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Abstract Nowadays, a series of methods are based on a

L1 penalty to solve the variable selection problem for a

Cox’s proportional hazards model. In 2010, Xu et al. have

proposed a L1/2 regularization and proved that the L1/2

penalty is sparser than the L1 penalty in linear regression

models. In this paper, we propose a novel shooting method

for the L1/2 regularization and apply it on the Cox model

for variable selection. The experimental results based on

comprehensive simulation studies, real Primary Biliary

Cirrhosis and diffuse large B cell lymphoma datasets show

that the L1/2 regularization shooting method performs

competitively.

Keywords Variable selection � Cox model � Lasso � L1/2

regularization shooting algorithm

1 Introduction

One of the most important objectives for survival analysis

is to select a small number of key risk factors from many

potential predictors. Commonly, the Cox proportional

hazards model (COX 1972, 1975) is used to study the

relationship between predictor variables and survival time.

Suppose a dataset has a sample size of n and we want to

study the survival time ti on covariate x, we represent the

samples for an individual using ðt1; d1; x1Þ,…,ðtn; dn; xnÞ
where the survival time ti being complete if di ¼ 1 and

right censored if di ¼ 0. As in regression, xi ¼
ðxi1; xi2; . . .; xipÞ is a vector of p potential predictors. We

define f ðxÞ ¼ bT x to be the linear risk score function.

By the Cox’s proportional hazards model, the hazard

function is given as:

hðtjbÞ ¼ h0ðtÞ expðbTxÞ ð1Þ

where the baseline hazard function h0ðtÞ is unspecified and

b ¼ ðb1; b2; . . .; bpÞT is the regression coefficient vector of

p variables.

In practice, not all the p predictors may contribute to the

prediction of survival outcomes, i.e. some b may be zero in

the true model. When the sample size goes to infinity, an

ideal model selection and estimation procedure should be

able to identify the true model with probability one, and

provide consistent and efficient estimators for the relevant

regression coefficients. Therefore, many variable selection

techniques for linear regression models have been extended

to the context of survival models. They include best-subset

selection, stepwise selection, asymptotic procedures based

on score tests, Wald tests and other approximate Chi

squared testing procedures, bootstrap procedures (Sauer-

brei and Schumacher 1992) and Bayesian variable selec-

tion (Faraggi and Simon 1998; Ibrahim et al. 1999).

However, the theoretical properties of these methods are

generally unknown (Fan and Li 2002).

Recently a series of penalized partial likelihood meth-

ods, such as the Lasso (Tibshirani 1996, 1997), the

smoothly clipped absolute deviation method (Fan and Li
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2001, 2002) and the adaptive Lasso method (Zhang and Lu

2007), have been proposed for the Cox’s proportional

hazards model. By shrinking some regression coefficients

to zero, these methods select important variables and

estimate the regression model simultaneously. These series

of the Lasso methods were based on the L1 penalty.

However, the L1 type penalizations may not yield suffi-

ciently sparse variable selection in real applications.

In this paper, we develop a novel shooting algorithm based

on the L1/2 regularization, which was proposed by Xu et al.

(2010). It is shown that the L1/2 regularization has many

promising properties, such as unbiasedness, sparsity and

oracle properties. The solution of the L1/2 regularization is

sparser than that of the L1 regularization, while solving the L1/

2 regularization is much simpler than solving the L0 regu-

larization. Therefore, the L1/2 regularization can be taken as a

representative of the Lp (0 \ p \ 1) regularizations for the

problems desiring sparsity. We use the L1/2 regularization

shooting algorithm to obtain the solutions for the Cox model

in the setting of very high-dimensional covariates such as the

gene expression data obtained by microarrays.

The rest of the paper is organized as follows. Section 2

present the Cox model and briefly review the L1 type

estimations of the regression coefficients and present the

L1/2 regularization approach. Section 3 gives a new

shooting algorithm for obtaining the L1/2 estimates. In Sect.

