

We show, in this section, that whenever the activation func-
tions are algebraic polynomials, Nadaraya–Watson functions,
or sigmoid functions, the ELM-like systems does not degrade
the generalization capabilities of FNNs.

We will repeatedly apply the following known result on the
upper bound estimation of the FNN estimators [35, Th. 11.3].

Lemma 1: Given the sample set z = (xi , yi )
m
i=1, let Kn be

the linear space of functions f : Rd → R, with dimension k,
and πM : R → R be the truncation operator defined by

πM (x) = min{|x |, M}sign(x) ∀x ∈ Rd .

Then

Eρm ‖πM f ∗
z − fρ‖2

ρ ≤ C M2 k(log m + 1)

m

+8 inf
f ∈Kn

∫
X

| f (x) − fρ(x)|2dρX (12)

where

f ∗
z = arg min

f ∈Kn

1

m

m∑
i=1

| f (xi ) − yi |2

and C is a constant independent of m and k.
1) Polynomial Activation Case: Considering the case

φ(βi , x) = (ωi x + bi )
s with βi = (ωi , bi ) ∈ [0, 1]d+1, both

ωi and bi being drawn independently and identically according
to the uniform distribution μ in [0, 1]d and [0, 1], and s ∈ N.
In this case, the hypothesis space of ELM is defined by

MP =
{

fn(α, ω, b, n, s, x) =
n∑

i=1

αi (ωi x + bi )
s : n ∈ N

}

and the ELM estimator is defined by

fELMP (x) =
n∑

i=1

αi
∗(ωi x + bi)

s (13)

where, in terms of (6), α∗ = (α∗
1 , α∗

2 , . . . , α∗
n ) satisfies

α∗ = arg min
α

{‖Hα − y‖2
2

}
.

For the estimator fELMP , we have the following conclusion.
Theorem 1: Assume fρ ∈ F (r,C0) with 0 < r ≤ 1 and

C0 ≥ 0, and ρX is absolutely continuous with respect to
Lebesgue measure on X . Let fELMP be the ELM estimator
defined as in (13). Then, whenever s = [m1/d+2r ] and n =
[md/d+2r], there holds the estimations

C1m− 2r
d+2r ≤ Eρm Eμn (‖πM ( fE L MP ) − fρ‖2

ρ)

≤ C2m− 2r
d+2r log m (14)

where [·] denotes the integer part. C1 and C2 are positive
constants depending only on M , C0, r , and d .

Proof: We first prove that for any n ≥ dim(Pd
s ) =

O(sd ), there holds Mp = Pd
s almost surely, where Pd

s
is the collection of polynomials defined on X with d vari-
ables and degree at most s. It is obvious that Mp ⊆ Pd

s .
On the other hand, since ρX is absolutely continuous with
respect to Lebesgue measure on X and m > n, it can
be found in the proof of Theorem 4 below that matrix
H = ((ωi x + bi )

s)m×n is of full column rank, thus there
exists a set of functions {(w1 · x + b1)

s , . . . , (wn · x + bn)
s},

which are linear independent almost surely (indeed, if
{(w1 · x + b1)

s, . . . , (wn · x + bn)
s} is linear dependent, then

there exists a set of real numbers (not all 0) {ci }n
i=1 such that

for almost all x ∈ X

c1(w1 · x + b1)
s + · · · + cn(wn · x + bn)

s = 0

which is impossible according to the proof of Theorem 4).
Thus, the dimension of Mp is at least n, so Pd

s ⊆ Mp.
Hence, Mp = Pd

s almost surely. This shows that

inf
f ∈Mp

∫
X

| fρ(x) − f (x)|2dρX = inf
f ∈Pd

s

∫
X

| fρ(x)− f (x)|2dρX

holds almost surely. Consequently, the well-known Jensen’s
inequality [37] for algebraic polynomials [38] together with
fρ ∈ F (r,C0) can imply

inf
f ∈Pd

s

∫
X

| fρ(x) − f (x)|2dρX ≤ Cs−2r .

Using Lemma 1 (12), we thus obtain

Eρm Eμn ‖πM ( fELMP ) − fρ‖2
ρ ≤ C

(
M2 n log m

m
+ s−2r

)
.

Taking n = [md/(d+2r)] and s = [m1/(d+2r)], we then arrive to
the upper bound estimation of Theorem 1. The lower bound
estimation of the theorem follows from (10) and the fact that
the absolutely continuous distribution with respective to the
Lebesgue measure is uniform distribution. With this, the proof
of Theorem 1 is completed.
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Theorem 1 provides bounds on the generalization error of
the ELM estimator in terms of (14) when algebraic polyno-
mials are taken as activation function. Our motivation to use
the polynomial function as an activation function in ELM is
from Zhou and Jetter [30], who gave an upper bound estimate
for support vector machine with polynomial kernel. In fact, the
polynomial kernel is a finite bandwidth kernel [39]. Therefore,
the capability (dimension) of the hypothesis space of ELM
with polynomial kernel is controlled by both the number of
neurons and the degree of polynomial kernel. If the degree
is fixed, no matter how many hidden neurons are employed,
the capacity of the hypothesis space is fixed. Therefore, ELM
with polynomial kernel of suitable degree does not suffer from
the overfitting phenomenon. This is the essential feature of
polynomial kernel.

