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Enhancing Low-Rank Subspace Clustering by
Manifold Regularization

Junmin Liu, Member, IEEE, Yijun Chen, Jiangshe Zhang, and Zongben Xu

Abstract— Recently, low-rank representation (LRR) method
has achieved great success in subspace clustering, which aims
to cluster the data points that lie in a union of low-dimensional
subspace. Given a set of data points, LRR seeks the lowest rank
representation among the many possible linear combinations of
the bases in a given dictionary or in terms of the data itself.
However, LRR only considers the global Euclidean structure,
while the local manifold structure, which is often important for
many real applications, is ignored. In this paper, to exploit the
local manifold structure of the data, a manifold regularization
characterized by a Laplacian graph has been incorporated
into LRR, leading to our proposed Laplacian regularized LRR
(LapLRR). An efficient optimization procedure, which is based
on alternating direction method of multipliers, is developed for
LapLRR. Experimental results on synthetic and real data sets
are presented to demonstrate that the performance of LRR has
been enhanced by using the manifold regularization.

Index Terms— Subspace clustering, low-rank representation,
manifold regularization.

I. INTRODUCTION

MANY real-word applications involve grouping, usually
in an unsupervised manner, a set of objects into several

subsets such that objects in the same subset are more similar
than those in different groups, i.e. data clustering [1]. It is
a common and challenging problem in data mining [2]–[4],
machine learning and pattern recognition [5], [6]. However,
the high-dimensionality of real data, ranging from hundreds to
thousands, leads to the curse of dimensionality problem, and
thus makes that directly performing clustering in the data space
is infeasible. To deal with this, subspace clustering (SC) [2],
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which is based on the assumption that high-dimensional data
points lie in a union of low-dimensional subspaces, has been
introduced by extending the single subspace to several sub-
space model. Due to the effectiveness of SC, it has received
a lot of attention in recent years [7]–[9].

Over the past decades, many subspace clustering methods or
models have been proposed, such as the Median K-flats [11],
Generalized Principal Component Analysis (GPCA) [12],
Robust Algebraic Segmentation [13], K-subspaces [10],
Random Sample Consensus (RANSAC) [14], mixture of prob-
abilistic principal component analysis [15], Gaussian Mixture
Model [16], and so on. Following the perspective in [8],
these methods can be classified into four categories: statistical,
iterative, algebraic, and spectral clustering-based methods.
Compared to the spectral clustering-based methods, most
methods of the first three categories are sensitive to initial-
ization and data errors (noise or outliers), and are difficult for
optimization. In contrast, the spectral clustering-based meth-
ods are very easy to implement and can be solved efficiently
by standard linear algebra methods. In addition, some spectral
clustering-based methods proposed recently in [17] and [18]
have achieved the state-of-the-art results in subspace clustering
(or segmentation). Therefore, we here would like to focus on
the spectral clustering-based methods.

The spectral clustering-based methods usually work by first
learning an affinity matrix of data points, and then obtaining
the clustering by applying spectral clustering methods such
as K-means [19], Normalized Cuts (NCut) [20] to the affinity
matrix. The key in applying spectral clustering-based methods
is how to learn a good affinity matrix. Therefore, different
affinity matrix learning methods will yield different subspace
clustering methods with different properties. To learn a good
affinity matrix on which the discriminating structures of the
data points should be revealed, many algorithms have been
proposed over the last few years. Some construct the affinity
matrix only based on the local structure of the data (such
as k-nearest neighbor structure), e.g., Local Subspace Affinity
(LSA) [21], Spectral Local Best-fit Flats [22], Local Linear
Manifold Clustering (LLMC) [23], to name a few. Some build
it by trying to capture the global structures in the sense of
exploiting the relations of the whole data set. One of the
representative approaches is the Spectral Curvature Clustering
(SCC) [24] method. However, only exploiting the local or
global structures of the data to learn the affinity matrix limit
their performances in robust subspace clustering [18].

Recently, inspired by the advances in compressed sens-
ing [25], [26] and matrix completion [27], [28], Low-rank
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Representation (LRR) [18], which is based on low-rank repre-
sentation model, has been introduced to subspace clustering.
LRR tries to build the affinity matrix by finding the lowest
rank representation of the whole data and with each data
point representing by a linear combinations of the bases in
a given dictionary, typically choosing the data matrix itself
as the dictionary. In the sense of simultaneously optimizing
the data representation, LRR is claimed to capture the global
structure of the data. It is demonstrated [17], [18] that LRR
is one of the state-of-the-art methods in SC and superior to
LSA, GPCA, RANSAC, and LLMC.

