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Is Extreme Learning Machine Feasible?
A Theoretical Assessment (Part II)

Shaobo Lin, Xia Liu, Jian Fang, and Zongben Xu

Abstract— An extreme learning machine (ELM) can be
regarded as a two-stage feed-forward neural network (FNN)
learning system that randomly assigns the connections with and
within hidden neurons in the first stage and tunes the connections
with output neurons in the second stage. Therefore, ELM training
is essentially a linear learning problem, which significantly
reduces the computational burden. Numerous applications show
that such a computation burden reduction does not degrade
the generalization capability. It has, however, been open that
whether this is true in theory. The aim of this paper is to study
the theoretical feasibility of ELM by analyzing the pros and
cons of ELM. In the previous part of this topic, we pointed
out that via appropriately selected activation functions, ELM
does not degrade the generalization capability in the sense of
expectation. In this paper, we launch the study in a different
direction and show that the randomness of ELM also leads to
certain negative consequences. On one hand, we find that the
randomness causes an additional uncertainty problem of ELM,
both in approximation and learning. On the other hand, we theo-
retically justify that there also exist activation functions such that
the corresponding ELM degrades the generalization capability.
In particular, we prove that the generalization capability of ELM
with Gaussian kernel is essentially worse than that of FNN with
Gaussian kernel. To facilitate the use of ELM, we also provide a
remedy to such a degradation. We find that the well-developed
coefficient regularization technique can essentially improve the
generalization capability. The obtained results reveal the essential
characteristic of ELM in a certain sense and give theoretical
guidance concerning how to use ELM.

Index Terms— Extreme learning machine (ELM), Gaussian
kernel, generalization capability, neural networks.

I. INTRODUCTION

AN EXTREME learning machine (ELM) is a feed-forward
neural network (FNN) like learning system whose con-

nections with output neurons are adjustable, while the connec-
tions with and within hidden neurons are randomly fixed. ELM
then transforms the training of an FNN into a linear problem
in which only connections with output neurons need adjusting.
Thus, the well-known generalized inverse technique [24], [25]
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can be applied for the solution directly. Due to the fast
implementation, ELM has been widely used in regression [11],
classification [15], fast object recognition [34], illuminance
prediction [8], mill load prediction [30], face recognition [23]
and so on.

Compared with the enormous emergences of applications,
the theoretical feasibility of ELM is, however, almost vacuum.
Up till now, only the universal approximation property of ELM
is analyzed [11]–[13], [35]. It is obvious that one of the main
reasons of the low computational burden of ELM is that only a
few neurons are utilized to synthesize the estimator. Without
such an attribution, ELM cannot outperform other learning
strategies in implementation. For example, as a special case
of ELM, learning in the sample-dependent hypothesis space
(the number of neurons equals to the number of samples)
[29], [31], [32] cannot essentially reduce the computational

complexity. Thus, the universal approximation property of
ELM is too weak and cannot capture the essential charac-
teristics of ELM. Therefore, the generalization capability and
approximation property of ELM should be investigated. The
generalization capability focuses on the relationship between
the prediction accuracy and the number of samples, while the
approximation property discusses the dependency between the
prediction accuracy and the number of hidden neurons.

The aim of this paper is to theoretically verify the feasibility
of ELM by analyzing the pros and cons of ELM. In the first
part of this topic [20], we casted the analysis of ELM into the
framework of statistical learning theory and concluded that
with appropriately selected activation functions (polynomial,
Nadaraya–Watson, and sigmoid), ELM did not degrade the
generalization capability in the expectation sense. This means
that, ELM reduces the computational burden without sacrific-
ing the prediction accuracy by selecting appropriate activation
function, which can be regarded as the main advantage of
ELM. To give a comprehensive feasibility analysis of ELM, we
should also study the disadvantage of ELM and, consequently,
reveal the essential characteristics of ELM.

Compared with the classical FNN learning [10], this paper
shows that there are mainly two disadvantages of ELM. One is
that the randomness of ELM causes an additional uncertainty
problem, both in approximation and in learning. The other
one is that there also exists a generalization degradation phe-
nomenon for ELM with inappropriate activation function. The
uncertainty problem of ELM means that there exists an uncer-
tainty phenomenon between the small approximation error (or
generalization error) and high confidence of ELM estimator.
As a result, it is difficult to judge whether a single time
trail of ELM succeeds or not. Concerning the generalization
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degradation phenomenon, we find that with the widely used
Gaussian-type activation function (or Gaussian kernel for the
sake of brevity), ELM degrades the generalization capability
of FNN.

To facilitate the use of ELM, we provide certain remedies to
circumvent the aforementioned drawbacks. On one hand, we
find that multiple times training can overcome the uncertainty
problem of ELM. On the other hand, we show that, by adding
neurons and implementing l2 coefficient regularization simul-
taneously, the generalization degradation phenomenon of ELM
can be avoided. In particular, using l2 coefficient regularization
to determine the connections with output neurons, ELM with
Gaussian kernel can reach almost the optimal learning rate of
FNN in the sense of expectation, provided the regularization
parameter is appropriately tuned.

The study of this paper together with the conclusions in [20]
provides a comprehensive feasibility analysis of ELM. To be
detailed, the performance of ELM depends heavily on the
activation function and the random mechanism. With appro-
priately selected activation function and random mechanism,
ELM does not degrade the generalization capability of FNN
learning in the sense of expectation. However, there also
exist some activation functions, with which ELM degrades
the generalization capability for arbitrary random mechanism.
Moreover, due to the randomness, ELM suffers from an uncer-
tainty problem, both in approximation and learning. This paper
also shows that both the uncertainty problem and degradation
phenomenon are remediable. All these results lay a solid
fundamental for ELM and give a guidance of how to use ELM
more efficiently.

The rest of this paper is organized as follows. After giving
a fast review of ELM, we present an uncertainty problem of
ELM approximation in the next section. In Section III, we
first introduce the conception of statistical learning theory and
then study the generalization capability of ELM with Gaussian
kernel. We find that the deduced generalization error bound is
larger than that of FNN with Gaussian kernel. This means that
ELM with Gaussian kernel may degrade the generalization
capability. In Section IV, we provide a remedy to such a
degradation. Using the empirical covering number technique,
we prove that implementing l2 coefficient regularization can
essentially improve the generalization capability of ELM with
Gaussian kernel. In Section V, we give proofs of the main
results. We conclude this paper in the final section with some
useful remarks.

II. UNCERTAINTY PROBLEM OF ELM APPROXIMATION

In this section, we study the approximation property of
ELM. We find that with the widely used Gaussian-type acti-
vation function, ELM suffers from an uncertainty problem.

A. ELM

The ELM, introduced by Huang et al. [11] can be regarded
as a two-stage FNN learning system that randomly assigns
the connections with and within hidden neurons in the first
stage and tunes the connections with output neurons in the
second stage. Since then, various variants of ELM such as

evolutionary ELM [37], Bayesian ELM [27], incremental
ELM [14], and regularized ELM [4] were proposed. We refer
the readers to a fruitful survey [16] for more information about
ELM.

As a two-stage learning scheme, ELM comprises a choice
of hypothesis space and a selection of optimization strategy (or
learning algorithm) in the first and second stages, respectively.
To be precise, in the first stage, ELM picks hidden parameters
with and within the hidden neurons randomly to build up the
hypothesis space. This makes the hypothesis space of ELM
form as

Hφ,n =
⎧
⎨

⎩

n∑

j=1

a jφ(w j , x) : a j ∈ R

⎫
⎬

⎭

where w j ’s are drawn independently and identically dis-
tributed (i.i.d.) according to a specified distribution μ and
x ∈ Rd . It is easy to see that the hypothesis space of ELM is
essentially a linear space. In the second stage, ELM tunes the
output weights using the well developed linear optimization
technique. In this paper, we study the generalization capability
of the classical ELM [11] rather than its variants. That is, the
linear optimization technique employed in the second stage of
ELM is the least square

fz,φ,n = arg min
f ∈Hφ,n

m∑

i=1

| f (xi ) − yi |2 (1)

where (xi , yi )
m
i=1 are the given samples.

B. Uncertainty Problem for ELM Approximation

The randomness of ELM leads to a reduction of compu-
tational burden. However, there also exists a certain defect
caused by the randomness. The main purpose of this section
is to quantify such a defect by studying the approximation
capability of ELM with Gaussian kernel.