At first glance, Theorem 1 seems contradict with the results
in [40], which showed that the nonpolynomial assumption
on the activation function is a necessary condition for the
density of neural networks. However, it should be noted that
the polynomial activation function in this paper is intrinsically
different from that of [40]. Indeed, the polynomial stated
in [40] is with the fixed degree, while in this paper the degree is
variable. It can be found in Theorem 1 that the degree s → ∞
as m → ∞. Thus, the density is obvious in our setting.

Such an estimation can be generalized to the cases when the
activation functions in ELM are Nadaraya–Watson or sigmoid
function.

2) Nadaraya–Watson Activation Case: Let Dn = {ti }n
i=1

be a discrete subset of X , with ti being drawn independently
and identically according to the uniform distribution μ in X .
The mesh norm of Dn and h Dn , which measures the maximum
distance from Dn , and for any points in X , be defined by

h D := h Dn := max
x∈X

min
ti∈Dn

‖x − ti ‖ .

It is known [35, Ch. 2] that the Nadaraya–Watson function is
an important type of kernels in constructing local averaging
estimators. Such type of functions is defined by

φNW(ti , x) = e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

where A, a positive constant, is the width of the Nadaraya–
Watson function. We consider the case of ELM with
φ(βi , x) = φNW(ti , x), that is, the hypothesis space and the
ELM estimator are, respectively, defined by

MNW =
{

fn(α, t, A, n, x) = ∑n
i=1 αi

e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

: A > 0, n ∈ N

}

and by

fELMNW(x) =
n∑

i=1

αi
∗ e−A‖x−ti ‖∑n

j=1 e−A‖x−t j ‖ . (15)

Theorem 2: Let 0 < r ≤ 1, C0 ≥ 0 and fELMNW be the
estimator defined as in (15). If fρ ∈ F (r,C0), n = [md/(d+2r)],
and A ≥ n

1
d log n, then there exit constants C1 and C2

depending only on M , r , C0, and d, such that

C1m− 2r
2r+d ≤ Eρm Eμn

(‖πM ( fELMNW) − fρ‖2
ρ

)
≤ C2m− 2r

2r+d log m. (16)
Proof: We denote by B(x, ε), the closed ball centered at x

with radius ε > 0. Then it is easy to see that∣∣∣∣∣ fρ(x) −
n∑

i=1

fρ(ti )e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

∣∣∣∣∣
≤

n∑
i=1

| fρ(x) − fρ(ti )| e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

=
∑

ti∈B(x,2h Dn )

| fρ(x) − fρ(ti )| e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

+
∑

ti /∈B(x,2h Dn )

| fρ(x) − fρ(ti )| e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

≤ Chr
Dn

+
∑

ti /∈B(x,2h Dn )

| fρ(x) − fρ(ti )| e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖ .

To bound the second term in the above inequality, we first
notice that by definition of mesh norm of Dn , there is an t j

such that t j ∈ B(x, h Dn ). Therefore, we have

∑
ti /∈B(x,2h Dn )

| fρ(x) − fρ(ti )| e−A‖x−ti ‖∑n
j=1 e−A‖x−t j ‖

≤ 2‖ fρ‖
∑

ti /∈B(x,2h Dn )

e−A(‖x−ti ‖−‖x−t j ‖).

Since for arbitrary ti /∈ B(x, 2h Dn ) and t j ∈ B(x, h Dn), there
hold, respectively, that ‖x − ti‖ > 2h Dn and ‖x − t j‖ ≤ h Dn ,
we have ‖x − ti‖−‖x − t j‖ > h Dn . This then implies

∑
ti /∈B(x,2h Dn )

| fρ(x)− fρ(ti )| e−A‖x−ti‖∑n
j=1 e−A‖x−t j ‖ ≤2‖ fρ‖ne−Ah Dn.

In consequence, we obtain

inf
f ∈MNW

‖ fρ − f ‖ ≤ C(hr
Dn

+ ne−Ah Dn ). (17)

To prove (16), we first need to establish the following
estimation:

Eμn (h Dn ) ≤ Cn− 1
d . (18)

Indeed, since μ is a uniform distribution, it follows that
ϑ(B(x, δ)) = Cδd , where ϑ is a probability measure. From
the definition of h Dn , we deduce that if there exists an x ∈ X
such that B(x, ε) ∩ Dn = ∅, then h Dn > ε. Thus

P{h Dn > ε} ≤ P{B(x, ε) ∩ Dn = ∅}
= (1 − Cεd )n ≤ e−Cnεd

.

Hence

Eμn {h Dn } =
∫ ∞

0
P{h Dn > ε}dε ≤

∫ ∞

0
e−Cnεd

dε

= Cn− 1
d

∫ ∞

0
e−t d

dt

≤ Cn− 1
d

(∫ 1

0
1dt +

∫ ∞

1
e−t dt

)
≤ Cn− 1

d (19)
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hold as claimed. Now, noting that fρ ∈ F (r,C0) with 0<r ≤1,
we can apply Jensen’s inequality with (19) to get

Eμn
{
hr

Dn

} ≤ (Eμn (h Dn ))
r ≤ Cn−r/d . (20)

Since, by assumption, A ≥ n
1
d log n and (17), it then follows

that:
Eμn (| fρ(x)− f (x)|)≤ Eμn

{
hr

Dn

}+Eμn {ne−Ah Dn }≤Cn−r/d .

