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a b s t r a c t

There are mainly two methodologies utilized in current sparse PCA calculation, the greedy approach and
the block approach. While the greedy approach tends to be incrementally invalidated in sequentially
generating sparse PCs due to the cumulation of computational errors, the block approach is difficult to
elaborately rectify individual sparse PCs under certain practical sparsity or nonnegative constraints. In
this paper, a simple while effective block coordinate descent (BCD) method is proposed for solving the
sparse PCA problem. The main idea is to separate the original sparse PCA problem into a series of simple
sub-problems, each having a closed-form solution. By cyclically solving these sub-problems in an
analytical way, the BCD algorithm can be easily constructed. Despite its simplicity, the proposed method
performs surprisingly well in extensive experiments implemented on a series of synthetic and real data.
In specific, as compared to the greedy approach, the proposed method can iteratively ameliorate the
deviation errors of all computed sparse PCs and avoid the problem of accumulating errors; as compared
to the block approach, the proposed method can easily handle the constraints imposed on each
individual sparse PC, such as certain sparsity and/or nonnegativity constraints. Besides, the proposed
method converges to a stationary point of the problem, and its computational complexity is
approximately linear in both data size and dimensionality, which makes it well suited to handle
large-scale problems of sparse PCA.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) is one of the most classical
and popular tools for data analysis and dimensionality reduction, and
has a wide range of successful applications throughout science and
engineering [1]. By seeking the so-called principal components (PCs),
along which the data variance is maximally preserved, PCA can
always capture the intrinsic latent structure underlying data. Such
information greatly facilitates many further data processing tasks,
such as feature extraction and pattern recognition.

Despite its many advantages, the conventional PCA suffers from
the fact that each component is generally a linear combination of
all data variables, and all weights in the linear combination, also
called loadings, are typically non-zeros. In many applications,
however, the original variables have meaningful physical inter-
pretations. In biology, for example, each variable of gene expres-
sion data corresponds to a certain gene. In such cases, the derived

PC loadings are always expected to be sparse (i.e. contain fewer
non-zeros) so as to facilitate their interpretability. Moreover, in
certain applications, such as financial asset trading, the sparsity of
the PC loadings is especially expected since fewer nonzero load-
ings imply fewer transaction costs.

Accordingly, sparse PCA has attracted much attention in the recent
decade, and a variety of methods for this topic have been developed
[2–23]. The first attempt for this topic is to make certain post-
processing transformation, e.g. rotation by Jolliffe [2] and simple
thresholding by Cadima and Jolliffe [3], on the PC loadings obtained
by the conventional PCA to enforce sparsity. Jolliffe et al. [4] further
advanced a SCoTLASS algorithm by simultaneously calculating sparse
PCs on the PCA model with additional l1-norm penalty on loading
vectors. Better results have been achieved by the SPCA algorithm of
Zou et al. [5], which was developed based on iterative elastic net
regression. D'Aspremont et al. [6] proposed a method, called DSPCA,
for finding sparse PCs by solving a sequence of semidefinite program-
ming (SDP) relaxations of sparse PCA. Shen and Huang [7] developed
a series of methods called sPCA-rSVD (including sPCA� rSVDl0 ,
sPCA� rSVDl1 , and sPCA� rSVDSCAD), computing sparse PCs by low-
rank matrix factorization under multiple sparsity-including penalties.
Journée et al. [8] designed four algorithms, denoted as GPowerl0 ,
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GPowerl1 , GPowerl0 ;m, and GPowerl1 ;m, respectively, for sparse PCA by
formulating the issue as non-concave maximization problems with l0-
or l1-norm sparsity-inducing penalties and extracting single unit
sparse PC sequentially or block units ones simultaneously. Based on
probabilistic generative model of PCA, some methods have also been
attained [9–12], e.g. the EMPCA method derived by Sigg and
Buhmann [9] for sparse and/or nonnegative sparse PCA. Sriperumbu-
dur et al. [13,14] provided an iterative algorithm called DCPCA, where
each iteration consists of solving a quadratic programming (QP)
problem. Recently, Lu and Zhang [15] developed an augmented
Lagrangian method (ALSPCA briefly) for sparse PCA by solving a class
of non-smooth constrained optimization problems. Additionally,
d'Aspremont et al. [16] derived a PathSPCA algorithm that computes
a full set of solutions for all target numbers of nonzero coefficients.
Very recently, Meng et al. [24] presented another path algorithm by
utilizing the coordinate-pairwise updating strategy. The method can
attain the entire spectrum of solutions of the problem, providing
more insight for sparse PCA solution.

There are mainly two methodologies utilized in the aforemen-
tioned sparse PCA methods. The first is the greedy approach,
including DSPCA [6], sPCA-rSVD [7], EMPCA [9], and PathSPCA [16].
These methods mainly focus on the solving of one-sparse-PC model,
and more sparse PCs are sequentially calculated one-by-one on the
deflated data matrix or data covariance [25]. The second is the block
approach. Typical methods include SCoTLASS [4], GPowerl0 ;m,
GPowerl1 ;m [8], ALSPCA [15], etc. These methods aim to calculate
multiple sparse PCs at once by utilizing certain block optimization
techniques. The general pros and cons of both approaches are listed
in Table 1 for easy comparison. All these properties have been
extensively exhibited in our experiments, as introduced in Section 3.

In this paper, we design a surprisingly simple while effective
block coordinate descent method for solving the sparse PCA
problem. The main idea is to decompose the original large and
complex problem of sparse PCA into a series of small sub-
problems, and then cyclically solve them. Each of these sub-
problems has a closed-form solution, which makes the new
method very easy to implement. Despite its simplicity, the
proposed method performs very well in sparse PCA calculation.
On one hand, as compared to the greedy approach, attributed to its
recursive updating over all sparse PC variables, the proposed
method can iteratively ameliorate the deviation errors of all
computed sparse PCs and avoid the problem of accumulating
errors. On the other hand, as compared to the block approach,
the new method can easily handle the constraints imposed on
each individual sparse PC, such as certain sparsity and/or non-
negative constraints. Furthermore, the proposed method con-
verges to a stationary solution of the original sparse PCA
problem, and its computational complexity is approximately linear
in both data size and dimensionality, which makes it well suited to
handle large-scale problems of sparse PCA. The aforementioned
properties have been extensively substantiated in experiments
implemented on synthetic and real data.

