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The Generalization Ability of Online SVM
Classification Based on Markov Sampling

Jie Xu, Yuan Yan Tang, Fellow, IEEE, Bin Zou, Zongben Xu, Luoqing Li, and Yang Lu

Abstract— In this paper, we consider online support vector
machine (SVM) classification learning algorithms with uniformly
ergodic Markov chain (u.e.M.c.) samples. We establish the bound
on the misclassification error of an online SVM classification
algorithm with u.e.M.c. samples based on reproducing kernel
Hilbert spaces and obtain a satisfactory convergence rate. We also
introduce a novel online SVM classification algorithm based on
Markov sampling, and present the numerical studies on the
learning ability of online SVM classification based on Markov
sampling for benchmark repository. The numerical studies show
that the learning performance of the online SVM classification
algorithm based on Markov sampling is better than that of
classical online SVM classification based on random sampling
as the size of training samples is larger.

Index Terms— Generalization ability, Markov sampling, online
support vector machine (SVM) classification, uniformly ergodic
Markov chain (u.e.M.c.).

I. INTRODUCTION

SUPPORT vector machine (SVM) is one of the most
widely used machine learning algorithms for classifica-

tion problems, in particular for classifying high-dimensional
data [1]. Though besides their good learning performance in
many practical applications, they also enjoy a good theoret-
ical justification in terms of both universal consistency and
learning rates [2]–[4], SVM algorithm might be practically
challenging when the size T of training sample is very large.
For example, when we consider the SVM algorithm with hinge
loss function, solving it is a quadratic optimization problem.
Its standard complexity is about O(T 3). In particular, when
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T ≥ 10 000, the SVM algorithm is hard to implement [5].
While when the sample size is large, online learning
algorithms with linear complexity O(T ) can be applied and
provide efficient classifiers. In addition, the previously known
works on the generalization ability of online SVM classifi-
cation algorithm are usually based on the assumption that
the training samples are independent identically distributed
(i.i.d.) [5], [6]. Independence is a very restrictive concept in
several ways [7]–[12]. First, it is often an assumption, rather
than a deduction on the basis of observations. Second, it is an
all or nothing property, in the sense that two random variables
are either independent or they are not—the definition does not
permit an intermediate notion of being nearly independent.
As a result, many of the proofs based on the assumption
that the underlying stochastic sequence is i.i.d. are rather
fragile. In addition, this i.i.d. assumption cannot be strictly
justified in real-world problems, and many machine learning
applications such as market prediction, system diagnosis, and
speech recognition are inherently temporal in nature, and con-
sequently not i.i.d. processes [7]–[9]. Therefore, relaxations
of such i.i.d. assumption have been considered for quite a
while in both machine learning and statistics literatures. For
example, Yu [13] researched the convergence rates of empir-
ical processes for stationary mixing sequences. Modha and
Masry [14] considered the minimum complexity regression
estimation with m-dependent observations and strongly mixing
observations, respectively. Lozano et al. [15] showed that
regularized boosting algorithms based on β-mixing processes
are consistent. Kontorovich and Ramanan [16] established
the concentration inequalities for dependent random variables
via martingale method. Mohri and Rostamizdeh [17] studied
the Rademarcher complexity bounds for non-i.i.d. processes.
Smale and Zhou [18] considered the online regression learning
algorithm based on Markov sampling. Hu and Zhou [19]
studied the learning rates of online learning algorithm with
samples drawn from nonidentical distributions. Agarwal and
Duchi [20] extended the results on the generalization ability
of online algorithms with i.i.d. samples established in [21] to
the cases of β- and φ-mixing. For these reasons, we have to
study the generalization ability of online SVM classification
based on non-i.i.d. samples.

There are many non-i.i.d. sampling mechanisms (e.g., α-,
β-, and ϕ-mixing) studied in machine learning literatures
[7], [10], in this paper, we focus on the online SVM clas-
sification algorithm with uniformly ergodic Markov chain
(u.e.M.c.) samples, the reasons are as follows. First, in real-
world problems, Markov chain samples appear so often and
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naturally in applications, such as biological (DNA or protein)
sequence analysis, content-based web search, and market
prediction. Zou et al. [22] presented two examples of learning
from Markov chain input samples. Second, the generalization
ability of online SVM classification based on Markov chain
samples is unknown (particularly, it is unknown how well it
performs in terms of consistency and generalization). In addi-
tion, inspired by the idea from Markov chain Monte Carlo
methods [23], [24], in this paper, we introduce a new online
SVM classification based on Markov sampling. Through the
numerical studies on the learning performance of online
SVM classification for benchmark repository, we find that
the online SVM classification based on Markov sampling can
provide smaller misclassification rates compared with random
sampling.

The rest of this paper is organized as follows. In Section II,
we introduce some useful definitions and notations.
In Section III, we present the bounds on the generalization
ability of online SVM classification based on u.e.M.c.
samples. In Section IV, we introduce a new online SVM
classification algorithm and present the numerical studies on
the learning performance of online SVM classification based
on Markov sampling. We conclude this paper in Section V.

II. PRELIMINARIES

In this section, we introduce the definitions and notations
used throughout this paper.