4, we evaluate the L1/2 regularization shooting algorithm by

simulation studies and applications to real datasets, such as

the diffuse large B cell lymphoma (DLBCL) survival times

and gene expression data. Finally, we give a brief discus-

sion of the methods and conclusions in Sect. 5.

2 Related work

2.1 Regularization approaches for Cox proportional

hazards model

Based on the available sample data, the Cox’s partial log–

likelihood (Cox 1972) can be written as

lðbÞ ¼
Xn

i¼1

di xT
i b� log

X

j2Ri

expðxT
j bÞ

 !( )
ð2Þ

where Ri denotes the set of indices of the individuals at risk

at time ti.

To select important variables under the proportional

hazards model (2), Tibshirani (1997), Fan and Li (2002)

and Zhang and Lu (2007) proposed to minimize the

penalized log partial likelihood function,

� 1

n
lðbÞ þ k

Xp

j¼1

PðbjÞ ð3Þ

where lðbÞ is the loss function, PðbÞ is the penalty function

and k is the tuning parameter for variable selection. The series

of the Lasso methods cannot directly be applied on the

nonlinear Cox model to obtain parameter estimates.

Therefore, Tibshirani (1997) and Zhang and Lu (2007)

proposed iterative procedures to transform the Cox’s partial

log–likelihood function (2) to a linear regression problem

through an iteratively Newton-Raphon update. Here we

follow the approach of Zhang and Lu (2007): define the

gradient vector rlðbÞ ¼ �olðbÞ=ob and the Hessian matrix

r2lðbÞ ¼ �ol2ðbÞ=obobT ; then apply the Cholesky

decomposition to obtain x̂T ¼ r2lðbÞ
� �1=2

; generate the

pseudo response vector ŷ ¼ ðx̂TÞ�1fr2lðbÞb�rlðbÞg. By

second-order Taylor expansion, lðbÞ can be approximated by

the quadratic form:

lðbÞ � ðŷ� x̂bÞTðŷ� x̂bÞ ð4Þ

In the high dimensional part, we use another method to

linearize the Cox model. Tibshirani (1997) proposed an

iterative procedure to solve Eq. (2). Let

xi ¼ ðxi1; xi2; . . .; xipÞ, i ¼ 1; . . .; n, denote the n� p gene

expression matrix, g ¼ bT x, l ¼ �ol
og, A ¼ � o2l

ogogT, and

z ¼ gþ A�l, where A� is a generalized inverse of A. By

the Taylor expansion of lðbÞ, the partial log-likelihood is

approximated by

lðbÞ � ðz� gÞT Aðz� gÞ ð5Þ

Tibshirani (1997) suggested to replace A with a diagonal

matrix D having the same diagonal elements as k and solve

the formula (5) iteratively using a quadratic programming.

Since the quadratic programming cannot be applied

directly to the cases with p � n, Gui and Li (2005) applied

the Cholesky decomposition to obtain T ¼ A1=2 such that

TT T ¼ A, ŷ ¼ Tz and x̂ ¼ Tx.

Thus at each iterative step, we can directly apply the

Lasso linear regression on the approximated quadratic form

the formulas (4) and (5). Tibshirani (1997) proposed to

estimate parameters by the Lasso with the quadratic pro-

gramming techniques:

b̂ ¼ arg min ðŷ� x̂bÞTðŷ� x̂bÞ þ k
Xp

j¼1

jbjj
( )

ð6Þ

we used above two linear regression methods of the Cox

model in the simulation experiments to evaluate the per-

formance of the L1/2 regularization shooting method per-

forms both in the low and high dimensional problems. We

focus on whether the key coefficients that are related to

survival endpoint can be selected by the L1/2 regularization

shooting method.