In what follows, the main idea and the implementation details
of the proposed method are first introduced in Section 2. Its
convergence and computational complexity are also analyzed in
this section. The effectiveness of the proposed method is compre-
hensively substantiated based on a series of empirical studies in
Section 3. Then the paper is concluded with a summary and
outlook for future research. Throughout the paper, we denote
matrices, vectors and scalars by the upper-case bold-faced letters,
lower-case bold-faced letters, and lower-case letters, respectively.

2. The block coordinate descent method for sparse PCA

In the following, we first introduce the fundamental models for
the sparse PCA problem.

2.1. Basic models of sparse PCA

Denote the input data matrix as X¼ ½x1; x2;…; xn�T ARn�d,
where n and d are the size and the dimensionality of the given
data, respectively. After a location transformation, we can assume
all fxigni ¼ 1 to have zero mean. Let Σ¼ ð1=nÞXTXARd�d be the data
covariance matrix.

The classical PCA can be solved through two types of optimiza-
tion models [1]. The first is constructed by finding the
rðrdÞ�dimensional linear subspace where the variance of the
input data X is maximized [26]. On this data-variance-
maximization viewpoint, the PCA is formulated as the following
optimization model:

max
V

TrðVTΣVÞ s:t: VTV¼ I; ð1Þ

where TrðAÞ denotes the trace of the matrix A and
V¼ ðv1;v2;…; vrÞARd�r denotes the array of PC loading vectors.
The second is formulated by seeking the r-dimensional linear
subspace on which the projected data and the original ones are as
close as possible [27]. On this reconstruction-error-minimization
viewpoint, the PCA corresponds to the following model:

min
U;V

‖X�UVT‖2F s:t: VTV¼ I; ð2Þ

where ‖A‖F is the Frobenius norm of A, VARd�r is the matrix of PC
loading array and U¼ ðu1;u2;…;urÞARn�r is the matrix of pro-
jected data. The two models are intrinsically equivalent and can
attain the same PC loading vectors [1].

Corresponding to the PCA models (1) and (2), the sparse PCA
problem has the following two mathematical formulations1:

max
V

TrðVTΣVÞ s:t: vTi vi ¼ 1; ‖vi‖prti ði¼ 1;2;…; rÞ; ð3Þ

Table 1
The general pros and cons of the greedy approach and the block approach for the sparse PCA problem.

Greedy approach Block approach

Pros The first several sparse PCs can generally be properly extracted in a sequential
way

Efficient to simultaneously attain large number of sparse PCs

The sparse PCA calculation can be easily implemented under different sparsity
parameter settings (i.e., ti in Eq. (3) and (4))

Convergence to a reasonable solution of the sparse PCA problem with respect
to all sparse PCs sometimes can be proved (e.g., the ALSPCA method [15])

Cons The computation for more sparse PCs tends to be incrementally invalidated due
to the cumulation of computational errors, e.g., the SPCA method tends to be less
effective in our colon data experiments when the number of sparse PCs are
increasing (Section 3.2.2)

Difficult to elaborately rectify each individual sparse PC under certain
requirements of sparse PCs (e.g. the sparsity or nonnegative constraints on
sparse PCs), e.g., in our pitprops data experiments, the GPowerl0 ;m and
GPowerl1 ;m methods cannot derive sparse PCs with preset cardinality settings
(Section 3.2.1)

1 It should be noted that the orthogonality constraints of PC loadings in (1) and
(2) are not imposed in (3) and (4). This is because simultaneously enforcing sparsity
and orthogonality is generally a very difficult (and perhaps unnecessary) task. Like
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and

min
U;V

‖X�UVT‖2F s:t: vTi vi ¼ 1; ‖vi‖prti ði¼ 1;2;…; rÞ; ð4Þ

where p¼0 or 1 and the corresponding ‖v‖p denotes the l0- or the
l1-norm of v, respectively. Note that the involved l0 or l1 penalty in
the above models (3) and (4) tends to enforce sparsity of the
output PCs. Methods constructed on Eq. (3) include SCoTLASS [4],
DSPCA [6], DCPCA [13,14], ALSPCA [15], etc., and those related to
Eq. (4) include SPCA [5], sPCA-rSVD [7], SPC [19], GPower [8], etc.
In this paper, we will construct our method on the reconstruction-
error-minimization model (4), while our experiments will verify
that the proposed method also performs well based on the data-
variance-maximization criterion.

2.2. Decompose original problem into small sub-problems

The objective function of the sparse PCA model (4) can be
equivalently formulated as follows:

‖X�UVT‖2F ¼ JX�∑r
j ¼ 1ujvT

j J
2
F ¼ ‖Ei�uivTi ‖

2
F ;

where Ei ¼X�∑ja iujvT
j . It is then easy to separate the original

large minimization problem, which is with respect to U and V, into
a series of small minimization problems, which are each with
respect to a column vector ui of U and vi of V for i¼ 1;2;…; r,
respectively, while keeping other variables fixed, as follows:

min
vi

‖Ei�uivT
i ‖

2
F s:t: vTi vi ¼ 1; ‖vi‖prti; ð5Þ

and

min
ui

‖Ei�uivT
i ‖

2
F : ð6Þ

Through cyclically optimizing these small sub-problems, the new
method for solving the sparse PCA model (4) can then be naturally
constructed. Note that each of the subproblem is not equivalent to
the original problem, but the whole procedure deduces a block
coordinate descent (BCD) approach for solving optimization (4).
The details are analyzed in Section 2.5.

It is very fortunate that both the minimization problems in
(5) and (6) have closed-form solutions. This implies that the to-be-
constructed method can be fast and efficient, as presented in the
following sub-sections.