(21)

From Lemma 1 and n = [md/2r+d ], it comes

Eρm Eμn ‖πM fELMNW − fρ‖2
ρ

≤ Eρm Eμn (C̃ M2 (log m + 1)n

m

+8 inf
f ∈MNW

∫
X

| f (x) − fρ(x)|2dρ)

≤ C̃ M2 (log m + 1)n

m
+ C̄n−2r/d

≤ Cm− 2r
2r+d log m.

That is, the upper bound estimation of (16) is justified. The
lower bound is obviously true from (10). This finishes the
proof of Theorem 2.

3) Sigmoid Activation Case: In FNN applications, a most
extensively used activation function is the sigmoid function σ
that satisfies

lim
t→−∞ σ(t) = 0 and lim

t→∞ σ(t) = 1.

In this section, we consider the case of ELM with the bounded
sigmoid activation functions, i.e., φ(βi , x) = σ(b(x − ti)) with
βi = (b, ti ), where σ is a bounded sigmoid function, b is a
positive constant, and Dn = {ti }n

i=1 with ti being chosen inde-
pendently and identically according to the uniform distribution
μ in [0, 1]. By definition, for any sigmoid function σ , there
exists a positive constant L such that

|σ(t) − 1| < n−3r−1, if t ≥ L

and

|σ(t)| < n−3r−1, if t ≤ −L .

The hypothesis space is then defined by

MS =
⎧⎨
⎩

fn(α, t, b, a0, n, x) =
n∑

i=1
αiσ(b(x − ti )) + a0

: x ∈ X, αi ∈ R, a0 ∈ R, n ∈ N

⎫⎬
⎭

with

b ≥ nh D
−1 (22)

and then the estimator is defined by

fELMS (x) =
n∑

i=1

αi
∗σ(b(x − ti )) + a0. (23)

Theorem 3: Let 0 < r ≤ 1, fρ ∈ F (r,C0) with C0 > 0.
fELMS be the ELM estimator defined as in (23). If d = 1,
b satisfies (22) and n = [m1/1+2r ], then there holds

C1m− 2r
2r+1 ≤ Eρm Eμn (‖πM ( fELMS ) − fρ‖2

ρ)

≤ C2m− 2r
2r+1 log m (24)

where C1 and C2 are constants depending only on
M , r , and C0.

Proof: For arbitrary x ∈ [0, 1] and any k ∈ [1, n], we
define

hn(x) = fρ(t1) +
n∑

i=1

( fρ(ti+1) − fρ(ti ))σ (b(x − ti ))

= fρ(tk) +
k−1∑
i=1

( fρ(ti+1) − fρ(ti ))(σ (b(x − ti )) − 1)

+( fρ(tk+1) − fρ(tk))σ (b(x − tk))

+
n∑

i=k+1

( fρ(ti+1) − fρ(ti ))σ (b(x − ti )).

Then, for arbitrary k ∈ [1, n], we have

hn(x) − fρ(x)

= fρ(tk)− fρ(x)+
k−1∑
i=1

( fρ(ti+1) − fρ(ti ))(σ (b(x − ti )) − 1)

+( fρ(tk+1) − fρ(tk))σ (b(x − tk))

+
n∑

i=k+1

( fρ(ti+1) − fρ(ti ))σ (b(x − ti )). (25)

Define

B := n−3r−1,

by the definition of sigmoid function, there exists a positive
constant L > 0 such that

|σ(t) − 1| < B, if t ≥ L

and

|σ(t)| < B, if t ≤ −L .

Define σ ∗(t) := σ(bt) with b ≥ Lh D
−1, then it comes

|σ ∗(t) − 1| < B, if t ≥ h D

(26)

and

|σ ∗(t)| < B, if t ≤ −h D. (27)

If x ∈ [tk − h D, tk + h D], k = 1, . . . , n, then we have

x − ti ≥ h D, if i < k

and

x − ti ≤ −h D, if i > k.

Combine with (26) and b ≥ Lh D
−1

|σ ∗(x − ti ) − 1| < B, if i < k

and

|σ ∗(x − ti )| < B, if i > k.
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Since fρ ∈ F (r,C0) and σ is bounded, it follows from (25)
that:
|hn(x) − fρ(x)|

≤ h D
r + (k − 1)h D

r B + ‖σ‖h D
r + (n − k)h D

r B

≤ C1‖h D‖r + n‖h D‖r B (28)

where ‖σ‖ := supx∈R |σ(x)|. Now we return to estimate
Eμn ‖h Dn ‖. Since μ is the uniform distribution, similar to the
proof of Theorem 2, we can find

Eμn {h Dn } =
∫ ∞

0
P{h Dn > ε}dε ≤ Cn−1 (29)

for a constant C independent of n.
By the well-known Jensen’s inequality, we thus deduce from

(28) and (29) that

inf
fρ∈F (r,C0 )

∫
|hn(x) − fρ(x)|2ρdρ ≤ C1 Eμn ‖h Dn ‖2r

≤ C1(Eμn ‖h Dn ‖2)r <
C2

n2r
. (30)

Consequently, combined with Lemma 1, it gives

Eρm Eμn (‖πM ( fE L MS ) − fρ‖2
ρ) ≤ C

(
n log m

m
+ n−2r

)

where constant C is independent of m and n. Setting n =
[m1/2r+1] in the above estimation, then it comes

Eρm Eμn
(‖πM ( fELMS ) − fρ‖2

ρ

) ≤ C2m− 2r
2r+1 log m. (31)

This concludes the proof of the upper bound in (24). Together
with (10), this implies Theorem 3.