For this purpose, we introduce a quantity called the modulus
of smoothness [5] to measure the approximation capability.
The r th modulus of smoothness [5] on A ⊆ Rd is defined by

ωr,A( f, t) = sup
|h|2≤t

‖�r
h,A( f, ·)‖A

where | · |2 denotes the Euclidean norm, ‖ · ‖A denotes the
uniform norm on C(A), and the r th difference �h,A( f, ·) is
defined by

�r
h,A( f, x) =

{∑r
j=0(

r
j )(−1)r− j f (x + jh) if x ∈ Ar,h

0 if x /∈ Ar,h

for h = (h1, . . . , hd ) ∈ Rd and Ar,h := {x ∈ A : x + sh ∈ A,
for all s ∈ [0, r ]}. It is well known [5] that

ωr,A( f, t) ≤
(

1 + t

u

)r

ωr,A( f, u) (2)

for all f ∈ C(A) and all u > 0.
Let s ∈ N, we focus on the following Gaussian-type

activation function (or Gaussian kernel):

Kσ,s(t) =
s∑

j=1

(
s
j

)

(−1)1− j 1

j d

(
2

σ 2π

) d
2

exp

(

− 2t2

j2σ 2

)

. (3)
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Then, the corresponding ELM estimator is defined by

fz,σ,s,n = arg min
f ∈Hσ,s,n

m∑

i=1

| f (xi ) − yi |2 (4)

where

Hσ,s,n =
⎧
⎨

⎩

n∑

j=1

a j Kσ,s(θ j , x), x ∈ I d

⎫
⎬

⎭

Kσ,s(θ j , x) : = Kσ,s((θ j − x)2) := Kσ,s(|θ j − x |22)
where I d := [0, 1]d and {θ}n

j=1 are drawn i.i.d. according
to arbitrary fixed distribution μ on the interval [−a, 1 + a]d

with a > 0.
The following Theorem 1 shows that there exists an uncer-

tainty problem of ELM approximation.
Theorem 1: Let d, s, n ∈ N. If f ∈ C(I d ), then with

confidence at least 1 − 2 exp{−cnσ 2d} (with respect to μn),
there holds

inf
gn∈Hσ,s,n

‖ f − gn‖I d ≤ C(ωs,I d ( f, σ ) + ‖ f ‖I d σ d )

where c and C are constants depending only on a, d and s.
It follows from Theorem 1 that the approximation capability

of ELM with Gaussian kernel depends on the kernel parame-
ters, s, σ , and the number of hidden neurons, n. Furthermore,
Theorem 1 shows that, compared with the classical FNN
approximation, there exists an additional uncertainty problem
of ELM approximation. That is, both the approximation error
and the confidence monotonously increase with respect to
σ . Therefore, it is impossible to deduce a small approxima-
tion error with extremely high confidence. In other words,
it is difficult to judge whether the approximation error of
ELM is smaller than arbitrary specified approximation accu-
racy, which does not appear in the classical Gaussian-FNN
approximation [33].

We find further in Theorem 1 that the best choice of the
kernel parameter, σ , is a tradeoff between the confidence and
the approximation error. An advisable way to determine σ
is to set σ 2d = nε−1 for arbitrary small ε ∈ R+. Under
this circumstance, we can deduce that the approximation error
of Hσ,s,n asymptomatically equals to ωs,I d ( f, n(−1+ε)/(2d)) +
n(−1+ε)/2 with confidence at least 1 − 2 exp(−cnε). Finally,
we should verify the optimality of the above approximation
bound and therefore justify the optimality of the selected σ .
To this end, we introduce the set of r th smoothness functions.

Let u ∈ N0 := {0} ∪ N, v ∈ (0, 1], and r = u + v.
A function f : I d → R is said to be r th smooth if for
every α = (α1, . . . , αd ), αi ∈ N0,

∑d
j=1 α j = u, the partial

derivatives (∂u f )/(∂x1
α1 · · · ∂xd

αd ) exist and satisfy
∣
∣
∣
∣

∂u f

∂x1
α1 · · · ∂xd

αd
(x) − ∂u f

∂x1
α1 · · · ∂xd

αd
(z)

∣
∣
∣
∣ ≤ c0|x − z|v2

where c0 is an absolute constant. Denote the set of all r th
smooth functions by Fr . Furthermore, for arbitrary f ∈ Fr ,
it is easy to deduce [5] that

ωs,I d ( f, t) ≤ Ctr (5)

if s ≥ r . According to Theorem 1 and (5), we obtain that

inf
gn∈Hσ,s,n

‖ f − gn‖I d ≤ Cn
−r+ε

2d (6)

holds with confidence at least 1 − 2 exp{−cnε} for arbitrary
ε ∈ R+, provided f ∈ Fr , s ≥ r , and r ≤ d . In the following
Proposition 1, we show that the approximation rate (6) cannot
be essentially improved, at least for the univariate case.

Proposition 1: Let d = s = 1, n ∈ N, β > 0, 0 < ε < 1,
and r = 1 − ε. If fρ ∈ Fr and σ = n(−1+ε)/2, then with
confidence at least 1−2 exp{−cnε} (with respect to μn), there
holds

C1n− r
2 −ε ≤ sup

f ∈Fr
inf

gn∈Hσ,r,n

‖ f − gn‖I d ≤ C2n
−r+ε

2 . (7)

III. GENERALIZATION DEGRADATION PROBLEM OF

ELM WITH GAUSSIAN KERNEL

Along the flavor of [20], we also analyze the feasibility
of ELM in the framework of statistical learning theory [3].
We find in this section that there exists a generalization
degradation phenomenon of ELM. In particular, unlike [20],
the result in this section shows that ELM with Gaussian kernel
degrades the generalization capability of FNN.

A. Fast Review of Statistical Learning Theory

Let M > 0, X = I d , Y ⊆ [−M, M] be the input and
output spaces, respectively. Suppose that z = (xi , yi )

m
i=1 is a

finite set of random samples drawing i.i.d. according to an
unknown but definite distribution ρ, where ρ is assumed to
admit the decomposition

ρ(x, y) = ρX (x)ρ(y|x).

Suppose further that f : X → Y is a function that one uses to
model the correspondence between X and Y , as induced by ρ.
One natural measurement of the error incurred by using f of
this purpose is the generalization error, defined by

E( f ) :=
∫

Z

( f (x) − y)2dρ

which is minimized by the regression function [3], defined by

fρ(x) :=
∫

Y

ydρ(y|x).

We do not know this ideal minimizer fρ , since ρ is unknown,
but we have access to random examples from X × Y sampled
according to ρ. Let L2

ρX
be the Hilbert space of ρX square

integrable function on X , with norm denoted by ‖ · ‖ρ . Then
for arbitrary f ∈ L2

ρX
, there holds

E( f ) − E( fρ) = ‖ f − fρ‖2
ρ (8)

with the assumption fρ ∈ L2
ρX

.



24 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 1, JANUARY 2015

B. Generalization Capability of ELM With Gaussian Kernel

Let πM f (x) = min{M, | f (x)|}sgn( f (x)) be the truncation
operator on f (x) at level M . As y ∈ [−M, M], it is easy to
check [36] that

‖πM fz,σ,s,n − fρ‖ρ ≤ ‖ fz,σ,s,n − fρ‖ρ.

Thus, the aim of this section is to bound

E(πM fz,σ,s,n) − E( fρ) = ‖πM fz,σ,s,n − fρ‖2
ρ . (9)

The error (9), called the generalization error or learning rate,
clearly depends on z and therefore has a stochastic nature. As a
result, it is impossible to say anything about (9) in general for
a fixed z. Instead, we can look at its behavior in statistics as
measured by the expected error

Eρm (‖πM fz,σ,s,n − fρ‖ρ) :=
∫

Zm

‖πM fz,σ,s,n − fρ‖dρm

where the expectation is taken over all realizations z obtained
for a fixed m, and ρm is the m fold tensor product of ρ.
In following Theorem 2, we give an upper bound estimate for
(9) in the sense of expectation.

Theorem 2: Let d, s, n, m ∈ N, ε > 0, r ∈ R, and
fz,σ,s,n be defined as in (4). If fρ ∈ Fr with r ≤ s, σ =
m(−1+ε)/(2r+2d) and n = [m(d)/(r+d)], then with probability
at least 1 − 2 exp{−cm(εd)/(d+r)} (with respect to μn), there
holds

Eρm (‖πM fz,σ,s,n − fρ‖2
ρ) ≤ C

(
m− (1−ε)r

r+d log m + m− d(1−ε)
r+d

)

(10)

where [t] denotes the integer part of the real number t , c, and C
are constants depending only on M , s, r , and d .