2.3. The closed-form solutions of (5) and (6)

For the convenience of notation, we first rewrite (5) and (6) as
the following forms:

min
v

‖E�uvT‖2F s:t: vTv¼ 1; ‖v‖prt; ð7Þ

and

min
u

‖E�uvT‖2F ; ð8Þ

where u is n-dimensional and v is d-dimensional. Since the
objective function ‖E�uvT‖2F can be equivalently transformed as

‖E�uvT‖2F ¼ ‖E‖2F �2uTEvþuTuvTv;

(7) and (8)are equivalent to the following optimization problems,
respectively:

max
v

ðETuÞTv s:t: vTv¼ 1; ‖v‖prt; ð9Þ

and

min
u

uTu�2ðEvÞTu: ð10Þ

The closed-form solutions of (9) and (10), i.e. (7) and (8), can then
be presented as follows.

We present the closed-form solution to Eq. (8) in the following
theorem.

Theorem 1. The optimal solution of Eq. (8) is unðvÞ ¼ Ev.

The theorem is very easy to prove by calculating where the
gradient of uTu�2ðEvÞTu is equal to zero. We thus omit the proof.

In the p¼0 case, the closed-form solution to (9) is presented in
the following theorem. Here, we denote w¼ ETu, and hardλðwÞ the
hard thresholding function, whose i-th element corresponds to
IðjwijZλÞwi, where wi is the i-th element of w and I(x) (equals 1 if
x is true, and 0 otherwise) is the indicator function. The proof of
the theorem is provided in Appendix A.

Theorem 2. The optimal solution of

max
v

wTv s:t: vTv¼ 1; ‖v‖0rt ð11Þ

is given by

vn

0ðw; tÞ ¼

ϕ; to1;
hardθk

ðwÞ
‖hardθk

ðwÞ‖2
; krtokþ1 ðk¼ 1;2;…; d�1Þ;

w
‖w‖2

; tZd;

8>>>>><
>>>>>:

where θk denotes the k-th largest element of jwj.
In the above theorem, ϕ denotes the empty set, implying that

when to1, the optimum of Eq. (11) does not exist.
In the p¼1 case, Eq. (7) has the following closed-form solution.

In the theorem, we denote fwðλÞ ¼ softλðwÞ=‖softλðwÞ‖2, where
softλðwÞ represents the soft thresholding function
signðwÞðjwj�λÞþ , where ðxÞþ represents the vector attained by
projecting x to its nonnegative orthant, and ðI1; I2;…; IdÞ denotes
the permutation of ð1;2;…; dÞ based on the ascending order of
jwj ¼ ðjw1j; jw2j;…; jwdjÞT . The proof of the theorem is provided in
Appendix B.

Theorem 3. The optimal solution of

max
v

wTv s:t: vTv¼ 1; ‖v‖1rt ð12Þ

is given by

vn

1ðw; tÞ ¼

ϕ; to1;
fwðλkÞ; ‖fwðjwIk jÞ‖1rto‖fwðjwIk� 1

jÞ‖1 ðk¼ 2;3;…; d�1Þ;
fwðλ1Þ; ‖fwðjwI1 jÞ‖1rto

ffiffiffi
d

p
;

fwð0Þ; tZ
ffiffiffi
d

p
;

8>>>><
>>>>:

where for k¼ 1;2;…;d�1,

λk ¼
ðm�t2Þð∑m

i ¼ 1aiÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ðm�t2Þðm∑m

i ¼ 1a
2
i �ð∑m

i ¼ 1aiÞ2Þ
q

mðm�t2Þ ;

where ða1; a2;…; amÞ ¼ ðjwIk j; jwIkþ 1
j;…; jwId jÞ, m¼ d�kþ1.

It should be noted that we have proved that ‖fwðjwId� 1
jÞ‖1 ¼ 1

and ‖fwðλÞ‖1 is a monotonically decreasing function with respect
to λ in Lemma 1 of Appendix B. This means that we can conduct
the optimum vnðwÞ of the optimization problem (7) for any w
based on the above theorem.

The new algorithm, which we called BCD-SPCA, can then be
easily constructed based on Theorems 1–3.

(footnote continued)
most of the existing sparse PCA methods [5–8], we do not enforce orthogonal PCs
in the models.
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2.4. The BCD-SPCA algorithm for sparse PCA

The main idea of the proposed BCD-SPCA method is to
recursively optimize each column, ui of U or vi of V for
i¼ 1;2;…; r, with other ujs and vjs (ja i) fixed. The process is
summarized as follows:

� Update each column vi of V for i¼ 1;2;…; r by the closed-form
solution of Eq. (5) calculated by Theorem 2 (for p¼0) or
Theorem 3 (for p¼1).

� Update each column ui of U for i¼ 1;2;…; r by the closed-form
solution of Eq. (6) calculated by Theorem 1.

Through implementing the above procedures iteratively, U and V
can be recursively updated until the stopping criterion is satisfied.
We summarize the aforementioned procedure as Algorithm 1.

Algorithm 1. BCD algorithm for sparse PCA.

Input: Data matrix XARn�d, number of sparse PCs r, sparsity
parameters t¼ ðt1;…; trÞ.

1: Initialize U¼ ðu1;u2;…;urÞARn�r , V¼ ðv1;u2;…; vrÞARd�r .
2: repeat
3: for i¼ 1;…r do
4: Compute Ei ¼X�∑ja iujvTj .
5: Update vi via solving Eq. (5) based on Theorem 2 (for

p¼0) or Theorem 3 (for p¼1).
6: Update ui via solving Eq. (6) based on Theorem 1.
7: end for
8: until stopping criterion satisfied.
Output: The sparse PC loading vectors V¼ ðv1; v2;…; vrÞ.

We then briefly discuss how to specify the stopping criterion of
the algorithm. The objective function of the sparse PCA model (4)
is monotonically decreasing in the iterative process of Algorithm 1
since each of the step 5 and step 6 in the iterations makes an exact
optimization for a column vector ui of U or vi of V, with all of the
others fixed. We can thus terminate the iterations of the algorithm
when the updating rate of U or V is smaller than some preset
threshold, or the maximum number of iterations is reached.