A. Online SVM Classification Algorithm

In this paper, we consider online SVM classification
algorithm generated from Tiknonov regularization schemes
associated with hinge loss function and reproducing kernel
Hilbert spaces. Let X be a compact metric space and
Y = {−1,+1}. A binary classifier is a function h : X → Y ,
which labels every point x ∈ X with some y ∈ Y . A real-
valued function f : X → R can be used to generate a classifier
h = sgn( f (x)), where the sign function is defined as

sgn( f (x)) =
{+1, if f (x) ≥ 0

−1, if f (x) < 0.

Let K : X × X → R be continuous, symmetric, and
positive semidefinite, i.e., for any finite set of distinct points
{x1, x2, . . . , xl} ⊂ X , the matrix (K (xi , x j ))

l
i, j=1 is positive

semidefinite. Such a function is called a Mercer kernel. The
reproducing kernel Hilbert space HK associated with the
kernel K is defined to be the closure of the linear span of
the set of functions {Kx = K (x, ·) : x ∈ X } with the inner
product 〈·, ·〉HK = 〈·, ·〉K satisfying 〈Kxi , Kx j 〉K = K (xi , x j )〈∑

i

αi Kxi ,
∑

j

β j Kx j

〉

K

=
∑
i, j

αiβ j K (xi , x j ).

The reproducing property takes the form

〈Kx , f 〉K = f (x) ∀x ∈ X ∀ f ∈ HK . (1)

Denote C(X ) as the space of continuous functions on
X with the norm || f ||∞ = supx∈X | f (x)|. Let κ =

supx∈X (K (x, x))1/2, then the above reproducing property tells
us that || f ||∞ ≤ κ || f ||K , ∀ f ∈ HK .

The SVM classifier associated with the Mercer kernel K is
defined as sgn( fz), where fz is a minimizer of the following
optimization problem involving a set of random samples
z = {zi = (xi , yi )}T

i=1 ∈ ZT :

fz = arg min
f ∈HK

1

2
|| f ||2K + C

T

T∑
i=1

ξi

s.t. yi f (xi ) ≥ 1 − ξi , ξi ≥ 0, 1 ≤ i ≤ T (2)

where C is a constant that depends on T : C = C(T ) and often
limT →∞ C(T ) = ∞ [2], [3].

Algorithm (2) can be rewritten as a regularization scheme
[3], [25]. Define the loss function �( f, z) as

�( f, z) =
{

0, if f (x)y > 1
1 − f (x)y, if f (x)y ≤ 1

(3)

which is called the hinge loss function [1]. The corresponding
generalization error (or risk) is E( f ) = E[�( f, z)]. If we
define the empirical error associated with the sample set z as

Ez( f ) = 1

T

T∑
i=1

�( f, zi ) = 1

T

T∑
i=1

(1 − yi f (xi ))+

then algorithm (2) can be written as [25]

fz = arg min
f ∈HK

{
Ez( f )+ 1

2C
|| f ||2K

}
. (4)

Algorithm (4) is an offline algorithm, which has
been extensively studied in statistical machine learning
literatures. In particular, the error analysis is well done [2], [3],
[26]–[28]. However, since scheme (4) is a quadratic optimiza-
tion problem, and its standard complexity is about O(T 3),
when T ≥ 10 000, algorithm (4) is hard to implement. This
implies that algorithm (4) might be practically challenging
when the sample size T is very large [5]. To overcome
this problem, online learning algorithms are frequently
adopted [5], [21], [29].

Definition 1: The online learning algorithm is defined by
f1 = 0 and

ft+1 = ft − ηt {∂�( ft , zt )Kxt +λt ft }, t = 1, 2, . . . , T (5)

where λt > 0 is the regularization parameter, ηt is called
the step size, and ∂�( f, z) is the left derivative of �( f, z):
∂�( f, z) := limδ→0−(�( f + δ, z)− �( f, z))/δ [5].

We call the sequence { ft+1} the learning sequence for the
online algorithm (5). The classifier is given by the sign func-
tion sgn( fT +1). In fully online algorithm, the regularization
parameter λt changes with the learning step t . Throughout
this paper, we assume that λt+1 ≤ λt for each t ∈ N.

For the classical SVM classification algorithm with loss
function (3), algorithm (5) can be expressed as f1 = 0 and

ft+1 =
{
(1 − ηtλt ) ft , if yt ft (xt ) > 1
(1 − ηtλt ) ft + ηt yt Kxt , if yt ft (xt ) ≤ 1.

(6)

Different from the previously known works on the
generalization ability of online SVM classification algorithm
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in [5], [6], and [19], in this paper, we have to analyze the gen-
eralization ability of online SVM classification algorithm (6)
based on u.e.M.c. samples.

B. Uniformly Ergodic Markov Chains

u.e.M.c. are the discrete cases of uniformly ergodic Markov
processes. To present the definition of uniformly ergodic
Markov processes, we first give the definition of total variation
distance [20].

Definition 2: The total variation distance between distribu-
tions P and Q defined on the probability space (S,F), where
F is a σ -field, each with densities p and q with respect to an
underlying measure ω, is given by

dTV(P, Q)= sup
A∈F

|P(A)− Q(A)|= 1

2

∫
S
|p(s)− q(s)|dω(s).

Define the σ -field Ft = σ(Z1, Z2, . . . , Zt ). Let Pt (·|Fs)
is the conditional probability of Zt given the signa field
Fs = σ(Z1, Z2, . . . , Zs). A stochastic process {Zt } is said
to possess the Markov property with respect to Fs if for each
A ∈ F , and each s, t ∈ N with s < t

Pt (·|Fs) = Pt (·|Zs).