It can be found in Theorem 2 that a new quantity ε is
introduced to quantify the randomness of ELM. It follows
from (10) that ε describes the uncertainty between the confi-
dence and generalization capability. That is, we cannot obtain
both extremely small generalization error and high confidence.
This means that there also exists an uncertainty problem for
ELM learning. Accordingly, Theorem 2 shows that it is rea-
sonable to choose a very small ε, under which circumstance,
we can deduce a learning rate close to m(−r)/(r+d) log m with
a tolerable confidence, provided r ≤ d .

Before drawing the conclusion that ELM with Gaussian
kernel degrades the generalization capability, we should verify
the optimality of both the established learning rate (10) and the
selected parameters such as σ and n. We begin the analysis by
illustrating the optimality of the learning rate deduced in (10).
For this purpose, we give the following Proposition 2.

Proposition 2: Let d = s = 1, n, m ∈ N, β > 0,
0 < ε < 1, r = 1 − ε, and fz,σ,s,n be defined as in (4).
If fρ ∈ Fr , σ = m(−1+ε)/(2r+2), and n = [m(1)/(1+r)

]
, then

with probability at least 1 − 2 exp{−cm(ε)/(1+r)} (with respect
to μn), there holds

C1m−(r)/(1+r) ≤ E(‖πM fz,σ,s,n − fρ‖2
ρ) ≤ C2m− r(1−ε)

1+r log m

(11)

where c, C1, and C2 are constants depending only on r and M .

Modulo an arbitrary small number ε and the logarithmic fac-
tor, the upper and lower bounds of (11), are asymptomatically
identical. Therefore, the established learning rate in Theorem 2
is almost essential. This means that the established learning
rate (10) cannot be essentially improved, at least for the
univariate case.

Now, we turn to justify the optimality of the selections
of σ and n in Theorem 2. The optimality of σ can be
directly derived from the uncertainty problem of ELM. To be
detailed, according to Theorem 1 and Proposition 1, the
optimal selection of σ is to set σ = n(ε−1)/(2d) . Noting that
n = [m(d)/(d+r)], it is easy to deduce that the optimal selection
of σ is m(−1+ε)/(2r+2d). Finally, we show the optimality of
the parameter n. The main principle to qualify it is the known
bias and variance dilemma [3], which declares that a small n
may derive a large bias (approximation error), while a large
n deduces a large variance (sample error). The best n is thus
obtained when the best compromise between the conflicting
requirements of small bias and small variance is achieved.
In the proof of Theorem 2, we can find that the quantity
n = [md/(r+d)] is selected to balance the approximation and
sample errors. Therefore, we can conclude that n is optimal
in the sense of bias and variance balance.

Based on the above assertions, we compare Theorem 2
with some related work and propose then the main view-
point of this section. Imposing the same smooth assump-
tion on the regression function, the optimal learning rate
of the FNN with Gaussian kernel was established, where
Lin et al. [19] deduced that FNNs can achieve the learning
rate as m−2r/(2r+d) log m. They also showed that there are
[md/(2r+d)] neurons needed to deduce the almost optimal
learning rate. Similarly, Eberts and Steinwart [6] have also
built an almost optimal learning rate analysis for the support
vector machine (SVM) with the Gaussian kernel. They showed
that, modulo an arbitrary small number, both the upper and
lower bounds of learning rate of SVM with Gaussian can
also attain the optimal learning rate, m−2r/(2r+d). However,
Theorem 2 and Proposition 2 imply that the learning rate of
ELM with Gaussian kernel cannot be faster than m−r/(r+d).
Noting m−2r/(2r+d) < m−r/(r+d) and md/(2r+d) < md/(r+d),
we find that the prediction accuracy of ELM with Gaussian
kernel is much larger than that of FNN even though more
neurons are used in ELM. Furthermore, it should be pointed
out that if the numbers of utilized neurons in ELM and FNN
are identical, then the learning rate of ELM is even worse.
If n = [md/(2r+d)], then the learning rate of ELM with
Gaussian kernel cannot be faster than m−r/(2r+d).1 Therefore,
we can draw the conclusion that ELM with Gaussian kernel
degrades the generalization capability.

IV. REMEDY OF THE DEGRADATION

As is shown in the previous section, ELM with inappropri-
ately selected activation function suffers from the uncertainty
problem and generalization degradation phenomenon. To cir-
cumvent the former one, we can employ a multiple training

1The proof of this conclusion is the same as that of Theorem 2, we omit it
for the sake of brevity.
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strategy that has already been proposed in [20]. The main
focus of this section is to tackle the generalization capability
degradation phenomenon. For this purpose, we use the l2

coefficient regularization strategy [32] in the second stage of
ELM. That is, we implement the following strategy to build
up the ELM estimator:

fz,σ,s,λ,n = arg min
f ∈Hσ,s,n

{
1

m

m∑

i=1

( f (xi ) − yi )
2 + λ�( f )

}

(12)

where λ = λ(m) > 0 is a regularization parameter and

�( f ) = inf
ai∈R

m∑

i=1

|ai |2, for f =
n∑

i=1

ai Kσ,s(θi , x) ∈ Hσ,s,n.

The following theorem shows that the generalization capa-
bility of ELM with Gaussian kernel can be essentially
improved using the regularization technique, provided the
number of neurons is appropriately adjusted.

Theorem 3: Let d, s, n, m ∈ N, ε > 0, and fz,σ,s,λ,n be
defined in (12). If fρ ∈ Fr with d/2 ≤ r ≤ d , σ =
m−(1/2r+d)+ε, n = [m2d/2r+d ], s ≥ r , and λ = m−2r−d/4r+2d ,
then with confidence at least 1 − 2 exp{−cmεd/d+r} (with
respect to μn), there holds

C1m
−2r

2r+d ≤ Eρm ‖πM fz,σ,s,λ,n − fρ‖2
ρ ≤ C2m− 2r

2r+d +ε log m

(13)

where C1 and C2 are constants depending only on d , r , s
and M .

Theorem 3 shows that, up to an arbitrary small real number
ε and the logarithmic factor, the regularized ELM estima-
tor (12) can achieve a learning rate as fast as m−2r/(2r+d)

with high probability. Noting that m−2r/(2r+d) < m−r/(r+d)

we can draw the conclusion that l2 coefficient regularization
technique can essentially improve the generalization capability
of ELM with Gaussian kernel. Furthermore, as is shown
above, the best learning rates of both SVM and FNN with
Gaussian kernel asymptomatically equal to m−2r/(2r+d). Thus,
Theorem 3 shows that the regularization technique not only
improves the generalization capability of ELM with Gaussian
kernel but also optimizes its generalization capability. In other
words, implementing l2 coefficient regularization in the second
stage, ELM with Gaussian kernel can be regarded as an almost
optimal FNN learning strategy.

However, it should also be pointed out that the utilized
neurons of regularized ELM is much larger than that of the
FNN. To obtain the same optimal learning rate, m−2r/(2r+d),
there are [m2d/(2r+d)] neurons required in ELM with Gaussian
kernel, while the number of utilized neurons in the traditional
FNN learning is [md/(2r+d)]. Therefore, although regularized
ELM can attain almost the optimal learning rate with high
probability, the price to obtain such a rate is higher than that
of FNN.

V. PROOFS

In this section, we give proofs of the main results presented
in the previous two sections.

A. Proof of Theorem 1

To prove Theorem 1, we need the following nine lemmas.
The first one can be found in [18], which is an extension of
Lemma 2.1 in [33].

Lemma 1: Let f ∈ C(I d ). There exists an F ∈ C(Rd )
satisfying

F(x) = f (x), x ∈ I d

such that for arbitrary x ∈ I d , ‖h‖ < δ ≤ 1, there holds

‖F‖∞ := sup
x∈Rd

|F(x)| ≤ ‖ f ‖ = sup
x∈I d

| f (x)|

and

ωr,Rd (F, δ) ≤ ωr,I d ( f, δ). (14)

To state the next lemma, we should introduce a convolution
operator concerning the kernel Kσ,s . Denote

Kσ,s ∗ F(x) :=
∫

Rd
F(y)Kσ,s(x − y)dy.

The following Lemma 2 gives an error estimate for the
deviation of continuous function and its Gaussian convolution,
which can be deduced from [6, Th. 2.2].