Now we briefly analyze the computational complexity of the
proposed BCD-SPCA algorithm. It is evident that the computa-
tional complexity of Algorithm 1 is essentially determined by the
iterations between step 5 and step 6, i.e. the calculation of the
closed-form solutions of vi and ui of V and U, respectively. To
compute ui, only simple operations are involved and the compu-
tation needs O(nd) cost. To compute vi, a sorting for the elements
of the d-dimensional vector jwj ¼ jETuj is required, and the total
computational cost is around Oðnd log dÞ by applying the well-
known heap sorting algorithm [28]. The whole process of the
algorithm thus requires around OðTrnd log dÞ computational cost
in each iteration, where T is the preset maximal iteration number
for the algorithm. That is, the computational complexity of the
proposed algorithm is approximately linear in both the size and
the dimensionality of input data.

2.5. Convergence analysis

In this section we evaluate the convergence of the proposed
algorithm.

The convergence of our algorithm can actually be implied by
the monotonic decrease of the cost function of (4) during the
iterations of the algorithm. In specific, in each iteration of the
algorithm, step 5 and step 6 optimize the column vector ui of U or
vi of V, with all of the others fixed, respectively. Since the objective

function of Eq. (4) is evidently lower bounded (Z0), the algorithm
is guaranteed to be convergent.

We want to go a further step to evaluate where the algorithm
converges. Based on the formulation of the optimization problem
(4), we can construct a specific function as follows:

f ðu1;…;ur ; v1;…; vrÞ ¼ f 0ðu1;…;ur ; v1;…; vrÞþ ∑
r

i ¼ 1
f iðviÞ; ð13Þ

where

f 0ðu1;…;ur ; v1;…; vrÞ ¼ ‖X�UVT‖2F ¼ ‖X�∑r
i ¼ 1uivT

i ‖
2
F ;

and for each of i¼ 1;…; r, f iðviÞ is an indicator function defined as

f iðviÞ ¼
0 if ‖vi‖prti and vTi vi ¼ 1;
1 otherwise:

(

It is then easy to show that the constrained optimization problem
(4) is equivalent to the unconstrained problem:

min
fui ;vigri ¼ 1

f ðu1;…;ur ; v1;…; vrÞ: ð14Þ

The proposed algorithm can then be viewed as a BCD method for
solving Eq. (14) [29], by alteratively optimizing ui; vi, i¼ 1;2;…; r,
respectively. Then the following theorem implies that our algo-
rithm can converge to a stationary point of the problem.

Theorem 4 (Tseng [29]). Assume that the level set X0 ¼ fx :
f ðxÞr f ðx0Þg is compact and that f is continuous on X0. If
f ðu1;…;ur ; v1;…; vrÞ is regular and has at most one minimum in
each ui and vi with others fixed for i¼ 1;2;…; r, then the sequence
ðu1;…;ur ; v1;…; vrÞ generated by the BCD method converges to a
stationary point of f.

In the above theorem, the assumption that the function f, as
defined in Eq. (14), is regular holds under the condition that
domðf 0Þ is open and f0 is Gateaux-differentiable on domðf 0Þ
(Lemma 3.1 under Condition A1 in [29]). Based on Theorems 1–3,
we can also easily see that f ðu1;…;ur ; v1;…; vrÞ has a unique
minimum in each ui and vi with others fixed. The above theorem
then naturally follows from Theorem 4.1(c) in [29].

Another advantage of the proposed BCD methodology is that it
can be easily extended to other sparse PCA applications when
certain constraints are needed for output sparse PCs. In the
following section we give one of the extensions of our methodol-
ogy—nonnegative sparse PCA problem.

2.6. The BCD method for nonnegative sparse PCA

The nonnegative sparse PCA [30] problem differs from the
conventional sparse PCA in its nonnegativity constraint imposed
on the output sparse PCs. The nonnegativity property of this
problem is especially important in some applications such as
microeconomics, environmental science, and biology [31]. The
corresponding optimization model is written as follows:

min
U;V

‖X�UVT‖2F s:t: vTi vi ¼ 1; ‖vi‖prti; vi≽0 ði¼ 1;2;…; rÞ;

ð15Þ
where vi≽0 means that each element of vi is greater than or
equal to 0.

By utilizing the similar BCD strategy, this problem can be
separated into a series of small minimization problems, each with
respect to a column vector ui of U and vi of V for i¼ 1;2;…; r,
respectively, as follows:

min
vi

‖Ei�uivT
i ‖

2
F s:t: vTi vi ¼ 1; ‖vi‖prti; vi≽0 ð16Þ
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and

min
ui

‖Ei�uivT
i ‖

2
F ; ð17Þ

where p¼0 or 1. Since Eq. (17) is of the same formulation as Eq. (6),
we only need to discuss how to solve Eq. (16). For the convenience of
notation, we first rewrite Eq. (16) as

min
v

‖E�uvT‖2F s:t: vTv¼ 1; ‖v‖prt; v≽0: ð18Þ

The closed-form solution of (18) is given in the following theorem.
The proof of this theorem is given in Appendix C.

Theorem 5. The closed-form solution of Eq. (18) is vn
pððwÞþ ; tÞ

(p¼0,1), where w¼ ETu, and vn

0ð�; �Þ and vn

1ð�; �Þ are defined in
Theorems 2 and 3, respectively.

By virtue of the closed-form solution of Eq. (18) given by
Theorem 5, we can now construct the algorithm for solving
nonnegative sparse PCA model (15), called BCD-NSPCA. Since the
algorithm differs from Algorithm 1 only in step 5 (i.e. updating of
vi), we only list this step in Algorithm 2.

Algorithm 2. BCD algorithm for nonnegative sparse PCA.

5: Update vi via solving Eq. (16) based on Theorem 5.