B. Remarks

Some remarks on Theorems 1–3 are as follows.

1) Theorems 1–3 say that whenever the unknown distrib-
ution ρ has the priors fρ ∈ F (r,C0) (roughly speaking,
this amounts to that the unknown function f between
the input and output is of up to r -order smoothness),
the hidden parameters are randomly assigned according
to a uniform distribution μ, and the nonlinear function
φ in ELM is appropriately selected (say, polynomials,
Nadaraya–Watson or sigmoid functions), the generaliza-
tion error of ELM-like learning then obeys to

O(m− 2r
2r+d ) ≤ sup

fρ∈F (r,C0 )

Eρm Eμn
(‖πM ( fELM) − fρ‖2

ρ

)

≤ O
(
m− 2r

2r+d log m
)

(32)

where m is the number of samples, d is the dimension
of input space, and r is the order of the smoothness of
the regression function. This upper bound estimation is
asymptotically identical with the lower bound because
of log m/mγ → 0 for any γ > 0 as m → ∞.
Therefore, it turns out that the generalization error
of the ELM learning can be essentially characterized
by O(m−2r/2r+d ). It is well known (10), however,
that whenever the regression function is r smooth, any
learning algorithm possesses the generalization bounds

not less than O(m−2r/2r+d) (i.e., O(m−2r/2r+d ) is an
optimal generalization bound). Theorems 1–3 then show
that averagely, ELM can attain the almost optimal
generalization bound O(m−2r/2r+d) of FNNs learning.
In consequence, we can conclude that with suitably
selected activation functions, ELM does not degrade the
generalization capability of FNNs.

2) When we say ELM does not degrade the generalization
capability, it takes sense only in the understanding of
estimations (32). In the FNN framework, an almost
optimal generalization bound is expressed normally in
terms of estimations [3], [35]

O(m− 2r
2r+d ) ≤ sup

fρ∈F (r,C0 )

Eρm
(‖πM ( fFNN) − fρ‖2

ρ

)

≤ O
(
m− 2r

2r+d log m
)
. (33)

As compared (32) with (33), we then can immediately
find a difference: the double expectations Eμn and Eρm

are used in (32) while only one expectation Eρm has
been applied in measuring the generalization error in
(33). The second expectation Eμn is inevitable since
the random assignment of the hidden parameters in
ELM brings another randomness, except for the sample
randomness ρ. Thus, to be more precise, the estima-
tions (32) (or equivalently, Theorems 1–3) just show
that taking averagely (on all realizations of μ), the
generalization performance of ELM can be as good
as that of FNNs with all parameters adjusted. This is
not, however, to say that for any single implementation
of ELM, corresponding to one realization of random
assignment of the hidden parameters, its performance
is as good as FNNs.

3) Different from the existing literatures on ELM study,
Theorems 1–3 reveal the close connection between the
hidden nodes size and the number of training samples
(e.g., n = [md/(2r+d)]). However, in the real word
application, the smooth information of the regression
function is usually unknown. Under this circumstance,
the well-known cross validation can be employed to
select the exact number of hidden neurons.

4) Theorems 1–3 have provided just partial but by no
means a complete answer to questions (Q1) and (Q2).
For instance, we have shown in Theorems 1–3 that
the ELM does not degrade the generalization capa-
bility when the activation functions are polynomials,
Nadaraya–Watson and sigmoid. On the other hand, we
have found that for the Gaussian activation function,
ELM does degrade the generalization capability of FNN,
which can be found in a separate paper (Part II) [41].
To facilitate the use of ELM, the well-developed coeffi-
cient regularization technique as a remedy to this degra-
dation is employed in ELM. These two papers (Parts
I and II) give a comprehensive feasibility analysis of
ELM, which reveal the essential characteristics of ELM.

The further question is then what more general types of
activation functions, not only polynomials, Nadaraya–Watson
or sigmoid, with which the ELM-like learning does or does
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not degrade the generalization capability. Furthermore, since
different random assignments lead to different performances
of ELM, so the random assignment will be weighed into the
consideration. We will return back to the research of such
problems in our further work.

IV. HOW CAN WEAK REGULARITY OF HIDDEN LAYER

OUTPUT MATRIX H BE GUARANTEED?

In this section, we formalize a condition under which the
weak regularity of the hidden layer output matrix H can be
guaranteed, so that the generalized inverse technique can be
efficiently applied in the ELM-like learning.

A. Polynomial Activation Implies Weak Regularity

We first show that whenever the activation functions are
taken to be algebraic polynomials, the deduced hidden layer
output matrix H is of full column rank. Therefore, the Moore–
Penrose generalized inverse of H can be directly computed as
in (8).

We need to establish the following lemma, which plays a
key role in the proof of Theorem 4.

Lemma 2: Let P ∈ Pd
s be an algebraic polynomial with d

variables and degree at most s. Then, its zero set

N(P) := {u ∈ [0, 1]d : P(u) = 0}
has Lebesgue measure 0.