Lemma 2: Let F ∈ C(Rd) be a bounded and uniformly
continuous function defined on Rd . Then

‖F − Kσ,s ∗ F‖∞ ≤ Csωs,Rd (F, σ ). (15)

Let J be arbitrary compact subset of Rd . For l ≥ 0, denote
the set of trigonometric polynomials defined on J with degree
at most l by T d

l . The following Nikol’skii inequality can be
found in [2].

Lemma 3: Let 1 ≤ p < q ≤ ∞, l ≥ 1 be an integer, and
Tl ∈ T d

l . Then

‖Tl‖Lq (J ) ≤ Cl
d
p − d

q ‖Tl‖L p(J )

where the constant C depends only on d .
For further use, we also should introduce the following

probabilistic Bernstein inequality for random variables, which
can be found in [3].

Lemma 4: Let ξ be a random variable on a probability
space Z with mean E(ξ) and variance γ 2(ξ) = γ 2

ξ . If
|ξ(z) − E(ξ)| ≤ Mξ for almost all z ∈ Z , then, for all ε > 0

P

{∣
∣
∣
∣
∣

1

n

n∑

i=1

ξ(zi ) − E(ξ)

∣
∣
∣
∣
∣
≥ ε

}

≤ 2exp

(

− nε2

2(γ 2
ξ + 1

3 Mξ ε)

)

.

By the help of Lemmas 3 and 4, we are in a position
to give the following probabilistic Marcinkiewicz–Zygmund
inequality for trigonometric polynomials.

Lemma 5: Let J be a compact subset of Rd and 0 <
p ≤ ∞. If � = {θi }n

i=1 is a set of i.i.d. random variables
drawn on J according to arbitrary distribution μ, then

1

2
‖Tl‖p

p ≤ 1

n

n∑

i=1

|Tl(θi )|p ≤ 3

2
‖Tl‖p

p ∀Tl ∈ T d
l (16)

holds with probability at least

1 − 2 exp

(

−Cpn

ld

)
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where Cp is a constant depending only on d
and p.

Proof: Since we model the sampling set � as a sequence
of i.i.d. random variables in J , the sampling points are a
sequence of functions θ j = θ j (ω) on some probability space
(�, P). Without loss of generality, we assume ‖Tl‖p = 1 for
arbitrary fixed p. If we set ξ

p
j (Tl) = |Tl(θ j )|p, then we have

1

n

n∑

i=1

|Tl(θi )|p − Eξ
p
j = 1

n

n∑

i=1

|Tl(θi )|p − ‖Tl‖p
p

where we use the equality

Eξ
p
j =
∫

�

|Tl(η(ω j ))|pdω j =
∫

J

|Tl(θ)|pdθ = ‖Tl‖p
p = 1.

Furthermore

|ξ p
j − Eξ

p
j | ≤ sup

ω∈�

∣
∣|Tl(θ(ω))|p − ‖Tl‖p

p
∣
∣ ≤ ‖Tl‖p∞ − ‖Tl‖p

p.

It follows from Lemma 3 that

‖Tl‖∞ ≤ Cl
d
p ‖Tl‖p = Cl

d
p .

Hence

|ξ p
j − Eξ

p
j | ≤ (Cld − 1).

On the other hand, we have

γ 2
ξ = E((ξ

p
j )2) − (E(ξ

p
j ))2

=
∫

�

|Tl(θ(ω))|2pdω −
⎛

⎝

∫

�

|Tl(θ(ω))|pdω

⎞

⎠

2

= ‖Tl‖2p
2p − ‖Tl‖2p

p .

Then using Lemma 3 again, there holds

γ 2
ξ ≤ Cl2dp( 1

p − 1
2p )‖Tl‖2p

p − ‖Tl‖2p
p = (Cld − 1).

Thus, it follows from Lemma 4 that with confidence at least

1 − 2 exp

(

− nε2

2
(
γ 2 + 1

3 Mξ ε
)

)

≥ 1 − 2 exp

(

− nε2

2
(
(Cld − 1) + 1

3 (Cld − 1)ε
)

)

there holds
∣
∣
∣
∣
∣

1

n

n∑

i=1

|Tl(θi )|p − ‖Tl‖p
p

∣
∣
∣
∣
∣
≤ ε.

This means that if X is a sequence of i.i.d. random variables,
then the Marcinkiewicz–Zygmund inequality

(1 − ε)‖Tl‖p
p ≤ 1

n

n∑

i=1

|Tl(θi )|p ≤ (1 + ε)‖Tl‖p
p

holds with probability at least

1 − 2 exp

(

− cnε2

ld(1 + ε)

)

where c is a constant depending only on d . Then
almost the same metric entropy argument as the proof of

[1, Theorem 5.1] or the proof of [17, Lemma 7] yields (16)
by setting ε = 1/2.

To state the next lemma, we need introduce the following
definitions. Let X be a finite-dimensional vector space with
norm ‖ · ‖X , and Z ⊂ X ∗ be a finite set. We say that Z
is a norm generating set for X if the mapping TZ : X →
RCard(Z) defined by TZ(x) = (z(x))z∈Z is injective, where
Card(Z) is the cardinality of the set Z and TZ is named as
the sampling operator. Let W := TZ(X ) be the range of TZ ,
then the injectivity of TZ implies that T −1

Z : W → X exists.
Let RCard(Z) have a norm ‖ · ‖RCard(Z) , with ‖ · ‖RCard(Z)∗ being
its dual norm on RCard(Z)∗ . Equipping W with the induced
norm, and let ‖T −1

Z ‖ := ‖T −1
Z ‖W→X . In addition, let K+ be

the positive cone of RCard(Z): that is, all (rz) ∈ RCard(Z) for
which rz ≥ 0. Then the following Lemma 6 can be found
in [22].

Lemma 6: Let Z be a norm generating set for X , with TZ
being the corresponding sampling operator. If y ∈ X ∗ with
‖y‖X ∗ ≤ A, then there exist real numbers {az}z∈Z , depending
only on y such that for every x ∈ X

y(x) =
∑

z∈Z
azz(x)

and

‖(az)‖RCard(Z)∗ ≤ A‖T −1
Z ‖.

Also, if W contains an interior point v0 ∈ K+ and if
y(T −1

Z v) ≥ 0 when v ∈ V ∩K+, then we may choose az ≥ 0.
Using Lemmas 5 and 6, we can deduce the following

probabilistic numerical integral formula for trigonometric
polynomials.

Lemma 7: Let J be a compact subset of Rd . If � =
{θi}n

i=1 are i.i.d. random variables drawn according to arbitrary
distribution μ, then there exists a set of real numbers {ci }n

i=1
such that

∫

J
Tl(x)dx =

n∑

i=1

ci Tl(θi ) ∀Tl ∈ T d
l

holds with confidence at least

1 − 2exp

(

−C1n

ld

)

subject to
n∑

i=1

|ci |2 ≤ C

n

where C1 and C are constants depending only on d .
Proof: In Lemma 6, we take X = T d

l , ‖Tl‖X = ‖Tl‖p ,
and Z to be the set of point evaluation functionals {δθi }n

i=1.
The operator TZ is then the restriction map Tl �→ Tl |�, with

‖ f ‖p
�,p :=

⎧
⎪⎨

⎪⎩

(
1
n

n∑

i=1
| f (θi )|p

) 1
p

0 < p < ∞
sup1≤i≤n{| f (θi)|}, p = ∞.

It follows from Lemma 5 with p = 2 that with confidence
at least

1 − 2exp

(

−Cn

ld

)
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there holds ‖T −1
Z ‖ ≤ 2. We now take y to be the functional

y : Tl �→
∫

J
Tl(x)dx .

By Hölder inequality, ‖y‖X ∗ ≤ |J |, where |J | denotes the
volume of J . Therefore, Lemma 6 shows that

∫

I
Tl(x)dx =

n∑

i=1

ci Tl(θi )

holds with confidence at least

1 − 2exp

(

−Cpn

ld

)

subject to

1

n

n∑

i=1

( |ci |
1/n

)2

≤ 2|J |.

Therefore, we obtain that
∑n

i=1 |ci |2 ≤ C/n, where C is a
constant depending only on d .

Let B = [−a, 1 + a]d and Pd
l be the class of algebraic

polynomials defined on B with degree at most l. By the help
of the above lemma, we can get the following probabilistic
numerical integral formula for algebraic polynomials.