3. Experiments

To evaluate the performance of the proposed BCD-SPCA and
BCD-NSPCA algorithms on the sparse PCA problem, we conduct
experiments on a series of synthetic and real data sets. All the
experiments were implemented on Matlab 7.11 (R2010b) platform
in a PC with AMD Athlon (TM) 64 X2 Dual 5000þ@2.60 GHz (CPU)
and 2 GB (memory). In all experiments, the SVD method was
utilized for initialization. The proposed algorithms under both
p¼0 and p¼1 are denoted as BCD� SPCAl0 and BCD� SPCAl1 for
sparse PCA, and BCD�NSPCAl0 and BCD� NSPCAl1 for nonnega-
tive sparse PCA, respectively.

3.1. Synthetic simulations

Two synthetic data sets were utilized to evaluate the perfor-
mance of the proposed algorithm on recovering the ground truth
sparse principal components underlying data. The results are
listed as follows:

3.1.1. Hastie data
Hastie data set was first proposed by Zou et al. [5] to illustrate

the advantage of sparse PCA over conventional PCA on sparse PC
extraction. So far this data set has become one of the most
frequently utilized benchmark data for testing the effectiveness
of sparse PCA methods. The data set was generated in the
following way: first, three hidden factors V1, V2 and V3 were
created as

V1 �N ð0;290Þ; V2 �N ð0;300Þ; V3 ¼ 0:3V1þ0:925V2þε;

where ε�N ð0;1Þ, and V1, V2 and ε are independent; afterwards,
10 observable variables were generated as

Xi ¼ V1þε1i ; i¼ 1;2;3;4;

Xi ¼ V2þε2i ; i¼ 5;6;7;8;

Xi ¼ V3þε3i ; i¼ 9;10;

where εji �N ð0;1Þ and all εijs are independent. The data so
generated are of intrinsic sparse PCs [5]: the first recovers the
factor V2 only using ðX5;X6;X7;X8Þ, and the second recovers V1

only utilizing ðX1;X2;X3;X4Þ.

We generated 100 sets of data, each contains 1000 data generated
in the aforementioned way, and applied Algorithm 1 to them to
extract the first two sparse PCs. The results show that our algorithm
can perform well in all experiments. In specific, the proposed BCD-
SPCA algorithm faithfully delivers the ground truth sparse PCs in all
experiments. The effectiveness of the proposed algorithm is thus
easily substantiated in this series of benchmark data.

3.1.2. Synthetic toy data
As [7,8], we adopted another interesting toy data to evaluate

the performance of the proposed method. The data were gener-
ated from the Gaussian distribution N ð0;ΣÞ with mean 0 and
covariance ΣAR10�10, which was calculated by

Σ¼ ∑
10

j ¼ 1
cjvjvT

j :

Here, ðc1; c2;…; c10Þ, the eigenvalues of the covariance matrix Σ,
were pre-specified as ð250;240;50;50;6;5;4;3;2;1Þ, respectively,
and ðv1; v2;…; v10Þ are 10-dimensional orthogonal vectors, formu-
lated by

v1 ¼ ð0:422;0:422;0:422;0:422;0;0;0;0;0:380;0:380ÞT ;
v2 ¼ ð0;0;0;0;0:489;0:489;0:489;0:489; �0:147;0:147ÞT ;
and the rest being generated by applying the Gram–Schmidt
orthonormalization to 8 randomly valued 10-dimensional vectors.
It is easy to see that the data generated under this distribution are
of first two sparse PC vectors v1 and v2.

Four series of experiments, each involving 1000 sets of data
generated from N ð0;ΣÞ, were utilized, with sample sizes 500,
1000, 2000, 5000, respectively. For each experiment, the first two
PCs, v̂1 and v̂2, were calculated by a sparse PCA method and then if
both jv̂T

1v1jZ0:99 and jv̂T
2v2jZ0:99 were satisfied, the method

was considered as a success. The proposed BCD-SPCA method,
together with the conventional PCA and 12 current sparse PCA
methods, including SPCA [5], DSPCA [6], PathSPCA [16],
sPCA � rSVDl0 , sPCA � rSVDl1 , sPCA � rSVDSCAD [7], EMPCA [9],
GPowerl0 , GPowerl1 , GPowerl0;m , GPowerl1;m [8] and ALSPCA [15],
have been implemented, and the success times for four series of
experiments have been recorded and summarized, respectively.
The results are listed in Table 2.

The advantage of the proposed BCD� SPCAl1 algorithm can be
easily observed from Table 2. In specific, our method always
attains the highest or second highest success times (in the size
1000 case, 1 less than ALSPCA) as compared with the other utilized
methods in all of the four series of experiments. Considering that

Table 2
Comparison of success times of PCA and different sparse PCA methods in synthetic
toy experiments with varying sample sizes. The best results are highlighted in bold.

Method n¼500 n¼1000 n¼2000 n¼5000

PCA 0 0 0 0
SPCA 566 673 756 839
DSPCA 211 203 138 62
PathSPCA 189 187 186 171
sPCA � rSVDl0 646 702 797 906
sPCA � rSVDl1 649 715 806 909
sPCA � rSVDSCAD 649 715 806 909
EMPCA 649 715 806 909
GPowerl0 155 154 155 139
GPowerl1 122 127 126 126
GPowerl0;m 91 76 71 16
GPowerl1;m 90 92 88 82
ALSPCA 669 749 826 927
BCD� SPCAl0 646 708 800 907
BCD� SPCAl1 676 748 827 928
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the ALSPCA method, which is the only comparable method in
these experiments, utilizes strict constraints on the orthogonality
of output PCs while the BCD-SPCA method does not utilize any
prior ground truth information of data, the capability of the
proposed method on sparse PCA calculation can be more promi-
nently verified.

3.2. Experiments on real data

In this section, we further evaluate the performance of the
proposed BCD-SPCA method on three real data sets, including
the pitprops, colon and Yale B face data. Two quantitative criteria
were employed for performance assessment. They are designed in
the viewpoints of reconstruction-error-minimization and data-
variance-maximization, respectively, just corresponding to the
original formulations (4) and (3) for sparse PCA problem.