LRR exhibits good performance in segmenting motions in
videos and clustering images of human faces. However, only
the global Euclidean structure1 of the data is considered. Many
previous studies [29]–[37] have shown that integrating global
and local structure is very important to data clustering [29]
or classification [30]–[32], and that videos and images of
human faces are more likely to reside on a low-dimensional
submanifold of the high-dimensional ambient Euclidean
space [33]–[37]. Thus, it is necessary to consider the intrinsic
manifold structure for further improving the performance of
LRR. To exploit such manifold information, we introduce the
manifold regularization [38] to LRR and obtain its improved
variant, called Laplacian regularized LRR (LapLRR). The
manifold regularization is characterized by the Laplacian graph
which captures the local geometrical structure of the data
manifold such that nearby points in the intrinsic geometry of
the data space are likely to have similar low-rank represen-
tations. By adding an additional manifold structure learning
term to LRR, our proposed LapLRR is expected to have more
discriminating power than LRR since they try to discover both
the global Euclidean and local manifold structures of the data.
In addition, a sequential optimization framework based on the
alternating direction method of multipliers (ADMM) is devel-
oped to solve the optimization problem. It should be noted that
a similar low-rank model with manifold regularization called
manifold matrix factorization (MMF) was recently proposed
by Zhang and Zhao in [39], but different with ours in the two
main aspects. First, MMF takes the low-rank property of the
representation coefficient matrix X as a constraint, whereas
LapLRR incorporates it into the objective function. Second,
the columns of the basis matrix A in MMF are unknown
and restricted to be orthonormal, whereas the basis matrix in
LapLRR is not necessary to be orthogonal and usually known
(e.g. set to be the data X). Additionally, the optimization
methods of MMF are based on the orthogonal property of X .
If this property is lost, the methods will not work. On the
other hand, LapLRR solves the problem by ADMM, which
does not require any extra constrains of X .

The remaining of the paper is organized as follows:
In Section II, we give a brief description of the subspace
clustering problem and review of LRR. Section III introduces
our proposed Laplacian regularized LRR models. The opti-
mization algorithm of LapLRR is provided in Section IV.

1A space, which is measured by the 2-norm, is clearly a Euclidean space.
In this paper, the structure exploited by minimizing the approximate error
of the whole data in Frobenius norm (or equally in 2-norm) is called global
Euclidean structure.

Some experiments are shown in Section V. Finally, some
conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we will first describe the subspace clustering
problem, and then give a brief review of LRR.

A. Subspace Clustering Problem

The generic problem of subspace clustering is the follow-
ing. Let Y = { yi ∈ Rd }Ni=1 be a given set of N data
points drawn from an unknown union of K linear subspaces
S1, S2, . . . , SK of dimensions d1, d2, . . . , dK and bases
A1 ∈ Rd×d1, A2 ∈ Rd×d2, . . . , AK ∈ Rd×dK . The task
of subspace clustering is to find the number of subspaces K ,
their dimensions {di}Ki=1, the subspace bases {Ai }Ki=1, and the
segmentation of the data set Y according to the K subspaces,
i.e. Y = Y1 ∪Y2 ∪ · · · ∪YK , where Yi is a collection of data
points drawn from Si .

The main challenges in subspace clustering are to 1) handle
the unclean data corrupted by noise or outliers, which may
distort the true subspaces structure, 2) require prior knowledge
of the subspace parameters, such as the number of subspaces
K and the dimensions {di }Ki=1, which significantly affect the
accuracy of results, 3) lack of theoretical guarantees for the
optimality of the method. Out of many existing subspace
clustering methods, LRR can simultaneously deal with the
above challenges, and have been considered as one of the-
state-of-art methods in subspace clustering. Our approach is
an extension of LRR method. Therefore, in the following, we
give a brief description of LRR.