In this paper, our main assumption is that there is a
stationary distribution � to which the distribution of Zt

converges as t grows, and the distributions Pt (·|Fs) and � are
absolutely continuous with respect to an underlying measure ω
throughout [30]–[32].

Definition 3: The Markov process {Zt } is said to be uni-
formly ergodic if there exist constants γ0 < ∞ and α0 < 1
such that for any Z ∈ Z, and for any 1 ≤ t, t ∈ N

dT V (P
t (·|Z),�) ≤ γ0α

t
0.

In the case, where S is a discrete set with the discrete
sigma algebra, the discrete-time Markov chains is defined as
follows: a Markov chain is a sequence of random variables
{Zt }t≥1 together with a set of transition probability measures
Pn(zn+i |zi ), zn+i , zi ∈ Z . It is assumed that

Pn(zn+i |zi ) := Prob{Zn+i = zn+i |Z j , j < i, Zi = zi }.
The fact that the transition probability does not depend on the
values of Z j prior to time i is the Markov property

Pn(zn+i |zi ) = Prob{Zn+i = zn+i |Zi = zi }.
This is commonly expressed in words as given the present, the
future, and past states are independent [10], [31]. For u.e.M.c.,
we have the following remarks.

Remark 1: A weaker condition than uniformly ergodic
is V -geometrically ergodic [10]. The difference between
uniformly ergodic and V -geometrically ergodic is that here
the total variation distance between the t-step transition
probability Pt (·|Z) and the stationary distribution �
approaches zero at a geometric rate multiplied by V (Z)
[10], [30]. Thus, the rate of geometric convergence is inde-
pendent of Z , but the multiplicative constant is allowed to
depend on Z . Especially, if the space Z is finite, then all
irreducible and aperiodic Markov chains are V -geometrically
(in fact, uniformly) ergodic [10].

By [33, in Th. 3.8], we have that if the size of a given data
set is finite, and the transition probabilities of Markov chain
{Zt}t≥1 generated from the data set are always positive, then
{Zt}t≥1 is a u.e.M.c..

III. ESTIMATING MISCLASSIFICATION ERROR

Let � be a probability distribution on Z = X × Y and
(X,Y ) be the corresponding random variable. The prediction
ability of classification algorithms are often measured by
the misclassification error, which is defined for a classifier
h : X → Y to be the probability R(h) of {h(x) �= y}

R(h) = Prob{h(x) �= y} =
∫
X

P(Y �= h(x)|x)d�X (x).

Here, �X is the marginal distribution of � on X and P(·|x)
is the conditional probability measure given X = x . The best
classifier minimizing the misclassification error is the Bayes
rule [34], which can be expressed as fc = sgn( f�), where f�
is the regression function

f�(x) =
∫
Y

y�(y|x).

Recall that for the online learning algorithm (5) with loss
function (3), we are interested in the classifier sgn( fT +1)
generated by the real-valued function fT +1 from z. The error
analysis for online learning algorithm (5) is aimed at the excess
misclassification error

R(sgn( fT +1))− R( fc). (7)

By the comparison theorem established in [27], we have that
for loss function (3), the excess misclassification error (7) can
often be done by bounding the excess generalization error

E( fT +1)− E( fc). (8)

That is, an important relation between the excess misclassi-
fication error (7) and the excess generalization error (8) was
given in [27] as:

R(sgn( fT +1))− R( fc) ≤ E( fT +1)− E( fc). (9)

Therefore, to bound the generalization ability of online clas-
sification algorithm (5) with u.e.M.c. samples, it is sufficient
for us to estimate the excess generalization error (8). To do
so, we need the regularization or approximation error between
regularizing function fλ and fc [5], [35].

Definition 4: The regularizing function fλ is defined as

fλ = arg min
f ∈HK

{E( f )+ λ|| f ||2K
}

(10)

where

E( f )= E[�( f, z)]=
∫
Z
�( f, z)d�(z)=

∫
Z
�( f, z)π(z)dω(z).

The regularization error D(λ) associated with the triple
(K , �,�) is defined as

D(λ) = inf
f ∈HK

{
E( f )− E( fc)+ λ

2
‖ f ‖2

K

}
.



XU et al.: GENERALIZATION ABILITY OF ONLINE SVM CLASSIFICATION 631

By Definition 4, we have the following error decomposi-
tion [5] for the excess generalization error (8) as

E( fT +1)− E( fc) = E( fT +1)− E( fλ)+ E( fλ)− E( fc)

≤ {E( fT +1)− E( fλ)} + D(λ). (11)

The regularization error D(λ) is independent of the
sample set z. It can be estimated by the knowledge of
approximation theory. For more details, see the discussions
in [3] and [35]. The regularization error measures the approx-
imation ability of the space HK with respect to the learning
process involving �( f, ·) and �. The denseness of HK implies
limλ→0 D(λ) = 0 [19]. A natural assumption is [5], [19]

D(λ) ≤ D0λ
β, for some 0 ≤ β ≤ 1 and D0 > 0. (12)

Hu and Zhou [19] have presented some examples for the
assumption (12).

Throughout this paper, we assume that for the loss func-
tion (3) and any z ∈ Z

M0 = sup
z∈Z

�(0, z)+ sup

{ |�( f, z)− �(0, z)|
| f | , | f | ≤ 1

}
< ∞.