The L1 penalization shrinks small coefficients to zero

and hence results in a sparse representation of the solution.
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However, the estimation of large b may suffer from sub-

stantial bias if k is chosen too big and may not be suffi-

ciently sparse if k is selected too small. Hence, Fan and Li

(2001) proposed the smoothly clipped absolute deviation

(SCAD) penalty, which avoids excessive penalties on the

large coefficients and enjoys the oracle properties. Gui and

Li (2005) applied the LARS-Cox procedure for the Cox

regression analysis in the high-dimensional and low-sam-

ple size settings, with applications to microarray gene

expression data. Zhang and Lu (2007) suggested the

adaptive Lasso method with an adaptively L1 penalty

PðbÞ ¼
Pp

j¼1 bj

�� ��= bols
j

���
��� to estimate the parameters of the

Cox model. Here the weights 1= bols
j

���
��� are obtained by the

ordinary linear regression. Compare to the Lasso penalty,

the adaptive Lasso penalty can introduce different penalties

to the different coefficients in a convex form and can be

efficiently solved by the standard Lasso algorithms.

The above mentioned a series of the Lasso methods

were based on the L1 penalty. However, for many practical

applications, the solutions of the L1 regularization are often

less sparse than those of the Lp (0� p\1) regularizations.

To find sparser solutions than the L1 regularization is, on

the other hand, imperative and required for many real

variable selection applications. Also, the L1 regularization

is inefficient when the errors in data have heavy tail dis-

tributions (Tibshirani 1996).

2.2 L1/2 regularization

In this part, we introduce a L1/2 regularization scheme

for variable selection. Sparsity and parsimony of a sta-

tistical model is always desired, as the parsimonious

models provide simple and interpretable relations among

scientific variables in addition to reduce forecasting

errors. A variety of variable selection criteria have been

proposed. The best subset selection, namely, the L0

penalty, along with the traditional model selection cri-

teria such as AIC (Akaike 1973) and BIC (Schwarz

1978), involve solving a NP hard optimization problem,

so they are infeasible for the high dimensional data.

Consequently, an innovative variable selection procedure

is expected to cope with very high dimensionality, which

has been one of the hot topics in the field of machine

learning. The regularization methods are recently devel-

oped as feasible approaches to solve this problem. In

general, the regularization framework takes the form of

the loss function lðbÞ and the penalty function PðbÞ.
Many existing learning algorithms can be considered as

a special form of this regularization framework. For

example, when the penalty function PðbÞ ¼ jbj0, it is

AIC or BIC, which is referred to as the L0 penalty in

this paper. When the penalty function PðbÞ ¼ jbj, it is

the Lasso, which is called the L1 penalty. When the

penalty function PðbÞ ¼ b2, it is the ridge regression,

which is called the L2 penalty. And when the penalty

function PðbÞ ¼ jbj1, it is the L1 penalty.

The L0 penalty is the earliest regularization method

applied to variable selection and feature extraction.

Constrained by the number of coefficients including non-

zero, the L0 penalty yields the sparsest solutions, but it

has to solve a NP hard combinatory optimization prob-

lem. The L1 penalty (Lasso) proposed by Tibshirani

(1996) provides an iteration for variable selection and

feature extraction, which just needs to solve a quadratic

programming problem but is less sparse than the L0

penalty. At the same time, Donoho and Huo (2001),

Donoho and Elad (2003) and Chen and Donoho (2001)

proposed Basis Pursuit when studying the signal sparsity

recovery problem. They proved that under some condi-

tions the solutions of the L0 penalty are equivalent to

those of the L1 penalty for the sparsity problem, so the

NP hard optimization problem can be avoided by

applying the L1 penalty. Based on their works, the L1

penalty, or more generally, the L1 type penalties,

including SCAD (Fan and Heng 2004), the adaptive

Lasso (Zou 2006; Zhang and Lu 2007), Elastic net (Zou

and Hastie 2005), Stagewise Lasso (Zhao and Yu 2007),

and Dantzig selector (Candes and Tao 2007), have

become the dominant tools for data analysis since then.

In recent years, Xu et al. (2010) proposed the L1/2

regularization:

b1=2 ¼ arg min
1

n

Xn

i¼1

ðŷi � x̂ibÞ2 þ k
Xp

j¼1

jbjj1=2

( )
ð7Þ

where k is the tuning parameter. Different from the L1

penalty, the L1/2 regularization is nonconvex. Xu et al.