B. LRR

LRR is a recently proposed subspace clustering
method [17]. The basic idea of LRR is to seek the
lowest rank representation among the many possible linear
combinations of the bases in a given dictionary for the whole
data set. This formulates the following problem2:

min
X
‖X‖∗ s.t . Y = AX (1)

where A = [A1, A2, . . . , AK ] is the bases matrix, ‖ · ‖∗ is the
nuclear norm of a matrix, defined as the sum of the singular
values of a matrix. Typically, when the data matrix itself is
chosen as the dictionary, we have the following problem

min
X
‖X‖∗ s.t . Y = Y X, (2)

In practice, the observed data Y are noisy, or there are model
errors with the linear representation. To deal with the noise or
model errors, an extension of (1) is to solve the following
problem

min
X
‖X‖∗ + λ‖E‖p s.t . Y = AX + E (3)

where E ∈ Rd×N is the observation noise or model errors.
‖E‖p denotes certain regularization strategy related with the
property of E, for example

2Note that the nuclear norm is a strong surrogate of the rank of a matrix.



4024 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 9, SEPTEMBER 2014

• when E represents the Gaussian noise, ‖E‖p ≡ ‖E‖2F ,
where ‖ · ‖F is the Frobenius norm.

• when E represents the random corruptions, ‖E‖p ≡
‖E‖1, where ‖ · ‖1 is the �1 norm.

• when E represents the sample-specific corruptions,

‖E‖p ≡ ‖E‖2,1, where ‖E‖2,1 = ∑N
j=1

√∑d
i=1 E2

i j is
called �2,1 norm.

When the representation coefficient matrix X is obtained, one
can define the affinity matrix W as

W = |X| + |XT |. (4)

Then, the clustering is given by applying the spectral clustering
method on W .

III. ENHANCING LRR BY MANIFOLD REGULARIZATION

In this section, we introduce the enhanced version of LRR,
called Laplacian regularized LRR (LapLRR), which is based
on a manifold regularization. Therefore, we begin with a
description of manifold regularization.

A. Manifold Regularization

By assuming the data points drawn from a union of linear
subspaces, we have the following representation

yi = Axi , i = 1, . . . , N. (5)

Here yi is the observed data points, xi is the new repre-
sentation of yi . Maintaining the above relation is optimal
for the Euclidean structures in the data space. Generally, the
spaces for many naturally occurring data, such as images,
live on or close to a submanifold of the ambient space.
Previous works [4], [41], and [42] have shown that both
the Euclidean and manifold structures in the data space are
important to low-dimensional representation from Eq. (5).
However, many existing methods for subspace clustering
problem only explore the Euclidean structure while fail to
discover the the intrinsic geometry structure of the data
manifold. Therefore, we here hope that the intrinsic geometry
structure of the data manifold can be exploited to enhance this
new representation. To this end, a natural assumption is that
if two data points such as yi and y j are close in the intrinsic
geometry of the data manifold, then the representations of
this two data points, xi and x j , are also close to each
other. This assumption is commonly referred to as manifold
assumption [37], which has been applied to improve various
kinds of algorithms [4], [16], [38], [41], [42].

Accurately estimating the global manifold structure of the
data space is very challenge due to the insufficient number
of samples and the high dimensionality of the ambient space.
Therefore, many methods resort to capture the local manifold
structure. Lots of efforts on manifold learning [35], [37] have
shown that the local geometric structure of the data manifold
can be effectively modeled through a nearest neighbor graph
on the sampled data points.

In the following, we construct a nearest neighbor graph to
characterize the local geometry of the data manifold. Given
N data points { y1, y2, . . . , yN } ⊂ Rd sampled from the

underlying submanifold, we can build a nearest neighbor
graph G with its i th node corresponding to the data point
yi (i = 1, 2, . . . , N). For each node yi , one can put an
edge between it and its k nearest neighbors. Let Nk(yi ) =
{ y1

i , y2
i , . . . , yk

i } be the set of its k nearest neighbors. Thus,
the similarity matrix S of graph G can be defined as follows:

Si j =

⎧
⎪⎨

⎪⎩

yT
i y j

‖yi‖22 · ‖y j‖22
, if yi ∈ Nk(y j ) or y j ∈ Nk(yi ),

0, otherwise.