Lemma 8: If � = {ηi }n
i=1 are i.i.d. random variables drawn

according to arbitrary distribution μ, then there exists a set of
real numbers {ai }n

i=1 such that

∫

B
Pl (x)dx =

n∑

i=1

ai Pl(ηi ) ∀Pl ∈ Pd
l

holds with confidence at least

1 − 2exp

(

−C1n

ld

)

subject to

m∑

i=1

|ai |2 ≤ C

n

where C1 and C are constants depending only on d .
Proof: Since x = (x(1), . . . , x(d)), we have

∫

B
f (x)dx =

∫ 1+a

−a
· · ·
∫ 1+a

−a
f (x(1), . . . , x(d))dx(1) · · · dx(d).

Set x(i) = (1 + |a|) cos vi , i = 1, . . . , d , then we have
∫

B
Pl(x)dx =

∫ 1+a

−a
· · ·
∫ 1+a

−a
Pl((1 + |a|) cos v1, . . . ,

× (1 + |a|) cos vd )d(1 + |a|) cos v1 · · ·
× d(1 + |a|) cos vd =

∫

Ja

Tl+d (v)dv

where Ja is a compact subset of Rd and

Tl+d (v) = (−(1 + |a|))d Pl((1 + |a|) cos v1, . . . , (1 + |a|)
× cos vd ) sin v1 · · · sin vd .

Hence, Tl+d ∈ T d
l+d and then Lemma 8 can be directly

deduced from Lemma 7.

By using Lemma 8, we can deduce the following error
estimator.

Lemma 9: Let a > 0, u, l ∈ N. If � := {ηi }n
i=1 is

a random variable drawing identically and independently
according to μ on [−a, 1 + a], then with confidence at least
1 − 2 exp{−cn/(u + l)d }, there holds

inf
gn∈Hσ,s,n

‖Kσ,s ∗ F − gn‖

≤ Cr

(

ωs,I d ( f, 1/ l) + a‖ f ‖σ d + σ−d 2u

u!σ 2

)

where Cs is a constant depending only on d and s.
Proof: For arbitrary f ∈ C(I d ), let F and Kσ,s∗F defined

as in Lemmas 1 and 2, respectively. Then

Kσ,s ∗ F =
∫

Rd
Kσ,s(x − y)F(y)dy =

∫

B
Kσ,s(x − y)F(y)dy

+
∫

Rd−B
Kσ,s(x − y)F(y)dy.

At first, we give an upper bound estimate for
∫

Rd−B Kσ,s(x −
y)F(y)dy. It follows from Lemma 1 and the definition of Kσ,s

that
∣
∣
∣
∣

∫

Rd−B
Kσ,s(x − y)F(y)dy

∣
∣
∣
∣

≤‖ f ‖I d

s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

)
d
2 ×
∫

Rd−B
exp

(

−2‖x − y‖2
2

j2σ 2

)

dy

≤ ‖ f ‖I d

s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

) d
2

×
((∫ −a

−∞
+
∫ ∞

a

)

exp

(

− 2t2

j2σ 2

)

dt

)d

≤ 2‖ f ‖I d

s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

)
d
2 ×
(∫ ∞

a
exp

(

− 2at

j2σ 2

)

dt

)d

≤ Cs‖ f ‖I d a−1σ d

where Cs is a constant depending only on d and r .
On the other hand, for F ∈ C(B) and s ∈ N, it is well

known [5] that there exists a Pl ∈ Pd
l and absolute constants

C1 and C2 such that

‖F − Pl‖ ≤ C1 inf
P∈Pd

l

‖F − P‖B =: C1 El(F) (17)

and

‖Pl‖B ≤ C2‖F‖B ≤ C2‖ f ‖I d . (18)

Then, for arbitrary {bi }n
i=1 ⊂ R, there holds

∫

B
F(y)Kσ,s(x − y)dy −

n∑

i=1

bi Kσ,s(x − ηi )

=
∫

B
(F(y) − Pl (y))Kσ,s(x − y)dy

+
∫

B
Pl(y)Kσ,s(x − y)dy −

n∑

i=1

bi Kσ,s(x − ηi ). (19)
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Let u ∈ N. Then, for arbitrary univariate algebraic polynomial
q of degree not larger than u, we obtain

∫

B
Pl(y)Kσ,s(x − y)dy −

n∑

i=1

bi Kσ,s(x − ηi )

=
∫

B
Pl(y)(Kσ,s(x − y) − q(x − y))dt

+
∫

B
Pl(y)q(x − y)dy −

n∑

i=1

bi(Kσ,s(x − y) − q(x − ηi ))

−
n∑

i=1

bi q(x − ηi ).

Since Pl(y)q(x − y) ∈ Pd
l+u(B) for fixed x , it follows from

Lemma 8 that with confidence at least 1−2 exp{−cn/(u+l)d},
there exists a set of real numbers {wi }n

i=1 ⊂ R such that

∫

B
Pl(y)q(x − y)dy =

n∑

i=1

wi Pl(ηi )q(x − ηi ).

If we set ai = wi Pl(ηi ), then

∫

B
Pl (y)Kσ,s(x − y)dy −

n∑

i=1

ai Kσ,s(x − ηi )

=
∫

B
Pl(y)(Kσ,s(x − y) − q(x − y))dy

−
n∑

i=1

wi Pl (ηi )(Kσ,s(x − ηi ) − q(x − ηi ))

holds with confidence at least 1−2 exp{−cn/(u + l)d}. Under
this circumstance

∥
∥
∥
∥
∥

∫

B
Pl(y)Kσ,s(· − y)dy −

n∑

i=1

ai Kσ,s(· − ηi )

∥
∥
∥
∥
∥

I d

≤
∥
∥
∥
∥

∫

B
Pl(y)(Kσ,s(· − y) − q(· − y))dy

∥
∥
∥
∥

I d

+
∥
∥
∥
∥
∥

n∑

i=1

wi Pl(ηi )(Kσ,s(· − ηi ) − q(· − ηi ))

∥
∥
∥
∥
∥

I d

.

To bound the above quantities, denote

L j (v) := exp − 2v

j2σ 2 .

Let T 1
u ([0, (1 + a)2]) be the set of univariate algebraic poly-

nomials of degrees not larger than u defined on [0, (1 + a)2],
and set q j

u = arg minq∈T 1
u ([0,(1+a)2]d ‖L j − q‖ and

qu(v) :=
s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

) d
2

q j
u (v).

Then, it follows from (18) that
∥
∥
∥
∥

∫

B
Pl(y)(Kσ,s(· − y) − qu((· − y)2))dy

∥
∥
∥
∥

I d

≤ C‖ f ‖I d

∥
∥Kσ,s(· − y) − qu((· − y

)2
)‖I d

≤ C‖ f ‖I d

r∑

j=1

(
r
j

)
1

j d

(
2

σ 2π

) d
2

× inf
q∈T 1

u ([0,(1+a)2])
‖L j − q‖.

On the other hand, since

n∑

i=1

|wi | ≤
√
√
√
√n

n∑

i=1

|wi |2 ≤ C

we also obtain
∥
∥
∥
∥
∥

n∑

i=1

wi Pl(ηi )(Kσ,s(· − ηi ) − qu((· − ηi )
2))

∥
∥
∥
∥
∥

≤ C‖ f ‖Id

s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

) d
2

× inf
q∈T 1

u ([0,(1+a)2])
‖L j − q‖.

Thus, the only thing remainder is to bound
∫

B(F(y) −
Pl(y))Kσ,s(x − y)dy. It follows from (17) that

∥
∥
∥
∥

∫

B
(F(y) − Pl(y))Kσ,s(x − y)dy

∥
∥
∥
∥

≤ El(F) ×
∫

B
Kσ,s(x − y)dy ≤ Csωs,Rd (F, 1/ l)

where we use the fact [6]
∫

B
Kσ,s(x − y)dy ≤ 1

and the known Jackson inequality [5] in the last inequality.
All above together with Lemma 1 yields that

inf
gn∈Gn

‖Kσ,s ∗ F − gn‖ ≤ Csωs,I d ( f, 1/ l)

+ Csa‖ f ‖σ d + C‖ f ‖
s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

) d
2

× inf
q∈T 1

u ([0,(1+a)2])
‖L j − q‖

holds with confidence at least 1 − 2 exp{−cn/(u + l)d}.
Furthermore, it is straightforward to check, using the power
series [21, p. 136] for exp{−2v/ j2σ 2} that

s∑

j=1

(
s
j

)
1

j d

(
2

σ 2π

) d
2

inf
q∈T 1

u ([0,(1+a)2])
‖L j − q‖

≤ Csσ
−d 2u

u!σ 2 .