(2010) have proved the properties of sparsity, unbiasedness

and oracle properties of the L1/2 penalty. Their experiments

show that the solutions yielded from the L1/2 penalty are

sparser and can predicate better than those from the L1

penalty. On the other hand, solving the L1/2 penalty is much

simpler than solving the L0 penalty. All these properties

support the usefulness of the L1/2 penalty and the L1/2

penalty can be potentially more powerful than the L0 and

L1 penalties in real applications.

3 A novel shooting algorithm for the L1/2 regularization

In literatures, Fu (1998) investigated the Lasso Shooting

algorithms based on the L1 penalty. According to Xu

et al.’s (2010) research achievement, the L1/2 regularization

can be transformed into that of a series of convex weighted

A novel L1/2 regularization shooting method 145
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Lasso. Here, we propose a new shooting algorithm for the

L1/2 regularization, and its procedure is as follow:

Step 1: Initialize t = 1 and b0 ¼ ð0; 0; � � � 0|fflfflfflfflffl{zfflfflfflfflffl}
p

Þ

Step 2: Computerl,r2l, x̂ and ŷ based on the current

value bt�1.

Step3: At step t, for each j = 1,…p, and set

bt
j ¼

k bt�1
jj j�

1
2�2F0

4ðx̂jÞT x̂j
if F0 [ 1

2
k bt�1

j

���
���
�1

2

�k bt�1
jj j�

1
2�2F0

4ðx̂jÞT x̂j
if F0\ 1

2
k bt�1

j

���
���
�1

2

0 if F0j j � 1
2
k bt�1

j

���
���
�1

2

8
>>>>><

>>>>>:

where x̂j is the jth column vector of x̂, and k is the tuning

parameter. Define RSS ¼ ðŷ� x̂bt�1ÞTðŷ� x̂bt�1Þ,
Fjðbt�1; x̂; ŷÞ ¼ oRSS

obt�1
j

, F0 ¼ Fjðbt�1;�j; x̂; ŷÞ, use bt�1;�j to

denote ðbt�1
1 ; bt�1

2 ; . . .; bt�1
j�1; 0; b

t�1
jþ1; . . .; bt�1

p Þ
T
, j = 1,…, p,

and form a new estimatorbt ¼ ðbt
1; . . .; bt

pÞ
T
after updating

all bt
j(j = 1,…, p).

Step 4: Let t = t ? 1. Go back to Step 2 until the fol-

lowing convergence criterion is satisfied:

Xp

i¼1

bt
i � bt�1

i

�� ��\10�5:

To determine the value of the tuning parameter k, we

use the maximization of the cross validated partial

likelihood (CVPL) (Verwij and Van Houwelingen 1993;

Huang and Harrington 2002), which is defined as

CVPLðkÞ ¼ � 1

n

Xn

i¼1

½lðf̂ ð�iÞðkÞÞ � lð�iÞðf̂ ð�iÞðkÞÞ� ð8Þ

where f̂ ð�iÞðkÞ is the estimation of the score function based

on the L1/2 procedure with the tuning parameter k from the

data without the ith subject. The terms lðf Þ and lð�iÞðf Þ are

the log partial likelihoods with all the subjects and without

the ith subject, respectively. The optimal value of k is

chosen to maximize the sum of the contributions of each

subject to the log partial likelihood. CVPL is the special

case of a more general cross-validated likelihood approach

for model selection (Smyth 2001; Van der Laan et al. 2003)

and has been demonstrated to perform well in prediction in

the context of the penalized Cox regression (Huang and

Harrington 2002).

In Xu et al.’s (2010) paper, the convergence of L1/2

penalty algorithms has been proved. They show that the L1/

2 regularization algorithms will always approach to the set

of global or local minima of the problems.

4 Numerical studies

4.1 The low-dimensional simulation for the Cox model

In this part, we compare the performance of the Lasso, the

adaptive Lasso, and the L1/2 regularization shooting algo-

rithm under the Cox’s proportional hazards model. The

cross validated partial likelihood (CVPL) method is used to

estimate the tuning parameter k in these three algorithms.