Proof: Let u = (u(1), . . . , u(d)). For any fixed k ∈ [1, d],
we let

Pk(uk) = P(u(1), . . . , u(k), . . . , u(d))

which is an algebraic polynomial in univariate variable u(k) of
degree at most s whenever

u(1), . . . , u(k−1), u(k+1), . . . , u(d)

are fixed. Then, Pk(uk) has at most s zeros and its zero set

N(Pk ) :=
{

u ∈ [0, 1]d : (u(1), . . . , u(k−1), u(k),
u(k+1), . . . , u(d)) ∈ N(P)

}

has Lebesgue measure 0, i.e., L(N(Pk )) = 0 for every choice
of k ∈ [1, d]. Therefore, by Fubini’s Theorem [42], we have

L(N(P))

=
∫

[0,1]d−1

(∫
[0,1]

XN(P)(u(1), . . . , u(k−1), u(k), u(k+1),

. . . , u(d))du(k)

)
du(1) · · · du(k−1)du(k+1) · · · du(d)

=
∫

[0,1]d−1
L(N(Pk ))du(1) · · · du(k−1)du(k+1) · · · du(d) = 0

where XN(P) is the character function of N(P). This implies
Lemma 2.

Theorem 4: Assume that the marginal distribution ρX is
absolutely continuous with respect to Lebesgue measure on X ,
and the algebraic polynomial is used as the activation function
in ELM, that is, φ(βi , x) = (ωi x + bi )

s , with βi = (ωi , bi ) ∈
[0, 1]d+1 randomly assigned. If n ≤ m, then the hidden
layer output matrix H = (r j i)m×n is of full column rank

almost surely, where r j i = (wi x j + bi )
s . In addition, H T H is

invertible almost surely.
Proof: Since n ≤ m, to prove Theorem 4, it suffices to

prove that there exists an n × n invertible submatrix Rn of
H with entries r j i = (wi x j + bi )

s , where j = 1, . . . , m,
i = 1, . . . , n. For this purpose, we define

Bn := {(x1, . . . , xn) ∈ Xn : detRn = 0}.
Then, we only need to prove that L(Bn) = 0 for all n ≤ m.
We prove this by induction over n. It is obviously true for
n = 1. Assume, this is true for n = N (naturally we can
assure N ≤ m − 1), i.e., L(BN ) = 0. Then, we prove that
L(BN+1) = 0. In effect, since there is a submatrix, say,
the first N row submatrix RN that is invertible, so for arbi-
trary aN+1 := (rN+1,1, . . . , rN+1,N ), there exist coefficients
ci := ci (x1, . . . , xN ) ∈ R, not all 0, such that

aN+1 = c1a1 + c2a2 + · · · + cN aN .

Here, we denote by ai = (ri1, . . . , ri N ) the i th row of H .
Now, we use this assertions to prove that there is a submatrix
RN+1 such that L(BN+1) = 0. By looking at (N+1)st column
of H , we find that RN+1 is invertible if and only if

rN+1,N+1 �= c1r1,N+1 + · · · + cNrN,N+1

or equivalently

(wN+1xN+1 + bN+1)
s �= c1(w1xN+1 + b1)

s

+ · · · + cN (wN xN+1 + bN )s .

In other words, RN+1 is invertible if and only if xN+1 does
not appear in the set

DN (x1, . . . , xN ) :=
{

x ∈ X : (wN+1x +bN+1)
s

=c1(w1x +b1)
s +· · ·+cN (wN x +bN )s

}
.

For any fixed (x1, . . . , xN ) ∈ X N , DN is clearly a zero set
of some algebraic polynomials, so by Lemma 2, DN has
Lebesgue measure 0 in X . Since

BN+1 ⊂
{

(x1, . . . , xN , xN+1) ∈ X N+1

: xN+1 ∈ DN (x1, . . . , xN )

}

we see by Fubini’s Theorem that

L(BN+1)

=
∫

X N+1
XBN+1

(x1, . . . , xN , xN+1)dx1 · · · dxN dxN+1

=
∫

X N

(∫
X
XBN+1

(x1, . . . , xN , xN+1)dxN+1

)
dx1 · · · dxN

≤
∫

X N
L(DN (x1, . . . , xN ))dx1 · · · dxN = 0.

That is, L(BN+1) = 0, the induction step is finished. Thus,
we verified that L(Bn) = 0 for all n ≤ m. Note that m ≥ n,
the above equation implies that the n ×n square matrix H T H
is invertible for almost every choice of x1, . . . , xn . Since the
distribution ρX is absolutely continuous with respect to the
Lebesgue measure L, the set BN also has measure 0 with
respect to ρX . This finishes the proof of Theorem 4.

Theorem 4 shows that the hidden layer output matrix H
will be of full column rank provided the activation functions
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are taken to be algebraic polynomials. Thus, in this case, the
Moore–Penrose generalized inverse of H uniquely exists and
can be directly computed via (8).

B. Use of Regularization

If the activation functions are not polynomials, then the
hidden layer output matrices H are most likely not weakly
regular. For such general cases, we then suggest the use of
Tikhonov regularization scheme

arg min
α

⎧⎨
⎩

1

m

m∑
j=1

∣∣∣∣∣
n∑

i=1

αiφ(t̃i , x j ) − y j

∣∣∣∣∣
2

+ λ

n∑
i=1

|αi |2
⎫⎬
⎭ (34)

where λ := λ(m, n) is a regularization parameter. With the
matrix notations in (6), this amounts to saying that instead of
fELM defined as in (7), we redefine the estimator of ELM by

f (λ)
ELM(x) = fn∗(α∗, t∗, x) =

n∑
i=1

α∗
i φ(̃ti , x) (35)

where

α∗ = arg min
α

{
1

m
‖Hα − y‖2

2 + λ ‖α‖2
2

}
. (36)

The solution to (36) is unique and given by

α∗ = (H T H + λm I )−1 H T y. (37)

Thus, whenever the Tikhonov regularization scheme is used,
the weak regularity of H can be naturally guaranteed. The
problem is then: does Tikhonov regularization maintain or
improve on the generalization capability of ELM? Theorem 5
below provides an answer to this question.