To satisfy the manifold assumption, i.e. if two points yi and y j
are close to each other, then their representations xi and x j are
close as well, a reasonable choice is to minimize the following
objective

T = 1

2

N∑

i, j=1

‖x i − x j‖22Si j

=
N∑

i=1

xT
i xi Dii −

N∑

i, j=1

xT
i x j Si j

= Tr(X DXT )− Tr(X SXT )

= Tr(X LXT ) (6)

where D is a diagonal matrix with the i th diagonal element
Dii = ∑

j Si j , and L = D − S. The matrix L is usually
called graph Laplacian [40]. The constant 1/2 used in T is to
simplify deductions. It is apparent that the objective function
impose the smoothness of the representation coefficients, or
the prior assumption that if neighboring points yi and y j
are similar (a relatively bigger Si j ), their low-dimensional
representations xi and x j should be very close. Hence, min-
imizing (6) is an attempt to ensure the manifold assumption.
This manifold regularization T has been frequently used in
enhancing various kinds of algorithms [16], [38], [41], [42].

B. LapLRR

LRR has yielded impressive results in SC. However, the
local manifold geometry is not considered in LRR. Many
studies [37], [41], [42] have shown that the local geometry
structure of the data manifold is important to preserve the
locality and the similarity among the data points. Thus, we
incorporate the above manifold regularization term T into
LRR, and formulate the Laplacian regularized LRR (LapLRR)
problem

min
X

1

2
‖AX − Y‖2F + λ1‖X‖∗ + λ2

2
T (7)

s.t . X ≥ 0

where λ1 > 0 and λ2 > 0 are the regularization parameters,
the nonnegative constraints X ≥ 0 is easy for interpretation
of the representation. In LapLRR, the Euclidean space of data
is exploited by keeping the reconstruction error ‖AX − Y‖2F
as small as possible, the global structure of the data is
captured by the nuclear norm regularization ‖X‖∗, while the
local manifold structure is exploited through the manifold
regularization term T . Hence, by considering both the global
Euclidean and local manifold structures of data, we expect
more discriminating information can be learned by LapLRR.
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Algorithm 1 ADMM

IV. OPTIMIZATION

In this section, we propose to make use of the ADMM for
solving the problem (7) of LapLRR. We begin by introduc-
ing the general framework of ADMM, and then deduce the
iterative formulas of LapLRR.

A. ADMM

The ADMM [43], also called alternating direction aug-
mented Lagrangian (ADAL), has recently attracted more atten-
tion in a wide range of research fields, such as compressive
sensing [44], image restoration [43], matrix completion, due
to its simple form and decoupling of variables. It is usually
used to solve the problems with a convex, nonsmooth objective
function and with structured linear constraints.

Consider the following structured optimization problem
with linear constraints:

min
u,v

f (u)+ g(v) (8)

s.t . Gu = v

where both f (u) : Rm → R and g(v) : Rn → R are
convex functions. For this problem, the augmented Lagrangian
function is given by

L(u, v,α) = f (u)+ g(v)+ αT (Gu − v)+ μ

2
‖Gu − v‖22

= f (u)+ g(v)+ μ

2
‖Gu − v − d‖22 + constant

where α is the Lagrange multipliers, d = −α/μ, and μ > 0 is
the penalty parameter. Different from the classical augmented
Lagrangian method that attempts to jointly minimize the
variable u and v, ADMM alternately minimizes L(u, v,α)
with respect to u and v in a Gauss-Seidel manner. The general
procedures of ADMM are summarized in Algorithm 13.

The convergence of ADMM has been guaranteed by the
following theorem [45].

Theorem 4.1 (see [45]): Consider problem (8) with G hav-
ing full columns rank and f , g being closed, proper, convex func-
tions. Then, for arbitrary μ > 0 and u0, v0, d0, if problem (8)
has a solution, the sequences {ut , vt , d t } generated by
Algorithm 1 converges to it; otherwise, at least one of the
sequences {(ut , vt )} and {d t } diverges.

3See [43] for more details about this version of ADMM.

B. Application of ADMM to LapLRR

In this subsection, we apply ADMM to the LapLRR prob-
lem. Similar to [43], the problem (7) can be rewritten as an
unconstrained problem

min
X

1

2
‖AX − Y‖2F + λ1‖X‖∗ + λ2

2
Tr(X LXT )+ ιR+(X)

where ιR+ is the indicator function, defined as

ιR+(x) =
{

0, if x ≥ 0

+∞ otherwise.
(9)

By introducing some auxiliary variables, the above problem
has the following equivalent form

min
X

1

2
‖Z1 − Y‖2F + λ1‖Z2‖∗ + λ2Tr(Z3 L ZT

3 )+ ιR+(Z4)

s.t . AX = Z1, X = Z2, X = Z3, X = Z4 (10)

which has an augmented Lagrangian function of the form

L(X, Z1, Z2, Z3, Z4)