To report the estimation bias for the true predictor variables

of the three methods, we follow Tibshirani (1997) and

summarize the average mean squared errors ðb̂�
bÞT Vðb̂� bÞ over many runs. Here V is the population

covariance matrix of the covariates.

To measure the prediction accuracy, Graf et al. (1999)

have proposed to use the time-dependent Brier (1950)

score (BS), which is the time-dependent mean-squared

error between the observed survival status and the pre-

dicted survival probability. The BS depends on time t. Thus

it makes sense to use the integrated Brier score (IBS) as a

score to assess the goodness of the predicted survival

functions of all observations between time 0 and an arbi-

trary upper limit t	 (Graf et al. 1999).

In our simulation studies, we selected the Gompertz

model which is frequently used in human mortality model

and has the property of proportion of hazards, here we

following the method of Qian et al. (2010) to generate the

datasets of the Cox model. Detailed steps of generating

survival data with the censoring rate are described as

follows:

Step 1: The survival time Ti (i = 1,…, n, n indicates

sample size) is constructed from a uniformly distributed

variable U by Ti ¼ 1
a log 1� a�logðUÞ

c expðxibÞ

� �
, where c is scale

parameter, a is shape parameter, b is the ground-true

regression coefficient and the covariates xi is p dimensional

and normally distributed vector with different parameter

settings.

Step 2: Censoring time point T 0i (i = 1,…,n, n indicates

sample size) is obtained from an exponential distribution

EðhÞ, where h is determined by specify censoring rate.

Step 3: Define ti ¼ minðTi;T
0
i Þ and di ¼ IðTi� T 0i Þ.

Therefore, we can generate the observed data consist of

ðti; di; xiÞ for Cox proportional hazards model.

For our experiment, we generated simulation datasets in

two setting.

Model 1: b ¼ ð�0:7; 0;�0:7; 0; 0; 0; 0;�0:7; 0Þ, where

important variables have large effects;

Model 2: b ¼ ð�0:3; 0;�0:2; 0; 0; 0; 0;�0:1; 0Þ, where

important variables have small effects.

We considered two censoring rates, 25 and 40 % and

three samples sizes n = 150, 250, 350 respectively.
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The average numbers of zero coefficients obtained by

the three methods are reported in the Table 1. From

Table 1, the L1/2 regularization shooting method performs

best in terms of both variable selection and prediction

accuracy. For example, in the Corr columns for Model 1,

when n = 150 and the censoring is 25 %, where the true

model has 6 zero coefficients, the average numbers of the

correct zero coefficients from the Lasso is 4.78, from the

adaptive Lasso is 5.43 and from the L1/2 regularization

shooting method is 5.79. This means that the L1/2 regu-

larization shooting method shrinks unimportant covariates

most accurately. Moreover, the mean squared errors (MSE)

of the Lasso, the adaptive Lasso and the L1/2 regularization

shooting method are 0.1375, 0.0629 and 0.0582 (best). The

IBS’s values of these three methods are 0.1131, 0.1140 and

0.1124 respectively. It means that the L1/2 regularization

shooting method performs slight better than the other two

methods for the prediction accuracy. As n increases to 250

or 350, the performance of the L1/2 regularization shooting

method is still consistently better than those of other two

methods. In the Incorr columns, the idealized average

number is 0 if the method can correctly identify all relevant

variables at each run, whereas, its maximal value is 3 if the

method incorrectly identifies all the nonzero coefficients of

the relevant variables to zero in all runs. From the Incorr

columns, we can also find that all the three algorithms

never evaluated the nonzero coefficients to zero. Similar

results are observed for the 40 % censoring case.

In Model 2, the important variables have small effects

and its coefficients are of different magnitudes. The second

part of Table 1 shows that the L1/2 regularization shooting

method is best in terms of shrinking non-important

covariates under the different parameter settings. For

example, when n = 150 and the censoring is 25 %, in the

Corr columns, the average numbers of the correct zero

coefficients from the Lasso is 3.79, from the adaptive Lasso

is 5.26 and from the L1/2 regularization shooting method is

5.57. The correct number of zeros is 6. In regard to pre-

diction accuracy, the Lasso, the adaptive Lasso and the L1/2

regularization shooting method give similar IBS values and

performance under the different parameter settings.