� Reconstruction-error-minimization criterion: RRE. Once sparse PC
loading matrix V is obtained by a method, the input data can
then be reconstructed by X̂ ¼ ÛVT , where Û ¼XVðVTVÞ�1,
obtained by the least square method. Then the relative recon-
struction error (RRE) can be calculated by

RRE¼ ‖X�X̂‖F
‖X‖F

;

to assess the performance of the utilized method in data
reconstruction point of view.

� Data-variance-maximization criterion: PEV. After obtaining the
sparse PC loading matrix V, the input data can then be
reconstructed by X̂ ¼XVðVTVÞ�1VT , as aforementioned. And
thus the variance of the reconstructed data can be computed by
Trðð1=nÞX̂T

X̂Þ. The percentage of explained variance (PEV [7]) of
the reconstructed data from the original one can then be
calculated by

PEV¼
Tr 1

n X̂
T
X̂

� �
Tr 1

nX
TX

� � � 100%¼ TrðX̂T
X̂Þ

TrðXTXÞ
� 100%

to evaluate the performance of the utilized method in data
variance point of view.

3.2.1. Pitprops data
The pitprops data set, consisting of 180 observations and 13

measured variables, was first introduced by Jeffers [32] to show the
difficulty of interpreting PCs. This data set is one of the most
commonly utilized examples for sparse PCA evaluation, and thus
was also employed to testify the effectiveness of the proposed BCD-
SPCAmethod. The comparison methods include SPCA [5], DSPCA [6],
PathSPCA [16], sPCA� rSVDl0 , sPCA� rSVDl1 , sPCA� rSVDSCAD [7],
EMPCA [9], GPowerl0 , GPowerl1 , GPowerl0;m , GPowerl1;m [8] and
ALSPCA [15]. For each utilized method, 6 sparse PCs were extracted
from the pitprops data, with different cardinality settings: 8-5-6-2-
3-2 (altogether 26 nonzero elements), 7-4-4-1-1-1 (altogether 18
nonzero elements, as set in [5]) and 7-2-3-1-1-1 (altogether 15
nonzero elements, as set in [6]), respectively. In each experiment,
both the RRE and PEV values, as defined above, were calculated, and
the results are summarized in Table 3. Fig. 1 further shows the RRE
and PEV curves attained by different sparse PCA methods in all
experiments for more illumination. It should be noted that the
GPowerl0 ;m, GPowerl1 ;m and ALSPCA methods employ the block
methodology, as introduced in the introduction, and calculate all
sparse PCs at once while cannot sequentially derive different
numbers of sparse PCs with preset cardinality settings. Thus the
results of these methods reported in Table 3 were calculated with

the total sparse PC cardinalities being 26, 18 and 15, respectively, and
are not included in Fig. 1.

It can be seen from Table 3 that under all cardinality settings of the
first 6 PCs, the proposed BCD-SPCA method always achieves the
lowest RRE and highest PEV values among all the competing methods.
This means that the BCD-SPCA method is advantageous in both
reconstruction-error-minimization and data-variance-maximization
viewpoints. Furthermore, from Fig. 1, it is easy to see the superiority
of the BCD-SPCA method. In specific, for different number of extracted
sparse PC components, the proposed BCD-SPCA method can always
get the smallest RRE values and the largest PEV values, as compared
with the other utilized sparse PCA methods, in the experiments.
This further substantiates the effectiveness of the proposed BCD-SPCA
method in both reconstruction-error-minimization and data-variance-
maximization viewpoints.

3.2.2. Colon data
The colon data set [33] consists of 62 tissue samples with the

gene expression profiles of 2000 genes extracted from DNA micro-
array data. This is a typical data set with high-dimension and low-
sample-size property, and is always employed by sparse methods
for extracting interpretable information from high-dimensional
genes. We thus adopted this data set for evaluation. In specific, 20
sparse PCs, each with 50 nonzero loadings, were calculated by
different sparse PCA methods, including SPCA [5], PathSPCA [16],
sPCA � rSVDl0 , sPCA � rSVDl1 , sPCA � rSVDSCAD [7], EMPCA [9],
GPowerl0 , GPowerl1 , GPowerl0;m , GPowerl1;m [8] and ALSPCA [15],
respectively. Their performance is compared in Table 4 and Fig. 2
in terms of RRE and PEV, respectively. It should be noted that the
DSPCA method has also been tried, while cannot be terminated in
a reasonable time in this experiment, and thus we omit its result
in the table. Besides, we have carefully tuned the parameters of
the GPower methods (including GPowerl0 , GPowerl1 , GPowerl0;m
and GPowerl1;m ), and can get 20 sparse PCs with total cardinality
around 1000, similar as the total nonzero elements number of the
other utilized sparse PCA methods, while cannot get sparse PC
loading sequences each with cardinality 50 as expected. The
results are thus not demonstrated in Fig. 2.

From Table 4, it is easy to see that BCD� SPCAl0 achieves the
lowest RRE and highest PEV values, as compared with the other 11
employed sparse PCA methods. Fig. 2 further demonstrates that as
the number of extracted sparse PCs increases, the advantage of the

Table 3
Performance comparison of different sparse PCA methods on pitprops data with
different cardinality settings. The best result in each experiment is highlighted
in bold.