The following two lemmas are needed, which can be found
in [29].

Lemma 3: For any R > 0 and η > 0, we have

logN (BR, η) ≤ n log

(
4R

η

)

where N (BR, η) is the covering number of BR , defined as the
size of the smallest η covering of BR , and BR is the closed
ball of ln

2 norm centered at origin

BR ={
f ∈ Mn : ‖ f ‖2

l2 :=
n∑

i=1

|ai |2 ≤ R2, f =
n∑

i=1

aiφ(ti , ·)
}

.

Lemma 4: Let G be the set of functions on Z = X ×Y such
that, for some c ≥ 0, |g − E(g)| ≤ B almost everywhere and
E(g2) ≤ cE(g) for each g ∈ G, where E(g) = ∫

Z g(x, y)dρ.
Then, for every ε > 0

Probz∈Zm

{
sup
g∈G

E(g) − 1
m

∑m
i=1 g(zi )√

E(g) + ε
≥ √

ε

}

≤ N (G, ε)exp

{
− mε

2c + 2B
3

}
.

Theorem 5: Let 0 < r ≤ 1, C0 > 0, fρ ∈ F (r,C0) and f (λ)
ELM

be defined as in (35). Then, there exist constants C and c
independent of n and m such that

Eρm Eμn
(‖πM f (λ)

ELM − fρ‖2
ρ

) ≤ C
n(log m − log λ)

m

+ inf
f ∈Mn

(∫
X
( f (x) − fρ(x))2dρ + λ‖ f ‖2

l2

)
. (38)

Proof: From (2), it follows that:
∥∥πM f (λ)

ELM − fρ
∥∥2

ρ

≤
{
E
(
πM f (λ)

ELM

) − E( fρ) − (
Ez
(
πM f (λ)

ELM

) − Ez( fρ)
)}

+ Ez
(
πM f (λ)

ELM

) − Ez( fρ) + λ
∥∥ f (λ)

ELM

∥∥2
l2

:= S1 + S2

where Ez( f ) := 1/m
∑m

i=1( f (xi )− yi )
2 is the empirical error

of f (with respect to z). Therefore

Eρm Eμn
(‖πM f (λ)

ELM − fρ‖2
ρ

)
≤ Eρm Eμn

({
E
(

f (λ)
ELM

) − E( fρ) − (Ez
(
πM f (λ)

ELM

) − Ez( fρ))
})

+Eρm Eμn
(
Ez
(
πM f (λ)

ELM

) − Ez( fρ) + λ‖ f (λ)
ELM‖2

l2

)
.

Now, we use Lemmas 3 and 4 to estimate S1. Set

FR := {(πM f (x) − y)2 − ( fρ(x) − y)2 : f ∈ BR}.
Then, for any fixed g ∈ FR, there exists f ∈ BR such that
g(z) = (πM f (x) − y)2 − ( fρ(x) − y)2. Therefore, we have

Eρm (g) = E(πM f ) − E( fρ) ≥ 0

1

m

m∑
i=1

g(zi ) = Ez(πM f ) − Ez( fρ).

Since |πM f (x)| ≤ M and | fρ(x)| ≤ M hold almost every-
where, we deduce that

|g(z)| = |(πM f (x)− fρ(x))((πM f (x)−y)

+( fρ(x) −y))| ≤ 8M2.

It then follows that |g(z)− E(g)| ≤ 16M2 almost everywhere
and:

Eρm (g2) ≤ 16M2‖πM f − fρ‖2
ρ = 16M2 Eρm (g).

Now, we apply Lemma 4 with B = c = 16M2 to the set of
functions FR , yielding

sup
f ∈BR

{E(πM f ) − E( fρ)} − {Ez(πM f ) − Ez( fρ)}√{E(πM f ) − E( fρ)} + ε

= sup
g∈FR

Eρm (g) − 1
m

∑m
i=1 g(zi )√

Eρm (g) + ε
≤ √

ε

which holds with probability at least

1 − N (FR, ε) exp

{
− 3mε

128M2

}
.

Observe that for any g1, g2 ∈ FR , there exist f1, f2 ∈ BR

such that

g j (z) = (πM f j (x) − y)2 − ( fρ(x) − y)2, j = 1, 2.
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It is obvious that

|g1(z) − g2(z)| = |(πM f1(x) − y)2 − (πM f2(x) − y)2|
≤ 4M‖ f1 − f2‖∞.

Therefore, for any ε > 0, an (ε/4M)-covering of BR can
provide an ε-covering of FR . Accordingly

N (FR, ε) ≤ N
(

BR,
ε

4M

)
.

Thus, the probability is

1 − N (FR, ε) exp

{
− 3mε

128M2

}

≥ 1 − N (BR, ε/(4M)) exp

{
− 3mε

128M2

}
.

It follows from Lemma 3 that:

logN (BR, ε/(4M)) ≤ n log

(
16M R

ε

)
.

Consequently, it comes

Probz∈Zm

{
sup
f∈BR

{E(πM f )−E( fρ)}−{Ez(πM f )−Ez( fρ)}√{E(πM f )−E( fρ)}+ε
≤√

ε

}

≥ 1 − exp

{
n log

16M R

ε
− 3mε

128M2

}
.