Then, the assumption (12) holds true with β = 0 and D0 = M0
since D(λ) ≤ E( f )+ (λ/2)|| f ||2K , and then we have D(λ) ≤
E(0) + 0 = M0 for any λ > 0 by taking f = 0 in the above
inequality [5], [19].

The first term of right-hand side in (11) is called the sample
error, which can be bounded by the error ‖ fT +1 − fλ‖K for
the loss function (3) [3], [5], [19]

E( fT +1)− E( fλ) ≤ κ || fT +1 − fλ||K . (13)

By inequalities (9) and (13), we can find that to estimate
the excess misclassification error (7), it is sufficient for us
to estimate || fT +1 − fλ||K . Therefore, we first establish the
following bound on the expectation of || ft+1 − fλt ||2K for a
fixed regularization parameter λt .

Proposition 1: Define { ft } by (5). Then, we have

Ezt

[|| ft+1 − fλt ||2K
] ≤ (1 − λtηt )|| ft − fλt ||2K

+2ηt ||�( fλt , zt )

−�( ft , zt )||∞ · dT V (P
t (·|Z),�)

+η2
t Ezt

[||∂�( ft , zt ))Kxt + λt ft ||2K
]
.

(14)
For the proof of Proposition 1, refer to Appendix A.

By Proposition 1, we establish the following bound on the
excess misclassification error of online SVM classification-
based u.e.M.c. samples.

Theorem 1: Let {zt }T
t=1 be u.e.M.c. samples, { ft } by (5)

and with some λ1 > 0, η1 > 0, 0 < γ, α < 1, we take

λt = λ1t−γ , ηt = η1t−α ∀t ∈ N.

If η1 ≤ 1/4κ2 + 2 + λ1, γ < 2/5, and γ < α < 1 − 3γ /2,
then

Ez1,...,zT [R(sgn( fT +1))− R( fc)] ≤ CT −θ̂

where θ̂ = min{2 − 3γ − 2α, α − γ, 2 − 2γ }, and C is a
constant depending on η1, λ1, κ, α, γ,M0, γ0, and α0, which
is given explicitly in the proof of Theorem 1.

For the proof of Theorem 1, refer to Appendix B.
By Theorem 1, we also obtain the following bound on
the learning rate of online SVM classification with u.e.M.c.
samples.

Proposition 2: Let {zt }T
t=1 be u.e.M.c. samples, { ft } by (5)

and for some λ1 > 0, 0 < η1 ≤ 1/(4κ2 + 2 + λ1),
0<ε<1/4, we take

λt = λ1t−
1
4 , ηt = η1tε−

1
2 ∀t ∈ N.

Then, we have

Ez1,...,zT [R(sgn( fT +1))− R( fc)] ≤ CεT − min
{

1
4 +2ε, 1

4 −ε
}

where Cε is a constant depending on η1, λ1, κ,M0, γ0, and α0.
Ye and Zhou [6] considered the learning rate of fully

online SVM classification algorithm based on random sam-
pling (Proposition 1 in [6]). Comparing Proposition 2 with
Proposition 1 in [6], we can find that the learning rate stated
in Proposition 2 is same with that stated in Proposition 1 of [6].
This implies that we extended the online SVM classifica-
tion algorithm with i.i.d. samples to the case of u.e.M.c.
samples. Although [18] and this paper consider online learning
algorithm based on Markov sampling and our proof techniques
have many steps similar to that of [18], the difference is obvi-
ous: In this paper, we consider the online SVM classification
algorithm while Smale and Zhou [18] researched the online
regression algorithm. To our knowledge, these studies here are
the first works on this topic.

IV. NEW ONLINE SVM CLASSIFICATION

ALGORITHM AND NUMERICAL STUDIES

In this section, we first introduce a novel online SVM
classification algorithm based on Markov sampling, and then
we present the numerical studies on the learning performance
of online SVM classification based on benchmark data sets
and linear prediction models

f = W T x +w0 =
d∑

i=1

wi x i + w0 (15)

where d is the (input) dimension of x , wi ∈ R for any 0 ≤
i ≤ d . The linear prediction model (15) can be written as
f = Ŵ T X̂ with Ŵ = (w0, w1, . . . , wd ), x̂ = (1, x1, . . . , xd).
Thus, the corresponding classifier is defined as sgn( f ) [1].

A. New Online SVM Classification Algorithm

In this section, we introduce a novel online SVM classifi-
cation algorithm based on Markov sampling, the algorithm is
defined as follows (Algorithm 1).

Remark 2: Since the training samples of classical online
SVM classification algorithm based on random sampling
[5], [21] are drawn randomly from a given data set D,
comparing the classical online SVM classification algorithm
based on random sampling with Algorithm 1, we can find
that the classical online SVM classification algorithm based
on random sampling can be regarded as the special case of
Algorithm 1, that is, all the transition probabilities ϕi = 1,
i = 1, 2, 3 defined in Step 3 of Algorithm 1.
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Algorithm 1 Online SVM Classification Based on Markov
Sampling

Step 1: Set Ŵ = 0. Draw randomly a sample from D
and denote it the current sample zt−1.

Step 2: Draw randomly another sample from D and
denote it the candidate sample zt .