= 1

2
‖Z1 − Y‖2F + λ1‖Z2‖∗ + λ2

2
Tr(Z3 L ZT

3 )+ ιR+1(Z4)

+ μ

2
‖AX − Z1 − D1‖2F +

μ

2
‖X − Z2 − D2‖2F

+ μ

2
‖X − Z3 − D3‖2F +

μ

2
‖X − Z4 − D4‖2F . (11)

Then, we apply the alternating minimization idea to update X ,
Z1, Z2, Z3, Z4, i.e. update one of the five variables with the
other fixed.

Given the current point X t , Zt
1, Zt

2, Zt
3, Zt

4, Dt
1 ,Dt

2,
Dt

3, Dt
4, we update X t+1 by minimizing L with respect to

X , i.e.

min
X

μ

2
‖AX − Zt

1 − Dt
1‖2F +

μ

2
‖X − Zt

2 − Dt
2‖2F

+μ

2
‖X − Z3 − D3‖2F +

μ

2
‖X − Zt

4 − Dt
4‖2F

which produces the updating formula as

X t+1← (AT A+ 3I)−1(AT ζ t
1 + ζ t

2 + ζ t
3 + ζ t

4) (12)

where I is the identity matrix, ζ t
1 = Zt

1+ Dt
1, ζ t

2 = Zt
2+ Dt

2,
ζ t

3 = Zt
3 + Dt

3, and ζ t
4 = Zt

4 + Dt
4.

To update Z1, we solve

min
Z1

1

2
‖Z1 − Y‖2F +

μ

2
‖AX t+1 − Z1 − Dt

1‖2F (13)

which yields the following updating form

Zt+1
1 ← 1

1+ μ

[
Y + μ(AX t+1 − Dt

1)
]

(14)

To update Z2, we have the augmented Lagrangian subprob-
lem

min
Z2

λ1‖Z2‖∗ + μ

2
‖X t+1 − Z2 − Dt

2‖2F (15)

which can be solved by the well-known singular value thresh-
olding (SVT) operator [18]. Define the SVT operator Dτ as

Dτ (X) = USτVT (16)
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Algorithm 2 LapLRR

where X = U�VT is the singular value decomposition, and
Sτ [x] = sgn(x) max(|x | − τ, 0) is the shrinkage operator, we
have the updating formula of Z2 as

Zt+1
2 ← Dλ1/μ(X t+1 − Dt

2). (17)

It is easy to get the iteration of Z3 as

Zt+1
3 ← (X t+1 − Dt

3)(
λ2

μ
L + I)−1 (18)

by minimizing the following subproblem with respect to Z3,
given by

min
Z3

λ2Tr(Z3 L ZT
3 )+ μ

2
‖X t+1 − Z3 − Dt

3‖2F . (19)

To update Z4, we need to solve

min ιR+1(Z4)+ μ

2
‖X t+1 − Z4 − Dt

4‖2F (20)

which yields the updating rule

Zt+1
4 ← max(X t+1 − Dt

4, 0). (21)

Finally, we update the Lagrangian multipliers D1, D2, D3,
D4 by

Dt+1
1 = Dt

1 − (AX t+1 − Zt+1
1 )

Dt+1
2 = Dt

2 − (X t+1 − Zt+1
2 )

Dt+1
3 = Dt

3 − (X t+1 − Zt+1
3 )

Dt+1
4 = Dt

4 − (X t+1 − Zt+1
4 )

With all the above updating formulas collected, we obtain
the ADMM scheme for LapLRR in Algorithm 2 above.

The convergence of Algorithm 2 for problem (10) is guar-
anteed by Theorem 4.1 since it can be expressed as an instance
of problem (8). For instance, by letting

U ≡ X, V ≡

⎡

⎢
⎢
⎣

Z1
Z2
Z3
Z4

⎤

⎥
⎥
⎦, G ≡

⎡

⎢
⎢
⎣

A
I
I
I

⎤

⎥
⎥
⎦, f (U) ≡ 0, (22)

and g(V ) ≡ 1
2‖Z1 − Y‖2F + λ1‖Z2‖∗ + λ2Tr(Z3 L ZT

3 ) +
ιR+(Z4), we then can write problem (10) in the form of prob-
lem (8), and obtain the augmented Lagrangian function (11).
In addition, G is a full column rank matrix, and functions
f, g are closed, proper, convex. These meet the conditions
in Theorem 4.1. Hence, the convergence of Algorithm 2 is
guaranteed by Theorem 4.1.