Method 8-5-6-2-3-2 7-4-4-1-1-1 7-2-3-1-1-1

RRE PEV (%) RRE PEV (%) RRE PEV (%)

SPCA 0.4162 82.68 0.4448 80.22 0.4459 80.11
DSPCA 0.4303 81.48 0.4563 79.18 0.4771 77.23
PathSPCA 0.4080 83.35 0.4660 80.11 0.4457 80.13
sPCA � rSVDl0 0.4139 82.87 0.4376 80.85 0.4701 77.90
sPCA � rSVDl1 0.4314 81.39 0.4427 80.40 0.4664 78.25
sPCA � rSVDSCAD 0.4306 81.45 0.4453 80.17 0.4762 77.32
EMPCA 0.4070 83.44 0.4376 80.85 0.4451 80.18
GPowerl0 0.4092 83.26 0.4400 80.64 0.4457 80.13
GPowerl1 0.4080 83.35 0.4460 80.11 0.4457 80.13
GPowerl0;m 0.4224 82.16 0.5089 74.10 0.4644 78.44
GPowerl1;m 0.4187 82.46 0.4711 77.81 0.4589 78.94
ALSPCA 0.4168 82.63 0.4396 80.67 0.4537 79.42
BCD� SPCAl0 0.4115 83.07 0.4419 80.47 0.4419 80.47
BCD� SPCAl1 0.4005 83.50 0.4343 81.14 0.4420 80.46
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Fig. 1. The tendency curves of RRE and PEV with respect to the number of extracted sparse PCs obtained by different sparse PCA methods on pitprops data. Three cardinality
settings for the extracted sparse PCs are utilized, including 8-5-6-2-3-2, 7-4-4-1-1-1 and 7-2-3-1-1-1.

Table 4
Performance comparison of different sparse PCA methods on colon data. The best results are highlighted in bold.

Method SPCA PathSPCA sPCA � rSVDl0 sPCA� rSVDl1 sPCA� rSVDSCAD

RRE 0.7892 0.5287 0.5236 0.5628 0.5723
PEV 37.72% 72.05% 72.58% 68.32% 67.25%

Method EMPCA GPowerl0 GPowerl1 GPowerl0;m GPowerl1;m

RRE 0.5211 0.5042 0.5076 0.4870 0.4904
PEV 72.84% 74.56% 74.23% 76.29% 75.95%

Method ALSPCA BCD� SPCAl0 BCD� SPCAl1

RRE 0.5917 0.4737 0.5536
PEV 64.99% 77.56% 69.35%
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Fig. 2. The tendency curves of RRE and PEV with respect to the number of extracted sparse PCs, each with cardinality 50, attained by different sparse PCA methods on
colon data.
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proposed method tends to be more dominant than other methods,
with respect to both the RRE and PEV criteria. This further
substantiates the effectiveness of the proposed BCD strategy and
implies its potential usefulness in applications with various inter-
pretable components.

3.2.3. Yale Face Database B
We then test the performance of sparse PCA methods on Yale

Face Database B [34]. A total of 20 face images for each of the first
10 subjects in this database were randomly chosen, resulting total
200 images. Then the images were cropped to 192�168 pixels as
in [35], and further sub-sampled to 96�84 pixels, resulting in the
data matrix of size 200�8064. A total of 30 sparse PCs, each with
2000 nonzero loadings, were calculated by different sparse PCA
methods, including PathSPCA [16], sPCA � rSVDl0 , sPCA � rSVDl1 ,
sPCA � rSVDSCAD [7] and EMPCA [9] (other methods either failed to
produce the sparse PCs with preset cardinality or cannot be
executed in reasonable time), respectively, together with the
proposed method. Their performance is compared in Table 5 and
Fig 3 in terms of both RRE and PEV, respectively. It can easily
observed that BCD� SPCAl0 always achieves the lowest RRE and
highest PEV values, as compared with the other employed sparse
PCA methods.

3.3. Nonnegative sparse PCA experiments

We further testify the performance of the proposed BCD-NSPCA
method (Algorithm 2) in nonnegative sparse PC extraction. For
comparison, two existing methods for nonnegative sparse PCA,
NSPCA [30] and Nonnegative EMPCA (N-EMPCA, briefly) [9] were
also employed.

3.3.1. Synthetic toy data
As the toy data utilized in Section 3.1.2, we also formulated a

Gaussian distribution N ð0;ΣÞ with mean 0 and covariance matrix
Σ¼∑10

j ¼ 1cjvjvTj AR10�10. The leading two eigenvectors of Σ were
specified as nonnegative and sparse vectors as

v1 ¼ ð0:474;0;0:158;0;0:316;0;0:791;0;0:158;0ÞT ;

v2 ¼ ð0;0:140;0;0:840;0;0:280;0;0:140;0;0:420ÞT ;

and the rest were then generated by applying the Gram–Schmidt
orthonormalization to 8 randomly valued 10-dimensional vectors.
The 10 corresponding eigenvalues ðc1; c2;…; c10Þ were preset as
ð210;190;50;50;6;5;4;3;2;1Þ, respectively. Four series of experi-
ments were designed, each with 1000 data sets generated from
N ð0;ΣÞ, with sample sizes 500, 1000, 2000 and 5000, respectively.
For each experiment, the first two PCs were calculated by the
conventional PCA, NSPCA, N-EMPCA and BCD-NSPCA methods,
respectively. The success times, calculated in the similar way as
introduced in Section 3.1.2, of each utilized method on each series
of experiments were recorded, as listed in Table 6.

From Table 6, it is seen that the proposed BCD-NSPCA methods
achieve the highest success rates in all experiments, and its

Table 5
Performance comparison of different sparse PCA methods on Yale Face Database B. The best results are highlighted in bold.

Method PathSPCA sPCA� rSVDl0 sPCA � rSVDl1 sPCA� rSVDSCAD

RRE. 0.2943 0.2895 0.3074 0.3159
PEV. 91.34% 91.62% 90.55% 90.02%

Method EMPCA BCD� SPCAl0 BCD� SPCAl1

RRE. 0.2855 0.2657 0.2976
PEV. 91.85% 92.94% 91.15%
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Fig. 3. The tendency curves of RRE and PEV with respect to the number of extracted sparse PCs, each with cardinality 2000, attained by different sparse PCA methods on Yale
Face Database B.

Table 6
Performance comparison of success times attained by PCA, NSPCA, N-EMPCA,
BCD� NSPCAl0 and BCD� NSPCAl1 on synthetic toy experiments with different
sample sizes. The best results are highlighted in bold.