Step 3: For the case of yt−1 f (xt−1) < 1, if yt f (xt ) <
1, accept the candidate sample zt with the
probability ϕ1 = min{1, e−�( f,zt )/e−�( f,zt−1)},
and go to Step 4. Otherwise, accept the can-
didate sample zt with the probability ϕ2 =
min{1, e−�( f,zt−1)/e−�( f,zt )}, and go to Step 5.
For the case of yt−1 f (xt−1) ≥ 1, if yt f (xt ) <
1, accept the candidate sample zt with the
probability ϕ3 = max{1, e−�( f,zt−1)/e−�( f,zt )},
and go to Step 4. Otherwise, accept the sample
zt with the probability ϕ2, and go to Step 5.

Step 4: Set Ŵt = Ŵt−1 + ηt yt−1xt−1. If Ŵ T
t Ŵt > 1/λ,

then Ŵt := Ŵt/(

√
Ŵ T

t Ŵtλ) and go to Step 6.

Step 5: Set Ŵt = Ŵt−1, and go to Step 6.
Step 6: If t < T then return to Step 2, else stop it. (Here

ηt = 1/
√

t , f is defined as (15), and �( f, z) is
defined as (3).)

In addition, since the transition probabilities ϕi , i = 1, 2, 3
defined in Algorithm 1 are always positive, by Remark 1,
we can conclude that the training sample sequence {zt }T

t=1
generated by Algorithm 1 is a u.e.M.c..

B. Experimental Results

We present the numerical studies on the learning per-
formance of online SVM classification algorithm with
Markov sampling based on linear prediction models (15)
for benchmark repository. The benchmark repository con-
sists of 11 real-world data sets from abalone, shut-
tle, magic, mushrooms, isolet, letter, miniBooNE, gisette
(http://archive.ics.uci.edu/ml/datasets.html), waveform, splice,
and image (see http://www.fml.tuebingen.mpg.de/Members/ra
etsch/benchmark). We present the information of these data
sets in Table I. All these data sets in Table I are two classes
real-world data set except abalone, and abalone is redefined
as two classes as follows: the sample whose label is equal or
greater than 10 in abalone data set is viewed as a group and
other samples are categorized as another group.

For online SVM classification based on random sampling,
we draw randomly a sample from the given training set Dtrain,
and use the first sample and the default hypothesis f0 to
generate the first hypothesis f1. Next, we draw randomly
a sample from the training set Dtrain, and use the second
sample and the first hypothesis f1 to generate the second
hypothesis f2, and so on [21]. At the end of this process, we
obtain the hypothesis fT . We use it to define the classifier
sgn( fT ), and we test it on a given test set Dtest. After
the experiment had been repeated 50 times, the average
misclassification rates of online SVM classification algorithm

TABLE I

ELEVEN REAL-WORLD DATA SETS

TABLE II

MISCLASSIFICATION RATES FOR 1000 TRAINING SAMPLES

TABLE III

MISCLASSIFICATION RATES FOR 2000 TRAINING SAMPLES

TABLE IV

MISCLASSIFICATION RATES FOR 8000 TRAINING SAMPLES

based on random sampling were presented in Tables II–IV,
where MR (Misclassification Rates)(i.i.d.) denotes the average
misclassification rates of online SVM classification based on
random sampling.

Different from the case of random sampling, for online
SVM classification based on Markov sampling, the classifiers
are generated by Algorithm 1 from the same training set
Dtrain, and then we test it on the same test set Dtest. After
the experiment had been repeated 50 times, the average
misclassification rates of online SVM classification based on
Markov sampling were presented in Tables II–IV, where MR
(Markov) denotes the average misclassification rates of online
SVM classification based on Markov sampling.

By Tables II–IV, we can find that the means of misclassifi-
cation rates based on Markov sampling are smaller than that
of random sampling, and the standard deviations of misclassi-
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Fig. 1. Average misclassification rates for abalone and T = 500, 1000, 1500,
and 2000.

Fig. 2. Average misclassification rates for shuttle and T = 500, 1000, 2000,
4000, and 8000.

Fig. 3. Average misclassification rates for magic and T = 500, 1000, 2000,
6000, and 9000.

Fig. 4. Average misclassification rates for letter and T = 1000, 2500, 5000,
7500, and 10 000.

fication rates based on Markov sampling are also smaller than
that of random sampling except mushrooms for 1000 training
samples and waveform for 8000 training samples.

Fig. 5. Average misclassification rates for image and T = 500, 2000, 6000,
8000, and 12 000.

Fig. 6. Average misclassification rates for waveform and T = 500, 1000,
2000, 3000, and 4000.

Fig. 7. Average misclassification rates for miniBooNE and T = 1000, 2000,
5000, 10 000, and 20 000.

Fig. 8. Average misclassification rates for splice and T = 500, 1000, 2000,
4000, and 8000.

To show the learning performance of online SVM classifi-
cation algorithm based on Markov sampling, we present the
average misclassification rates of online SVM classification
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Fig. 9. Average misclassification rates for mushrooms and T = 500, 1000,
1500, 2000, and 3000.

Fig. 10. Average misclassification rates for isolet and T = 500, 1000, 1500,
2000, and 2500.

Fig. 11. Average misclassification rates for gisette and T = 500, 1000, 1500,
2000, and 4000.

Fig. 12. Fifty times experimental misclassification rates for abalone and
T = 2000.

algorithm based on Markov sampling (Markov) and random
sampling (i.i.d.) for different training sizes in Figs. 1–11.
These average misclassification rates in Figs. 1–11 are based
on 50 times experimental results.