V. EXPERIMENTS

In this section, we carry out several experiments on
both the synthetic and real world data to demonstrate the
efficacy of our proposed approach. We also compare the
clustering results obtained by LapLRR to those obtained by
LRR, and also to those obtained by the K-means, Princi-
ple Component Analysis (PCA), Graph regularized Sparse
Coding (GSC) [29] and Graph regularized Nonnegative Matrix
Factorization (GNMF) [41]. For PCA, LRR, LapLRR, GSC
and GNMF, the K-means method is applied to find the
clustering results. And two metrics, namely the accuracy (AC)
and the Normalized Mutual Information (NMI)4, are used to
evaluate the results. In our experiments, the parameters of each
methods are manually tuned to achieve the best performance.

A. Synthetic Data

To validate the effectiveness of our proposed LapLRR, a
synthetic data set has been created and used for experiments in
this subsection. A major advantage of using the synthetic data
is that all of the details of ground truth are perfectly known
such that the performance of the algorithms can be quantita-
tively evaluated. Similar to [46], we construct 5 independent
subspaces {S}5i=1 ⊂ R200 of dimension 4 and bases {Ai ⊂
R200×4}5i=1. By collecting the each bases in a matrix, we
get the bases matrix A = [A1, A2, A3, A4, A5] ⊂ R200×20,
which are generated by randomly selecting 20 columns of a
random orthogonal matrix of dimension 200× 200. Then, we
sample 200 data points with each subspace 40 data points by
Y = AX , where xi j is a random number uniformly sampled
from [0, 1] if yi and y j belong to the same subspace,
otherwise, xi j = 0. The generated representation matrix X ⊂
R20×200 are shown in Fig. 1(a). Data points with different
numbers, from zero percent to 100 percent at 10 percent
intervals, are randomly chosen to corrupt in a similar manner
as in [46]. Each level of corruption (LoC) is based on
20 randomly generated realizations.

We compare the performance of LapLRR and LRR by using
the data matrix X as the bases matrix. The average clustering
AC and NMI obtained by them are reported in Table I.

4Please see [16], [41] for the detailed definitions of AC and NMI.
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Fig. 1. Comparison of (a) the true representation matrix, (b) the estimated one
by LRR, and (c) the estimated one by LapLRR. (a) True representation matrix.
(b) Estimated representation matrix by LRR. (c) Estimated representation
matrix by LapLRR.

TABLE I

CLUSTERING RESULTS ON SYNTHETIC DATA

OF K-MEANS, PCA, LRR AND LAPLRR

From this table, we can see that our proposed LapLRR method
provide better performance than PCA, LRR and K-means.
Since the ground truth of bases matrix A and representation
matrix X is available, it is possible to evaluate recoverability
of the representation matrix X by using the A as the bases
matrix. A visualization comparison of the true representation
matrix X and the estimated ones by LRR and LapLRR is
depicted in Fig. 1. It can be found from this figure that our
proposed LapLRR method can better approximate the true
representation matrix.

B. Handwritten Digit Databases

In this subsection, we use two publicly available hand-
written digit databases, namely USPS5 and MNIST6,

5Available at: http://www.gaussianprocess.org/gpml/data/.
6Available at: http://yann.lecun.com/exdb/mnist/.

Fig. 2. Sample handwritten digit images from the (a) USPS and
(b) MNIST databases. (a) USPS. (b) MNIST.

which are shown to roughly reside in a low-dimensional
subspace.

• USPS Database: This handwritten database contains
totally 9298 digit images of “0” through “9”, each of
which is of size 16× 16 pixels, with 256 gray levels per
pixel. In the experiment, each image is represented by a
256-dimensional vector.

• MNIST Database: This handwritten database has
70,000 digit images of “0” through “9”. The images of
each class (digit) are of size 28 × 28. Thus, each digit
image is represented by a 784-dimensional vector.

Some sample handwritten digit images from the two databases
are shown in Fig. 2.