Since

√
ε
√{E( f ) − E( fρ)} + ε ≤ 1

2
{E( f ) − E( fρ)} + ε

we conclude that with probability at least

1 − exp

{
n log

16M R

ε
− 3mε

128M2

}

there holds

sup
f ∈BR

{(E(πM f ) − E( fρ)) − (Ez(πM f ) − Ez( fρ))}

≤ 1

2
(E(πM f ) − E( fρ)) + ε.

Hence

Probz∈Zm

{
sup
f ∈BR

({E(πM f)−E(fρ)}−2{Ez(πM f)−Ez( fρ)})≤ε
}

≥ 1 − exp

{
n log

32M R

ε
− 3mε

256M2

}
.

On the other hand, it follows from (35) that:
∥∥ f (λ)

ELM

∥∥2
l2

=
n∑

i=1

|αi |2 ≤ M2

λ
.

Set

T := {
E
(
πM f (λ)

ELM

) − E( fρ)
} − 2

{
Ez
(
πM f (λ)

ELM

) − Ez( fρ)
}
.

Then

E
(
πM f (λ)

ELM

) − E( fρ) ≤ T + 2S2. (39)

For arbitrary t ≥ 32M2/m, there holds

Eρm (T ) =
∫ ∞

0
Probz∈Zm

{
{E(πM f (λ)

ELM) − E( fρ)}

−2{Ez(πM f (λ)
ELM) − Ez( fρ)} > ε

}
dε

≤ t +
∫ ∞

t
exp

{
n log

32M2

ελ
− 3mε

256M2

}
dε

≤ t + exp

{
− 3mt

256M2

}∫ ∞

t

(
32M2

ελ

)n

dε

≤ t + λ−n exp

{
− 3mt

256M2

}(
32M2

t

)n

t

≤ t + λ−n exp

{
− 3mt

256M2

}
mnt .

Setting t = (256M2n(log m − log λ))/3m, we then obtain

Eρm (T ) ≤ 2t = 512M2n(log m − log λ)

3m
. (40)

Now, we turn to estimate Eρm (S2)

Eρm (S2) = Eρm

(
Ez( f (λ)

ELM) − Ez( fρ) + λ‖ f (λ)
ELM‖2

l2

)

= Eρm

(
1

m

m∑
i=1

( f (λ)
ELM(xi ) − yi )

2

− 1

m

m∑
i=1

( fρ(xi) − yi )
2 + λ‖ f (λ)

ELM‖2
l2

)

= Eρm

(
inf

f ∈Mn

(
1

m

m∑
i=1

( f (xi ) − yi )
2

− 1

m

m∑
i=1

( fρ(xi) − yi )
2 + λ‖ f (λ)

ELM‖2
l2

))

≤ inf
f ∈Mn

(
Eρm (( f (x) − y)2) − Eρm (( fρ(x) − y)2)

+λ‖ f (λ)
ELM‖2

l2

)

= inf
f ∈Mn

(∫
X
( f (x) − fρ(x))2dρ + λ‖ f (λ)

ELM‖2
l2

)
.

(41)

Then, (39), (40), and (41) imply that there exists a constant C
independent on m and n such that

Eρm Eμn

(∥∥πM f (λ)
ELM − fρ

∥∥2
ρ

)
≤C

n(log m − log λ)

m

+ inf
f ∈Mn

∫
X
( f (x) − fρ(x))2dρ + λ‖ f (λ)

ELM‖2
l2 . (42)

This arrives to Theorem 5.
Theorem 5 shows that the ELM-like learning with Tikhonov

regularization [(35) and (37)] can be effectively used to
overcome the weak regularity problem of ELM, and maintain
a promising generalization capability.

Some direct consequences of Theorem 5 are as follows.
Corollary 1: If the activation function used in (34) is

Nadaraya–Watson, λ = [m−1] and n = [md/(d+2r)], then there
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holds

C1m− 2r
2r+d ≤ Eρm Eμn

(∥∥πM
(

f (λ)
ELMNW

) − fρ
∥∥2

ρ

)
≤ C2m− 2r

2r+d log m. (43)
Proof: From (21), we know that

Eμn (| fρ(x) − f (x)|) ≤ Cn−r/d

where f (x) = ∑n
i=1( fρ(ti )e−A‖x−ti‖)/

∑n
j=1 e−A‖x−t j ‖.

Since λ = [m−1], we get

λ‖ f ‖2
l2 = λ

n∑
i=1

| fρ |2 ≤ λnM2 ≤ C M2m− 2r
2r+d .

Thus from (38), we obtain

Eρm Eμn
(∥∥πM f (λ)

E L MNW
− fρ

∥∥2
ρ

)

≤ C
n(log m − log λ)

m
+ Cn−2r/d + M2m− 2r

2r+d

≤ C2m− 2r
2r+d log m

which arrives to the upper bound of (43). The lower bound of
(43) is ready in (10).

Corollary 2: If the activation function used in (34) is sig-
moid function, λ = [m−1] and n = [m1/(1+2r)], then there
holds

C1m− 2r
2r+1 ≤ Eρm Eμn

(∥∥πM
(

f (λ)
E L MS

) − fρ
∥∥2

ρ

)
≤ C2m− 2r

2r+1 log m. (44)
Proof: From (30), it follows that:

inf
fρ∈F (r,C0 )

∫
|hn(x) − fρ(x)|2ρdρ ≤ C2

n2r

where hn(x) = fρ(t1) +∑n
i=1( fρ(ti+1) − fρ(ti ))σ (b(x − ti)).