Fig. 13. Fifty times experimental misclassification rates for shuttle and
T = 18 000.

Fig. 14. Fifty times experimental misclassification rates for magic and
T = 8000.

Fig. 15. Fifty times experimental misclassification rates for letter and
T = 7500.

By Figs. 1–11, we can find that the average misclassification
rates of online SVM classification based on Markov sampling
are obviously smaller than that of random sampling as the
training size is bigger.

To have a better understanding of the learning performance
of online SVM classification based on Markov sampling, we
also present the following figures to compare the 50 times
misclassification rates of online SVM classification based on
Markov sampling with that of random sampling. Here, red
square denotes the results of random sampling, blue hexagram
denotes the results of Markov sampling, and T is the size of
training samples. The numbers on the vertical axis of figures
denote the misclassification rates, and the numbers on the
horizontal axis of figures denote the experimental times.

By Fig. 12, we can find that for abalone and 2000 training
samples, the 50 times experimental results of online SVM
classification based on Markov sampling are better than that
of random sampling expect two times experimental results.
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Fig. 16. Fifty times experimental misclassification rates for image and
T = 15 000.

Fig. 17. Fifty times experimental misclassification rates for waveform and
T = 4000.

Fig. 18. Fifty times experimental misclassification rates for miniBooNE and
T = 2000.

Fig. 19. Fifty times experimental misclassification rates for splice and
T = 8000.

By Figs. 13–22, we can find that for shuttle (or magic, letter,
image, waveform, miniBooNE, splice, mushrooms, isolet, and
gisette) for 18 000 (8000, 7500, 15 000, 4000, 2000, 8000,

Fig. 20. Fifty times experimental misclassification rates for mushrooms and
T = 2000.

Fig. 21. Fifty times experimental misclassification rates for isolet and
T = 2000.

Fig. 22. Fifty times experimental misclassification rates for gisette and
T = 2000.

2000, 2000, and 2000) training samples, all the 50 times
experimental results of online SVM classification based on
Markov sampling are better than that of random sampling,
respectively.

V. CONCLUSION

Online classification algorithm is one of the most widely
used machine learning algorithms for classification problems,
in particular for large size of training samples [5]. Different
from the previously known works on the generalization ability
of online classification algorithms in [5], [6], and [18]–[20],
in this paper, we considered the online SVM classification
algorithm based on u.e.M.c. samples. We first established the
bounds on the misclassification rates of online SVM classi-
fication based on u.e.M.c. samples and obtain a satisfactory
convergence rate. We then introduced a novel online SVM
classification algorithm based on Markov sampling. Through
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the numerical studies on the learning performance of online
SVM classification based on 11 benchmark data sets and linear
prediction models, we found that online SVM classification
based on Markov sampling have better learning performance
than that of random sampling as the size of training samples
is larger. To our knowledge, these studies here are the first
works of online classification algorithms on this topic.

Along the line of this paper, several open problems deserve
further research. For example, studying the learning per-
formance of online SVM classification based on Markov
sampling for nonlinear prediction models and nonstationary
data, respectively. Studying the generalization ability of online
regression algorithms based on Markov sampling are under our
current investigation.

APPENDIX A

In this section, we prove Proposition 1. For this purpose,
we first present the following useful lemma and
definition.

Definition 5: We say that �( f, z) is a convex loss function
if for any z ∈ Z , the univariate function �(·, z) is convex [5].

We say that �( f, z) is an admissible loss function if it
is convex and differentiable at 0 with ∂�( f, z) < 0, where
∂�( f, z) is defined as that in Definition 1.

Lemma 1: Let �( f, z) be an admissible loss function and
λ > 0 [5]. For any f ∈ HK , there holds

λ

2
|| f − fλ||2K ≤

{
E( f )+ λ

2
|| f ||2K

}
−
{
E( fλ)+ λ

2
|| fλ||2K

}

where fλ is defined by (10).
Proof of Proposition 1: Let f λt

t = ∂�( ft , zt )Kxt + λt ft .
By Definition 1, we have

|| ft+1 − fλt ||2K = || ft − fλt ||2K + 2ηt
〈
f λt
t , fλt − ft

〉
K

+η2
t || f λt

t ||2K . (16)

By the reproducing property (1), we have
〈
f λt
t , fλt − ft

〉
K = 〈∂�( ft , zt )Kxt , fλt − ft 〉K

+λt 〈 ft , fλt − ft 〉K

≤ �( fλt , zt )− �( ft , zt )

+λt 〈 ft , fλt − ft 〉K

≤ �( fλt , zt )− �( ft , zt )

+λt

2

(|| fλt ||2K − || ft ||2K
)
.

In the first inequality above, we use the fact that if ψ is a
convex function on R, ψ ′−(a)(b − a) ≤ ψ(b)− ψ(a) for any
a, b ∈ R, where ψ ′−(·) is the left derivative of ψ . In the second
inequality above, we use the Schwarz inequality

〈 ft , fλt 〉K ≤ || ft ||K || fλt ||K ≤ 1

2

(|| fλt ||2K + || ft ||2K
)
.

In addition, by Lemma 1, we have

λt

2

(|| fλt ||2K − || ft ||2K
) ≤ E( ft )− E( fλt )−

λt

2
|| ft − fλt ||2K .