Thus, the proof of Lemma 9 is completed.
By the help of the above nine lemmas, we can proceed the

proof of Theorem 1 as follows.
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Proof of Theorem 1: Since

inf
gn∈Hσ,s,n

‖ f − gn‖I d ≤ ‖ f − Kσ,s ∗ F‖I d

+‖Kσ,s ∗ F − gn‖I d

setting σ = l−1/2, it follows from Lemmas 2 and 9 that

inf
gn∈Hσ,s,n

‖ f − gn‖I d ≤ Cs

(

ωs,I d ( f, l−1/2) + a‖ f ‖σ d

+ σ−d (s2σ 2)u

2uu!
)

holds with confidence at least 1−2 exp(−cn/(u + l)d), where
c is a constant depending only on d . By the Stirling’s formula,
it is easy to check that

σ−d (s2σ 2)u

2uu! ≤ Cud (u/2)u

2uu! ≤ C
ud

(2d)u ≤ Cl
−d
2

with u = 2dl. Therefore, we obtain

inf
gn∈Hσ,s,n

‖ f − gn‖ ≤ C
(
ωs,I d ( f, l−1/2) + a‖ f ‖l

−d
2

)

with confidence at least 1 − 2 exp{−cn/ ld}, where C is a
constant depending only on d, s, and a. Therefore, Theorem 1
follows by noticing σ = 1/

√
l.

B. Proof of Proposition 1

To prove Proposition 1, we need the following two lemmas,
the first one concerning Bernstein inequality for Hσ,s,n can be
easily deduced from [7, eq. (3.1)].

Lemma 10: Let d = 1, s = 1, and σ ≥ n−1/2. Then, for
arbitrary gn ∈ Hσ,s,n, there holds

‖g′
n‖[0,1] ≤ Cn1/2‖gn‖[0,1]

where C is an absolute constant.
By the help of the Bernstein inequality, the standard method

in approximation theory [5, Chap. 7] yields the following
Lemma 11.

Lemma 11: Let d = 1, s = 1, r ∈ N, σ ≥ n−1/2 and
f ∈ C(I 1). If

∞∑

n=1

nr/2−1dist( f,Hσ,1,n) < ∞

then f ∈ Fr , where dist( f,Hσ,1,n) = infg∈Hσ,1,n ‖ f − g‖I 1 .
Proof: Let gn := arg infg∈Hσ,1,n ‖ f − g‖I 1 . For arbitrary

n ∈ N, set n0 such that

2n0 ≤ n ≤ 2n0+1.

It is easy to see that
∞∑

n=1

nr/2−1dist( f,Hσ,1,n) < ∞

implies dist( f,Hσ,1,n) → 0 in C(I 1). If it does not hold, then
there exists an absolute constant C such that dist( f,Hσ,1,n) ≥
C > 0. Therefore

C
∞∑

n=1

n−1 <

∞∑

n=1

n
r
2 −1dist( f,Hσ,1,n) < ∞

which is impossible. So we have

f − g2n0 =
∞∑

j=n0

g2 j+1 − g2 j . (20)

By Lemma 10, we then have

‖g′
2 j+1 − g′

2 j ‖I 1 ≤ C2( j+1)r/2dist( f,Hσ,1,2 j ).

Then direct computation yields that

‖g′
2 j+1 − g′

2 j ‖I 1 ≤ C
∞∑

j=1

2 j
∑

k=2 j−1+1

kr/2−1dist( f,Hσ,1,k)

≤ C
∞∑

k=1

kr/2−1dist( f,Hσ,1,k) < ∞.

Therefore, {g2 j } is the Cauchy sequence of Fr . Differentiating
(20), we have

f ′ − g′
2n0 =

∞∑

j=n0

g2 j+1 − g2 j .

Since {g2 j } is the Cauchy sequence of Fr , we have f ′ −
g′

2n0 → 0 when n0 → ∞, which implies f ∈ Fr .
Now we continue the proof of Proposition 1.
Proof of Proposition 1: Let ε ∈ (0, 1), and r = 1 − ε. It is

obvious that there exists a function hr satisfying hr ∈ Fr and
hr /∈ Fr ′

with r ′ > r . Assume

inf
g∈Hσ,1,n

‖ f − g‖ ≤ Cn−r/2−ε

holds for all f ∈ Fr , where C is a constant independent of n.
Then

inf
g∈Hσ,1,n

‖hr − g‖ ≤ Cn−r/2−ε.

Then
∞∑

n=1

n1/2−1dist(hr ,Hσ,1,n) =
∞∑

n=1

n−1−ε/2 < ∞.

Therefore, it follows from Lemma 11 that hr ∈ F1, which is
impossible. Hence

sup
f ∈Fr

inf
g∈Hσ,1,n

‖ f − g‖ ≥ Cn−r/2−ε.

This together with Theorem 1 finishes the proof of
Proposition 1.

C. Proof of Theorem 2

The main tool to prove Theorem 2 is the following
Lemma 12, which can be found in [9, Ch. 11].

Lemma 12: Let fz,σ,s,n be defined as in (4). Then

Eρm ‖πM fz,σ,s,n − fρ‖2
ρ ≤ C M2 (log m + 1)n

m

+ 8 inf
f ∈Hσ,s,n

∫

X
| f (x) − fρ(x)|2dρX (21)

for some universal constant C .
Now, we use Proposition 1 and Lemma 12 to prove

Theorem 2.
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Proof of Theorem 2: Since Hσ,s,n is a
n-dimensional linear space, then Lemma 12 yields that

Eρm ‖πM fz,σ,s,n − fρ‖2
ρ ≤ C M2 (log m + 1)n

m

+ 8 inf
f ∈Hσ,s,n

∫

X
| f (x) − fρ(x)|2dρ.

Therefore, it suffices to bound

inf
f ∈Hσ,s,n

∫

X
| f (x) − fρ(x)|2 ≤ inf

f ∈Hσ,s,n

‖ f − fρ‖2
X .

From Theorem 1, it follows that

inf
g∈Hσ,s,n

‖g − fρ‖X ≤ C
(
ωs,I d ( fρ, σ ) + ‖ fρ‖σ d

)

holds with probability at least 1−2 exp{−cnσ 2d}. Noting r ≤ s
and fρ ∈ Fr , with probability at least 1−2 exp{−cnσ 2d}, there
holds

inf
f ∈Hσ,s,n

‖ f − fρ‖2
X ≤ C(σ 2r + σ 2d).

Setting σ = n(−1+ε)/(2d), we observe that with probability at
least 1 − 2 exp{−nε}, there holds

inf
f ∈Hσ,s,n

‖ f − fρ‖2
X ≤ C

(
n−r/d+rε/d + n−1+ε

)
.

Finally, choosing n = [m(d)(r+d)], we obtain that with proba-
bility at least 1 − 2 exp{−nε}, there holds

Eρm ‖πM fz,σ,s,n − fρ‖2
ρ ≤ C

(
m− (1−ε)r

r+d log m + m− d(1−ε)
r+d

)
.

This finishes the proof of Theorem 2.

D. Proof of Proposition 2

To prove Proposition 2, we need the following three
lemmas. The first one is the interpolation theorem of linear
functionals, which can be found in [2, p. 385].

Lemma 13: Let C(Q) be the set of real valued continuous
functions on the compact Hausdorff space Q. Let S be an
n-dimensional linear subspace of C(Q) over R. Let L �= 0 be
a real-valued linear functional on S. Then there exist points
x1, x2, . . . , xr in Q and nonzero real numbers a1, a2, . . . , ar ,
where 1 ≤ r ≤ n, such that

L(s) =
r∑

i=1

ai s(xi ), s ∈ S

and

‖L‖ = sup
{|L(s)| : s ∈ S, ‖s‖Q ≤ 1

} =
r∑

i=1

|ai |.

By using Lemmas 13 and 10, we can obtain the following
Bernstein inequality for ELM with Gaussian kernel in the
metric of L2

ρX
.

Lemma 14: Let d = 1, s = 1, and σ ≥ n−1/2. Then, for
arbitrary gn ∈ Hσ,s,n, there holds

‖g′
n‖ρ ≤ Cn1/2‖gn‖ρ

where C is an absolute constant.