Since λ = [m−1], we get

λ‖hn‖2
l2 = λ

n∑
i=1

| fρ |2 ≤ λnM2 ≤ C M2m− 2r
2r+1 .

Thus, from (38), it yields

Eρm Eμn
(‖πM f (λ)

E L MS
− fρ‖2

ρ

)

≤ C
n(log m − log λ)

m
+ Cn−2r + C M2m− 2r

2r+1

≤ C2m− 2r
2r+1 log m

this comes to the result of the upper bound of (44). The lower
bound of (44) can be deduced from (10).

Corollaries 1 and 2 show that when regularization scheme
is applied to ELM with Nadaraya–Watson function and sig-
moid function not only can the weak regularity of ELM be
guaranteed but also its generalization capability is maintained.

C. Application Support

To verify the theoretical results presented above, we present
an application demonstration. In the experiments, we com-
pared the generalization performance of ELM with sigmoid
activation function (denoted by ELM), the regularized ver-
sion of ELM (34) with sigmoid activation function (denoted

Fig. 1. Performance comparison (training RMSE) with ELM, L2ELM, and
PolyELM for Abalone data set.

Fig. 2. Performance comparison (testing RMSE) with ELM, L2ELM, and
PolyELM for Abalone data set.

Fig. 3. Performance comparison (testing RMSE) with ELM, L2ELM, and
PolyELM for Abalone data set in detail.

by L2ELM) and ELM with polynomial activation function
(denoted by PolyELM) under the same number of hidden
neurons when applied to Abalone data, Machine CPU data and
Census (house8L) data in UCI Database, respectively.1 The
input data were normalized into the unit cube, while the output
data normalized into the range [0, 1]. Figs. 1, 2, 4, 5, 7, and 8
show the experimental results, particularly the training and
testing root mean square error (RMSE) curves of the three
ELM algorithms with increasing number of hidden neurons.
Figs. 3, 6, and 9 show the testing results in detail by cutting the
number of neurons to [0, 200] or [0, 500]. It can be observed
from Figs. 1, 4, and 7 that L2ELM and PolyELM possess
good approximation performance with the increasing of n, but

1http://www.archive.ics.uci.edu/ml/datasets.html
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Fig. 4. Performance comparison (training RMSE) with ELM, L2ELM, and
PolyELM for Machine CPU data set.

Fig. 5. Performance comparison (testing RMSE) with ELM, L2ELM, and
PolyELM for Machine CPU data set.

Fig. 6. Performance comparison (testing RMSE) with ELM, L2ELM, and
PolyELM for Machine CPU data set in detail.

this is not true for ELM with sigmoid case. As far as the
generalization capability is concerned, as shown in Figs. 2,
3, 5, 6, 8, and 9, L2ELM and PolyELM both exhibit very
good generalization capability and very stable with respect
to n. However, ELM with sigmoid activation function (ELM)
performs a little unstable, it keeps relative lower generalization
error when n is within a suitable interval and then get
larger and larger error when n is beyond this interval. The
unstable performance in training and testing caused by the
fact that when the sigmoid activation is applied, the induced
hidden layer output matrix H is not necessarily weak regular.
This supports the fact that either taking a good activation
function (say, polynomials) or using regularization scheme can

Fig. 7. Performance comparison (training RMSE) with ELM, L2ELM, and
PolyELM for Census (house8L) data set.

Fig. 8. Performance comparison (testing RMSE) with ELM, L2ELM, and
PolyELM for Census (house8L) data set.

Fig. 9. Performance comparison (testing RMSE) with ELM, L2ELM, and
PolyELM for Census (house8L) data set in detail.

assuredly yield promising performance of ELM learning, as
proved by Theorems 1 and 5.

V. CONCLUSION

The ELM-like learning provides a powerful complexity-
reduction learning paradigm that adjusts the output layer
connections only while randomly fixing the hidden parameters.
Numerous experiments and applications have supported the
effectiveness and efficiency of ELM. The feasibility or the
theoretical foundation of the ELM-like systems has, how-
ever, been open. In this paper, we justified such feasibility
through systematically answering the related three questions:
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1) we showed that even ELM adjusts partial connections in
an FNN, it does not degrade the generalization capability
provided the activation functions used are carefully selected.
Especially, we verified that for the polynomial, Nadaraya–
Watson and sigmoid activation functions, ELM can realize
the almost optimal generalization error bound; 2) to realize
the almost optimal generalization error bound (i.e., attains the
almost optimal generalization capability), a close connection
between the number of hidden layer nodes and the number
of training samples is also achieved; and 3) we proved that
whenever the nonlinear function is algebraic polynomial, the
induced hidden layer output matrix in the ELM-like systems is
of full column rank, hence the well-known generalized inverse
technique can be efficiently applied. For the nonpolynomial
case, we further showed that Tikhonov regularization can be
applied to guarantee the weak regularity without sacrificing
the generalization capability. The obtained results underlie
the feasibility and effectiveness of ELM-like systems from a
theoretical point of view.

Several problems still open. For example, do different
random assignments of the hidden parameters affect the per-
formance of an ELM-like system? If yes, how it affects? what
is the best random assignment? For other activation functions,
does ELM still not degrade the generalization capability?
All these problems are under our current investigation.
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