By the above inequalities and inequality (16), we have

|| ft+1 − fλt ||2K ≤ (1 − λtηt )|| ft − fλt ||2K
+2ηt (E( ft )− E( fλt ))

+2ηt (�( fλt , zt )− �( ft , zt ))+ η2
t || f λt

t ||2K .
Take the expectation with respect to zt and notice that ft

depends on {z1, z2, . . . , zt−1} but not on zt , we have

Ezt

[|| ft+1 − fλt ||2K
] ≤ 2ηt

{E( ft )− E( fλt )

+Ezt [�( fλt , zt )] − Ezt [�( ft , zt )]
}

+ (1 − λtηt )|| ft − fλt ||2K
+ η2

t Ezt

[|| f λt
t ||2K

]
. (17)

We now bound the first term on the right-hand side of
inequality (17), which is denoted by φ. By Definitions 2 and 4,
we have

φ := 2ηt

{∫
Z
�( fλt , z)(pt (·|z)− π)dω(z)

−
∫
Z
�( ft , z)(pt (·|z)− π)dω(z)

}

≤ 2ηt

∫
Z

|�( fλt , z)− �( ft , z)| · |pt (·|z)− π |dω(z)
≤ 2ηt ||�( fλt , z)− �( ft , z)||∞ · dT V (P

t (·|Z),�).
By inequality (17) and the above inequality, we complete the
proof of Proposition 1.

APPENDIX B

In this section, we give the proof of Theorem 1. To prove
Theorem 1, we first present the following useful lemmas and
definitions.

Definition 6: The drift error is defined as

dt = || fλt − fλt−1 ||K .
The drift error have been estimated by the regularization

error in [6] and [18].
Lemma 2: Let � be a convex loss function, fλ by (10) and

μ > λ > 0 [19]. We have

|| fλ − fμ||K ≤ μ

2

(
1

λ
− 1

μ

)
(|| fλ||K + || fμ||K )

≤ μ

2

(
1

λ
− 1

μ

)(√
2D(λ)
λ

−
√

2D(μ)
μ

)
.

In particular, if for some 0 < γ ≤ 1, we take λt = λ1t−γ for
t ≥ 1, then

dt ≤ 2t
γ
2 −1
√
D(λ1t−γ )/λ1.

Definition 7: Denote

N(λ) = sup{|∂�( f, z)| : z ∈ Z, | f | ≤ Aλ}
where Aλ = max

{
κ2M0/λ, κ(2M0/λ)

1/2
}

[19].
We say that � has incremental exponent p > 0 if for some

N1 > 0 and λ1 > 0, we have

N(λ) ≤ N1

(
1

λ

)p

∀0 < λ ≤ λ1. (18)
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We say that ∂� is locally Lipchitz at the origin if

M = sup

{ |∂�( f, z)− ∂�(0, z)|
| f | : z ∈ Z, | f | ≤ 1

}
< ∞.

Lemma 3: Assume that ∂� is locally Lipchitz at the
origin [5]. Define { ft } by (5). If

ηt (κ
2(M + 2N(λt ))+ λt ) ≤ 1

for t = 1, 2, . . . , T , then we have

|| ft ||K ≤ κM0

λt
, t = 1, 2, . . . , T + 1.

Lemma 4: 1) For any c > 0, q2 ≥ 0, and 0 < q1 < 1 [18]

t−1∑
i=1

i−q2e−c
∑t

j=i+1 j−q1 ≤
⎛
⎝2q1+q2

c
+
(

1 + q2

ec(1 − 2q1−1)

) 1+q1
1−q1

⎞
⎠.

2) For any c, a, ξ > 0 [5]

exp{−cξ} ≤
(

a

ec

)a

ξ−a.

To prove Theorem 1, we make use of the same procedure
as that in [5] and [19]. A crucial estimate that differ from
that [5] and [19] is the estimate on the second term of
inequality (14).

Proof of Theorem 1: We decompose the proof of Theorem 1
into three steps.

Step 1: For the loss function (3), we have that M ≤ 4 for
any λ > 0 (Corollary 5 in [5]). It follows that:
ηt [κ2(M + 2N(λt ))+ λt ] ≤ η1

[
4κ2t−α + 2N1λ

−p
1 tλp−α

+λ1t−(λ+α)
]

≤ η1
(
4κ2 + 2N1λ

−p
1 + λ1

) ≤ 1.

In the last inequality above, we use the assumption η1 ≤ 1/
(4κ2 + 2N1λ

−p
1 + λ1). Thus by Lemma 3, we have that for

any t = 1, 2, . . . , T + 1

|| ft ||K ≤ κM0

λt
.

Taking f = 0 in (10), we have that for any t = 1, 2, . . . , T

|| fλt ||2K ≤ M0

λt
.

By Lemma 4 2) with c = ln(1/α0), ξ = t and a = 1, we
have

αt
0 ≤

(
2

e ln(1/α0)

)2

· t−2 (19)

where α0 is defined as that in Definition 3.
We denote the second and the third terms on the right-

hand side of inequality (14) in Proposition 1 to be S1 and S2,
respectively, by Definition 3, we have

S1 := 2ηt ||�( fλt , zt )− �( ft , zt )||∞ · dT V (P
t (·|Z),�)

≤ 2κηt

(√
M0

λt
+ κM0

λt

)
γ0α

t
0

≤ 2κη1γ0

(
2

e ln(1/α0)

)2
(√

M0

λ1
+ κM0

λ1

)
tγ−α−2

:= A0tγ−α−2

where A0 = 2κη1γ0(2/e ln(1/α0))
2(

√
M0/λ1 + κM0/λ1), in

the second inequality above, we use inequality (19).
Step 2: Recall that dt = || fλt − fλt−1 ||K , we have

|| ft − fλt ||2K ≤ || ft − fλt−1 ||2K + 2|| ft − fλt−1 ||K dt + d2
t .