Method n¼500 n¼1000 n¼2000 n¼5000

PCA 0 0 0 0
NSPCA 739 948 933 993
N-EMPCA 620 655 631 639
BCD� NSPCAl0 834 948 939 996
BCD� NSPCAl1 835 949 978 1000
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advantage on nonnegative sparse PCA calculation, as compared
with the other utilized methods, can thus been verified in these
experiments.

3.3.2. Colon data
The colon data set was utilized again for nonnegative sparse

PCA calculation. The NSPCA and N-EMPCA methods were adopted
as the competing methods. Since the NSPCA method cannot
directly pre-specify the cardinalities of the extracted sparse PCs,
we thus first applied NSPCA on the colon data (with parameters
α¼ 1� 106 and β¼ 1� 107) and then used the cardinalities of the
nonnegative sparse PCs obtained by this method to preset the
N-EMPCA and BCD-NSPCA methods for fair comparison. A total of
20 sparse PCs were computed by the three methods, and the
performance was compared in Table 7 and Fig. 4, in terms of RRE
and PEV, respectively.

Just as expected, it is evident that the proposed BCD-NSPCA
methods dominate in both RRE and PEV viewpoints. From Table 7,

we can observe that our method achieves the lowest RRE and
highest PEV on 20 extracted nonnegative sparse PCs than the
other two utilized methods. Furthermore, Fig. 4 shows that our
method is advantageous, as compared with the other methods, for
any preset number of extracted sparse PCs, and this advantage
tends to be more significant as more sparse PCs are to be
calculated. The effectiveness of the proposed method on nonne-
gative sparse PCA calculation can thus be verified.

3.3.3. Application to face recognition
In this section, we introduce the performance of our method in

the face recognition problem [30]. The proposed BCD-NSPCA
method, together with the conventional PCA, NSPCA and
N-EMPCA methods, has been applied to this problem and its
performance is compared in this application. Since the l0 version
of BCD-NSPCA always outperforms the l1 version, we report the
results of BCD� NSPCAl0 . The employed data set is the MIT CBCL
Face Dataset #1, downloaded from “http://cbcl.mit.edu/software-
datasets/FaceData2.html”. This data set consists of 2429 aligned
face images and 4548 non-face images, each with resolution
19�19. For each of the four utilized methods, 10 PC loading
vectors were computed on face images, as shown in Fig. 5,
respectively. For easy comparison, we also list the RRE and PEV
values of three nonnegative sparse PCA methods in Table 8.

As depicted in Fig. 5, the nonnegative sparse PCs obtained by
our BCD-NSPCA method more clearly exhibit the interpretable

Table 7
Performance comparison of different nonnegative sparse PCA methods on colon
data. The best results are highlighted in bold.

Method NSPCA N-EMPCA BCD� NSPCAl0 BCD� NSPCAl1

RRE 0.3674 0.3399 0.2706 0.2864
PEV 86.50% 88.45% 92.68% 91.80%
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Fig. 4. The tendency curves of RRE and PEV, with respect to the number of extracted nonnegative sparse PCs, obtained by NSPCA, N-EMPCA, BCD� NSPCAl0 and
BCD� NSPCAl1 on colon data.
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Fig. 5. From top row to bottom row: 10 PCs extracted by PCA, NSPCA, N-EMPCA and BCD� NSPCAl0 , respectively, on MIT CBCL Face Dataset.
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features underlying faces, as compared with the other utilized
methods, e.g. the first five PCs calculated from our method clearly
demonstrate the eyebrows, eyes, cheeks, mouth and chin of faces,
respectively. The advantage of the proposed method can further be
verified quantitatively by its smallest RRE and largest PEV values,
among all employed methods, in the experiment, as shown in
Table 8. The effectiveness of our method can thus be substantiated.

To further show the usefulness of the proposed method, we
applied it to face classification under this data set as follows. First
we randomly chose 1000 face images and 1000 non-face images
from MIT CBCL Face Dataset #1, and took them as the training data
and the rest images as testing data. We then extracted 10 PCs by
utilizing the PCA, NSPCA, N-EMPCA and BCD� NSPCAl0 methods
to the training set, respectively. By projecting the training data
onto the corresponding 10 PCs obtained by each of these four
methods and then fitting the linear logistic regression (LR) [36]
model on these dimension-reduced data (10-dimensional), we can
get a classifier for testing. The classification accuracy of the
classifier so obtained on the testing data was then computed,
and the results are reported in Table 9. In the table, the classifica-
tion accuracy obtained by directly fitting the LR model on the
original training data and testing on the original testing data is
also listed for easy comparison.

From Table 9, it is clear that the proposed BCD strategy gets the
best performance among all implemented methods, most accu-
rately recognizing both the face images and the non-face images
from the testing data. This further implies the potential usefulness
of the proposed method in real applications.

4. Conclusion

In this paper we have proposed an effective block coordinate
descent (BCD) method for sparse PCA problem. The basic idea is to
decompose the original large sparse PCA problem into a series of
small sub-problems and then recursively solve them. Although the
BCD methodology is very simple, it performs surprisingly well in
our experiments as compared to the current sparse PCA methods
in terms of both the reconstruction-error-minimization and data-
variance-maximization criteria. We have also shown that the new
method converges to a stationary point of the problem, and can be
easily extended to other sparse PCA problems with certain con-
straints, such as nonnegative sparse PCA problem.

There are many interesting investigations still worthy to be
further explored. For example, when we reformat the square
L2-norm error of the sparse PCA model as the L1-norm one, the

robustness of the model can always be improved for heavy noise or
outlier cases, while the model is correspondingly more difficult to
solve. By adopting the similar BCD methodology, however, the
problem can be decomposed into a series of much simpler sub-
problems, which are expected to be much more easily solved than
the original model. Besides, although we have proved the conver-
gence of the proposed method, we do not know how far the result
is from the global optimum of the problem. Stochastic global
optimization techniques, such as simulated annealing and evolution
computation methods, may be combined with the proposed
method to further improve its performance. Also, the intrinsic
relationships between other newly boosting dimensionality reduc-
tion techniques and sparse PCA research will also be considered in
our future investigation.
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