Proof: We apply Lemma 13 with Q = [1/2, 1], S =
Hσ,s,n, and L(s) = s′(1). It follows from Lemma 10 that

‖L‖ = |s′(1)| ≤ Cn1/2|s(1)| = C1n1/2. (22)

We deduce that there are v1, v2, . . . , vr in [1/2, 1] and
a1, a2, . . . , ar ∈ I 1 so that for every s ∈ Hσ,s,n

|s′(1)|
C1n1/2 = |∑r

i=1 ai s(vi )|
C1n1/2 ≤

r∑

i=1

∣
∣
∣
∣

ai

C1n1/2

∣
∣
∣
∣ |s(vi )|

with 1 ≤ r ≤ n. By (22) we have
r∑

i=1

∣
∣
∣
∣

ai

C1n1/2

∣
∣
∣
∣ ≤ 1.

Therefore, there is a sequence of numbers {ci } with∑r
i=1 |ci | = 1 such that

|s′(1)|
C1n1/2 ≤

r∑

i=1

|ci ||s(vi )|.

Now let φ : [0,∞) → [0,∞) be a nondecreasing convex
function. Using monotonicity and convexity, we have

φ

( |s′(1)|
C1n1/2

)

≤ φ(

r∑

i=1

|ci s(vi )|) ≤
r∑

i=1

|ci |φ(|s(vi )|).

Applying this inequality with s(t) = gn(t + u − 1) ∈ Hσ,s,n,
we get

φ

( |g′
n(u)|

C1n1/2

)

≤
r∑

i=1

|ci |φ(|P(vi + u − b)|)

for every P ∈ Hσ,s,n and u ∈ [1/2, 1]. Since xi ∈ [1/2, 1] and
u ∈ [1/2, 1], then vi + u − 1 ∈ [0, 1] for each i = 1, 2, . . . , r .
Integrating on the interval [1/2, 1] with respect to u, we obtain

∫ 1

1/2
φ

( |g′
n(u)|

C1n1/2

)

dρX (u)

≤
r∑

i=1

∫ 1

1/2
|ci |φ(|gn(vi + u − 1)|)dρX (u)

≤
r∑

i=1

∫ 1

0
|ci |φ(|gn(t)|)dρX (t) ≤

∫ 1

0
φ(|gn(t)|)dt

in which
∑r

i=1 |ci | = 1 has been used.
It can be shown exactly in the same way that
∫ 1/2

0
φ

( |g′
n(u)|

C1λn

)

dρX (u) ≤
∫ 1

0
φ(|gn(t)|)dρX (t).

Combining the last two inequalities and choosing φ(x) = x2,
we finish the proof of Lemma 14.

Using almost the same method as that in the proof of
Lemma 11, the following Lemma 15 can be deduced directly
from Lemma 14.

Lemma 15: Let d = 1, s = 1, r ∈ N, σ ≥ n−1/2, and
f ∈ C(I 1). If

∞∑

n=1

nr/2−1dist( f,Hσ,1,n)ρ < ∞
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then f ∈ Fr , where dist( f,Hσ,1,n)ρ = infg∈Hσ,1,n‖ f − g‖ρ .
Now, we proceed the proof of Proposition 2.
Proof of Proposition 2: With the help of the above lemmas,

we can use the almost same method as that in the proof of
Proposition 1 to obtain

sup
f ∈Fr

inf
g∈Hσ,1,n

‖ f − g‖ρ ≥ Cn−r/2−ε.

Then, Proposition 2 can be deduced from the above inequality
using the conditions, σ = m(−1+ε)(2+2r) and n = [m(1)(1+r)].
E. Proof of Theorem 3

To prove Theorem 3, we need the following concepts and
lemmas. Let (M, d̃) be a pseudometric space and T ⊂ M a
subset. For every ε > 0, the covering number N (T, ε, d̃) of
T with respect to ε and d̃ is defined as the minimal number
of balls of radius ε whose union covers T , that is

N (T, ε, d̃) := min

⎧
⎨

⎩
l ∈ N : T ⊂

l⋃

j=1

B(t j , ε)

⎫
⎬

⎭

for some {t j }l
j=1 ⊂ M, where B(t j , ε) = {t ∈ M : d̃(t, t j ) ≤

ε}. The l2-empirical covering number [29] of a function set
is defined by means of the normalized l2-metric d̃2 on the
Euclidean space Rd given in with d̃2(a, b) = (1/m

∑m
i=1 |ai −

bi |2)1/2 for a = (ai)
m
i=1, b = (bi )

m
i=1 ∈ Rm .

Definition 1: Let G be a set of functions on X , x = (xi )
m
i=1,

and

G|x := {( f (xi ))
m
i=1 : f ∈ G} ⊂ Rm .

Set N2,x(G, ε) = N (G|x, ε, d̃2). The l2-empirical covering
number of G is defined by

N2(F , ε) := sup
m∈N

sup
x∈Sm

N2,x(G, ε), ε > 0.

Let Hσ be the reproducing kernel Hilbert space of Kσ,s [28]
and BHσ be the unit ball in Hσ . The following Lemmas 16
and 17 can be easily deduced from [28, Th. 2.1] and [29],
respectively.

Lemma 16: Let 0 < σ ≤ 1, X ⊂ Rd be a compact subset
with nonempty interior. Then for all 0 < p ≤ 2 and all ν > 0,
there exists a constant Cp,ν,d,s > 0 independent of σ such that
for all ε > 0, we have

logN2(BHσ , ε) ≤ Cp,μ,d,sσ
(p/2−1)(1+ν)dε−p.

Lemma 17: Let F be a class of measurable functions on Z .
Assume that there are constants B, c > 0, and α ∈ [0, 1] such
that ‖ f ‖∞ ≤ B and E f 2 ≤ c(E f )α for every f ∈ F . If for
some a > 0 and p ∈ (0, 2)

logN2(F , ε) ≤ aε−p ∀ε > 0 (23)

then there exists a constant c′
p depending only on p such that

for any t > 0, with probability at least 1 − e−t , there holds

E f − 1

m

m∑

i=1

f (zi ) ≤ 4
1

2
η1−α(E f )α + c′

pη

+2

(
ct

m

) 1
2−α + 18Bt

m
∀ f ∈ F (24)

where

η := max

{

c
2−p

4−2α+pα

( a

m

) 2
4−2α+pα

, B
2−p
2+p

( a

m

) 2
2+p
}

.

The next lemma states a variant of Lemma 4, which can be
found in [26].

Lemma 18: Let ξ be a random variable on a probability
space Z with variance γ 2 satisfying |ξ − Eξ | ≤ Mξ for some
constant Mξ . Then for any 0 < δ < 1, with confidence 1 − δ,
we have

1

m

m∑

i=1

ξ(zi ) − Eξ ≤ 2Mξ log 1
δ

3m
+
√

2σ 2 log 1
δ

m
.

From the proof of Lemma 9, we can also deduce the
following Lemma 19.

Lemma 19: Let d, s, n ∈ N. Then, with confidence at least
1 − 2 exp{−cnσ 2d}, there exists a f0 ∈ Hσ,s,n such that

‖ fρ − f0‖2
ρ + λ�( f0) ≤ C

(

ωs,I d ( fρ, σ )2 + σ 2d + λ

n

)

where C is a constant depending only on d , s and M .
Proof: Let

f0 =
n∑

i=1

ai Kσ,s(x − ηi ) =
n∑

i=1

wi Pl(ηi )Kσ,s(x − ηi )

where {wi }n
i=1 and Pl are the same as those in the proof of

Lemma 9. Then, it has already been proved that

‖ fρ − f0‖ρ ≤ C(ωs,I d ( fρ, σ ) + σ d).

Furthermore, it can be deduced from Lemma 8 and (18) by
taking f = fρ that

�( f0) =
n∑

i=1

|wi |2|Pl(ηi )|2 ≤ ‖ fρ‖2
n∑

i=1

|wi |2 ≤ C

n
.

This finishes the proof of Lemma 19.
Now we proceed the proof of Theorem 3.
Proof of Theorem 3: Let fz,σ,s,λ,n and f0 be defined as in

(12) and Lemma 19, respectively. Define

D := E( f0) − E( fρ) + λ�( f0)

and

S := Ez( f0) − E( f0) + E(πM fz,σ,s,λ,n) − Ez(πM fz,σ,s,λ,n)

where Ez( f ) = 1/m
∑m

i=1(yi − f (xi ))
2. Then, it is easy to

check that

E(πM fz,σ,s,λ,n) − E( fρ) ≤ D + S. (25)

As fρ ∈ Fr , it follows from Lemma 19 that with confidence
at least 1 − 2 exp{−cnσ 2d} (with respect to μn), there holds

D ≤ C

(

σ 2r + σ 2d + λ

n

)

. (26)

Upon using the short hand notations

S1 := {Ez( f0) − Ez( fρ)} − {E( f0) − E( fρ)}
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and

S2 : = {E(πM fz,σ,s,λ,n) − E( fρ)} − {Ez(πM fz,σ,s,λ,n)

− Ez( fρ)}
we have

S = S1 + S2. (27)

We first turn to bound S1. Let the random variable ξ on Z
be defined by

ξ(z) = (y − f0(x))2 − (y − fρ(x))2 z = (x, y) ∈ Z .