Take τ = γ + α/(1 − γ (1 − β)/2), by the assumption of
α in Theorem 1, we have 0 < τ < 1.

Taking A1 = η1λ
1+τ (1−β)/2
1 /(21+τDτ/2

0 ) and using the
following elementary inequality [19]:
2ab = 2

[√
A1abτ/2

][
b1−τ/2/

√
A1
] ≤ A1a2bτ + b2−τ /A1

to a = || ft − fλt−1 ||K and b = dt , we have

Ez1,...,zt−1

[|| ft − fλt ||2K
]≤(1+ A1dτt

)
Ez1,...,zt−1

[|| ft − fλt−1 ||2K
]

+d2−τ
t /A1 + d2

t .

By Lemma 2 and the assumption (12), we have

dt ≤ 2
√
D0λ

β−1
2

1 t
γ (1−β)

2 −1 := A2t
γ (1−β)

2 −1

where A2 = 2
√D0λ

β−1/2
1 .

In addition, by Definition 7, we have

S2 := η2
t Ezt

[||∂�( ft , zt ))Kxt +λt ft ||2K
] ≤ κ2η2

t (N(λt )+M0)
2

≤ κ2η2
1

(
N1λ

−p
1 + M0

)2
t−2α+γ p .

Thus, by inequality (14), we have

Ez1,...,zt

[|| ft+1 − fλt ||2K
]

≤ (1 + A1dτt − ηtλt
)
Ez1,...,zt−1

[|| ft − fλt−1 ||2K
]+ A3t−θ

(20)

where θ = min{2 − γ (2 − β)− α, 2α − γ p, 2 + α − γ } and

A3 = A2−τ
2 /A1 + A2

2 + A0 + κ2η2
1

(
N1λ

−p
1 + M0

)2
.

In inequality (20), we use the inequality

(1 − ηtλt )
(
1 + A1dτt

) ≤ 1 + A1dτt − ηtλt .

By the definitions of A1 and A2, we have

1 + A1dτt − ηtλt = 1 − η1λ1

2
t−γ−α.

From inequality (20), we have

Ez1,...,zt

[|| ft+1 − fλt ||2K
]

≤
(

1 − η1λ1

2
t−γ−α

)
Ez1,...,zt−1

[|| ft − fλt−1 ||2K
]+ A3t−θ .

Step 3: Applying this above bound iteratively for t =
1, 2, . . . , T implies

Ez1,...,zt

[|| ft+1 − fλt ||2K
]

≤ A3

T∑
t=1

�T
j=t+1

(
1 − η1λ1

2
j−γ−α

)
t−θ

+
{
�T

t=1

(
1 − η1λ1

2
t−γ−α

)}
|| f1 − fλ1 ||2K

:= S3 + S4. (21)

Now, we bound the above two terms by two elementary
inequalities in Lemma 4, respectively. Applying Lemma 4 (1)
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to c = η1λ1/2, q1 = γ + α, and q2 = θ , since 1 − u ≤ e−u

for any u ≥ 0

S3 ≤ A3

T∑
t=1

exp

⎧⎨
⎩−η1λ1

2

T∑
j=t+1

j−γ−α
⎫⎬
⎭

≤ A3 A4 · T γ+α−θ

where

A4 = 2γ+α+θ+1

η1λ1
+ 1 +

(
2 + 2θ

eη1λ1(1 − 2γ+α−1)

) 1+θ
1−γ−α

.

Applying Lemma 4 2) to c = λ1η1/2(1 − γ − α), a =
2/(1 − γ − α), and ξ = (T + 1)1−γ−α and using Lemma 2,
we have

S4 ≤ exp

⎧⎨
⎩−η1λ1

2

T∑
j=1

t−γ−α
⎫⎬
⎭

2M0

λ1

≤ exp

{
λ1η1

2(1 − γ − α)

}(
4

eλ1η1

) 2
1−γ−α 2M0

λ1
· T −2.

In addition, for the loss function (3), we have N(λ) ≡ 1 for
any λ > 0 and M = 0 [6], hence p = 0. Moreover, for the
loss function (3), we have that inequality (18) holds true with
N1 = 1, and D(λ) = 1 for any λ > 0 [5]. This implies that
D0 = 1 and β = 1.

Thus, by inequality (21), we have

Ez1,...,zt

[|| ft+1 − fλt ||2K
] ≤ CT −θ ′

where θ ′ = min{2 − 3γ − 2α, α − γ, 2 − 2γ }, and

C = Â3 A4 + exp

{
λ1η1

2(1 − γ − α)

}(
4

eλ1η1

) 2
1−γ−α 2M0

λ1

Â3 = 2
6+γ
2−γ /η1λ

4
2−γ
1 + 2λ

1
2
1 + A0 + κ2η2

1(1 + M0)
2.

Combining inequalities (9), (13), and Proposition 1, we finish
the proof of Theorem 1.
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