For each database, we randomly select 100 digit images with
each class in this experiment. Similar to [16], the clustering
results with different cluster numbers are based on 20 test runs
on different randomly chosen classes for each given cluster
number K . Table II reports the averaged results using these
two databases.

As we can see, our proposed LapLRR achieved the best
clustering accuracy than K-means, GSC, and GNMF methods
in both USPS and MNIST databases. In addition, the both GSC
and GNMF, which also incorporate the manifold regularization
into the objective functions, perform better than LRR and
K-means. This indicates that the manifold regularization
term is capable of enhancing the performance of clustering
algorithms.

Fig. 3 shows the representation matrices learned by LapLRR
and LRR in the USPS database when K = 10. It can be found
that the block structure of the representation matrix learned by
LapLRR is more clear than those learned by LRR. Therefore,
our proposed LapLRR can better capture the discriminative
structure of the image space.

C. PIE Face Database

The PIE face database is widely used to test the perfor-
mance of clustering methods. This database contains 2856 face
images with size of 32×32. There are 68 people (or classes),
each of which has 42 facial images under different light and
illumination conditions. Fig. 4 shows some sample images.

Similar to the experiments in [29], we randomly select
the cluster number K (ranging from 4 to 68) classes
(persons) from the 38 classes in the whole database
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TABLE II

CLUSTERING RESULTS ON USPS AND MNIST DIGIT DATABASES OF K-MEANS, LRR, LAPLRR, GSC AND GNMF

Fig. 3. The representation matrices learned by (a) LRR and
(b) LapLRR in the USPS handwritten database when K = 10.
(a) LRR. (b) LapLRR.

Fig. 4. Sample face images from the PIE databases. Each row shows
the images corresponding to one people.

for this experiment. For each value of K , we run
20 generated realizations on different randomly chosen
classes.

For the limitation of space and also because AC and
NMI disclose similar pattern of behavior, we only present
the results evaluated by AC. The averaged AC obtained by
K-means, PCA, LRR, LapLRR, GSC and GNMF are reported
in Table III, and the representation matrices leared by LRR and
LapLRR are shown in Fig. 6. From the table and figure, we
can see that our method outperforms the other five methods,
which proves the effectiveness of our LapLRR again.

D. COIL20 Image Database

We use the COIL20 image database to test the clustering
performance. This database has 32× 32 gray scale images of
20 objects viewed from varying angles, see Fig. 5 for some

TABLE III

CLUSTERING RESULTS ON PIE FACE DATABASES OF K-MEANS,

PCA, LRR, LAPLRR, GSC, AND GNMF

sample images. Here, we carry out this experiment with the
cluster number K = 2, . . . , 20. For each K , the best parame-
ters of the six methods are selected. After PCA projection,
ninety-nine percenter energy of this data are retained. The
averaged AC obtained by K-means, PCA, LRR, GSC, GNMF
and our proposed LapLRR are shown in Table IV.

From Table IV, it is observed that the three algorithms
LapLRR, GSC and GNMF, which integrate the local manifold
structure in the representation, can be ranked from best to
worst as LapLRR, GSC and GNMF according to the mean AC.
And we can draw a similar conclusion with the above three
experiments that by integrating the local manifold struc-
ture in the representation, the performance of the clustering
algorithms can be significantly enhanced, especially for the
LRR algorithm.
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Fig. 5. Sample images from the COIL20 image databases.

Fig. 6. The representation matrices learned by (a) LRR and (b) LapLRR in
the PIE face database when K = 6. (a) LRR. (b) LapLRR.

TABLE IV

CLUSTERING RESULTS ON COIL20 IMAGE DATABASES OF K-MEANS,

PCA, LRR, GSC, GNMF, AND OUR PROPOSED LAPLRR

VI. CONCLUSIONS

Naturally occurring data are often high dimensionality and
complex structures such that single subspace can not char-
acter them. Multisubspace learning, especially the subspace

clustering techniques, is an effective way to address this
problem. Extending on the recently work in [18], we propose
a novel subspace clustering method, called Laplacian regu-
larized low-rank representation (LapLRR), by introducing an
manifold regularization. Our proposed LapLRR can exploit
both the global Euclidean and local manifold structures of
the data, and thus makes itself learned more discriminating
information. Experimental results on both synthetic and real
data sets show that our proposed LapLRR achieves excellent
performances for handwritten digit clustering, face clustering,
and image clustering problems.
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