Since | fρ(x)| ≤ M and

| f0| ≤
n∑

i=1

|wi ||Pl(ηi )||Kσ,s(ηi , x)| ≤ ‖ fρ‖
n∑

i=1

|wi | ≤ C M

hold almost everywhere, we have

|ξ(z)| = ( fρ(x) − f0(x))(2y − f0(x) − fρ(x))

≤ (M + C M)(3M + C M) ≤ Mξ := (3M + C M)2

and almost surely

|ξ − Eξ | ≤ 2Mξ .

Moreover, we have

E(ξ2) =
∫

Z
( f0(x) + fρ(x) − 2y)2( f0(x) − fρ(x))2dρ

≤ Mξ‖ fρ − f0‖2
ρ

which implies that the variance γ 2 of ξ can be bounded as
γ 2 ≤ E(ξ2) ≤ MξD. Now applying Lemma 18, we obtain

S1 ≤ 4Mξ log 2
δ

3m
+
√

2MξD log 2
δ

m

≤ 7(3M + C M)2 log 2
δ

3m
+ 1

2
D (28)

holds with confidence 1 − (δ/2) (with respect to ρm ).
To bound S2, we need apply Lemma 17 to the set GR , where

GR := {(y − πM f (x))2 − (y − fρ(x))2 : f ∈ BR
}

and

BR :=
{

f =
n∑

i=1

bi Kσ,s(ηi , x) :
n∑

i=1

|bi |2 ≤ R

}

.

Each function g ∈ GR has the form

g(z) = (y − πM f (x))2 − (y − fρ(x))2, f ∈ BR

and is automatically a function on Z . Hence

Eg = E( f ) − E( fρ) = ‖πM f − fρ‖2
ρ

and

1

m

m∑

i=1

g(zi ) = Ez(πM f ) − Ez( fρ)

where zi := (xi , yi ). Observe that

g(z) = (πM f (x) − fρ(x))((πM f (x) − y) + ( fρ(x) − y)).

Therefore

|g(z)| ≤ 8M2

and

Eg2 =
∫

Z
(2y − πM f (x) − fρ(x))2(πM f (x) − fρ(x))2dρ

≤ 16M2Eg.

For g1, g2 ∈ FRq and arbitrary m ∈ N, we have

(
1

m

m∑

i=1

(g1(zi ) − g2(zi ))
2

)1/2

≤
(

4M

m

m∑

i=1

( f1(xi ) − f2(xi ))
2

)1/2

.

It follows that

N2,z(GR, ε) ≤ N2,x

(
BR,

ε

4M

)
≤ N2,x

(
B1,

ε

4M R

)

which together with Lemma 16 implies

logN2,z(GR, ε) ≤ Cp,μ,dσ
p−2

2 (1+ν)d(4M R)pε−p .

By Lemma 17 with B = c = 16M2, α = 1 and a =
Cp,μ,dσ (p−2/2)(1+ν)d(4M R)p , we know that for any δ ∈
(0, 1), with confidence 1 − δ/2, there exists a constant C
depending only on d such that for all g ∈ GR

Eg − 1

m

m∑

i=1

g(zi) ≤ 1

2
Eg + Cη + C(M + 1)2 log(4/δ)

m
.

Here

η = {16M2} 2−p
2+p C

2
2+p
p,ν,dm− 2

2+p σ
p−2

2 (1+ν)d 2
2+p R

2p
2+p .

Hence, we obtain

Eg − 1

m

m∑

i=1

g(zi ) ≤ 1

2
Eg + {16(M + 1)2} 2−p

2+p C
2

2+p
p,ν,d

×m− 2
2+p σ

p−2
2 (1+ν)d 2

2+p R
2p

2+p log
4

δ
.

Now we turn to estimate R. It follows form the definition of
fz,σ,s,λ,n that

λ�( fz,σ,s,λ,n) ≤ Ez(0) + λ · 0 ≤ M2.

Thus, we obtain that for arbitrary 0 < p ≤ 2 and arbitrary
ν > 0, there exists a constant C depending only on d , ν, p,
and M such that

S2 ≤ 1

2
{E(πM fz,σ,sλ,n) − E( fρ)}

+ C log
4

δ
m− 2

2+p σ
(p−2)(1+ν)d

2+p λ
−2p
2+p (29)

with confidence at least 1 − (δ)/(2) (with respect to ρm).
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From (25) to (29), we obtain

E(πM fz,σ,sλ,n) − E( fρ)

≤ C

(

σ 2r + σ 2d + λ/n + log 4
δ

3m

+ 1

2
{E(πM fz,σ,sλ,n) − E( fρ)}

+ log
4

δ
m− 2

2+p σ
(p−2)(1+ν)d

2+p λ
−2p
2+p

)

holds with confidence at least (1 − δ) × (1 − 2 exp{−cnσ 2d})
(with respect to ρm × μn).

Set σ = m−1/2r+d+ε , n = m2d/2r + d, λ = m−a :=
m−2r−d/4r+2d , ν = ε/2d(2r + d), and

p = 2d + 2ε(2r + d) − 2(1 + ν) + 2(2r + d)ε(1 + ν)d

(2r + d)(2a + dε + νdε − ε) + 2r − (1 + ν)d
.

Since r ≥ d/2, it is easy to check that ν > 0, and 0 < p ≤ 2.
Then, we get

E(πM fz,σ,sλ,n) − E( fρ) ≤ Cm− 2r
2r+d +ε log 4δ

+ m− 2d
2r+d +ε + log 4δm− 2r+3d

4r+d .

Noting further that r ≤ d , we obtain

E(πM fz,σ,sλ,n) − E( fρ) ≤ Cm− 2r
2r+d +ε log 4δ.

Noticing the identity

Eρm (E( fρ) − E( fz,λ,q)) =
∫ ∞

0
Pm{E( fρ) − E( fz,λ,q ) > ε}dε

direct computation yields the upper bound of (13). The lower
bound can be found in [9, Chap.3]. This finishes the proof of
Theorem 3.

VI. CONCLUSION

The ELM-like learning provides a powerful computational
burden reduction technique that adjusts only the output con-
nections. Numerous experiments and applications have demon-
strated the effectiveness and efficiency of ELM. The aim of
this paper is to provide theoretical fundamentals of it. After
analyzing the pros and cons of ELM, we found that the
theoretical performance of ELM depends heavily on the acti-
vation function and randomness mechanism. In the previous
cousin paper [20], we have provided the advantages of ELM in
theory, that is, with appropriately selected activation function,
ELM reduces the computation burden without sacrificing
the generalization capability in the sense of expectation. In
this paper, we discussed certain disadvantages of ELM. Via
rigorous proof, we found that ELM suffered from both the
uncertainty and generalization degradation problem. Indeed,
we proved that for the widely used Gaussian-type activation
function, ELM degraded the generalization capability. To facil-
itate the use of ELM, some remedies of the aforementioned
two problems are also recommended. That is, multiple time
trials can avoid the uncertainty problem and the l2 coefficient
regularization technique can essentially improve the general-
ization capability of ELM. All these results reveal the essential

characteristics of ELM learning and give a feasible guidance
concerning how to use ELM .

We conclude this paper with a crucial question about ELM
learning.

Question 1: As is shown in [20] and the current paper,
the performance of ELM depends heavily on the activation
function. For appropriately selected activation function, ELM
does not degrade the generalization capability, while there
also exists an activation function such that the degradation
exists. As it is impossible to enumerate all the activation
functions and study the generalization capabilities of the
corresponding ELM, we are asked for a general condition on
the activation function, under which the corresponding ELM
degrade (or does not degrade) the generalization capability.
In other words, we are interested in a criterion to classify
the activation functions into two classes. With the first class,
ELM degrades the generalization capability and with the other
class, ELM does not degrade the generalization capability.
We will keep working on this interesting project and report
our progress in a future publication.
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