In the Incorr columns, each method performs well in

Model 1. However, in Model 2, when n = 150 and cen-

soring is 25 %, for the three relevant variables, the average

number of the incorrect zeros from the Lasso is 0.35, from

the adaptive Lasso is 0.61 and from the L1/2 regularization

Table 1 The simulation results based on the Models 1 and 2 by the three methods over 100 replications. The columns include the average

number of the correct zeros (Corr), the average number of the incorrect zeros (Incorr), the mean squared error (MSE) and the integrated Brier

score (IBS)

n 25 % censoring 40 % censoring

Method Corr (6) Incorr (0) MSE IBS Corr (6) Incorr (0) MSE IBS

Model 1:b ¼ ½�0:7; 0;�0:7; 0; 0; 0; 0;�0:7; 0�
150 Lasso 4.78 0.0 0.1375 0.1131 4.46 0.0 0.0965 0.1137

Adaptive 5.43 0.0 0.0629 0.1140 5.50 0.0 0.0362 0.1147

L1/2 5.79 0.0 0.0582 0.1124 5.69 0.0 0.0307 0.1132

250 Lasso 4.63 0.0 0.1955 0.1123 4.41 0.0 0.0939 0.1108

Adaptive 5.62 0.0 0.0440 0.1132 5.58 0.0 0.0234 0.1118

L1/2 5.80 0.0 0.0381 0.1114 5.79 0.0 0.0216 0.1101

350 Lasso 4.81 0.0 0.1857 0.1108 4.51 0.0 0.1007 0.1094

Adaptive 5.63 0.0 0.0323 0.1116 5.69 0.0 0.0190 0.1103

L1/2 5.90 0.0 0.0308 0.1098 5.90 0.0 0.0183 0.1086

Model 2 :b ¼ ½�0:3; 0;�0:2; 0; 0; 0; 0;�0:1; 0�
150 Lasso 3.79 0.35 0.0400 0.1271 3.29 0.16 0.0336 0.1276

Adaptive 5.26 0.61 0.0448 0.1272 5.37 0.45 0.0368 0.1278

L1/2 5.57 0.83 0.0410 0.1269 5.17 0.42 0.0328 0.1275

250 Lasso 4.22 0.22 0.0375 0.1230 3.36 0.02 0.0253 0.1289

Adaptive 5.44 0.43 0.0347 0.1231 5.42 0.19 0.0242 0.1291

L1/2 5.62 0.42 0.0312 0.1228 5.43 0.15 0.0213 0.1288

350 Lasso 4.60 0.07 0.0340 0.1231 3.39 0.0 0.0245 0.1218

Adaptive 5.41 0.33 0.0239 0.1234 5.41 0.37 0.0213 0.1220

L1/2 5.79 0.28 0.0229 0.1229 5.41 0.25 0.0182 0.1217

Lasso the Lasso method, Adaptive the adaptive Lasso method, L1/2 the L1/2 regularization shooting method

A novel L1/2 regularization shooting method 147
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shooting method is 0.83. The L1/2 regularization shooting

method performs worse than other two methods. As

n increases to 250 or 350, the Lasso method still performs

best, but the L1/2 regularization shooting method is better

than the adaptive Lasso method. Similar results are

observed for the 40 % censoring case. This means that the

adaptive Lasso and the L1/2 regularization shooting meth-

ods shrink the small effect covariates to zero more easily

than the Lasso.

4.2 Experiments on the real PBC (primary biliary

cirrhosis) dataset

We follow Tibshirani (1997) and Zhang and Lu (2007)

applications to PBC dataset. The data is from the Mayo

Clinic trial in primary biliary cirrhosis of liver conducted

between 1974 and 1984, and provided in Dickson et al.

(1989), a more detailed account can be found in Therneau

and Grambsch (2000). In this study, 312 out of 424

patients who agreed to participate in the randomized trial

are eligible for the analysis. For each patient, clinical,

biochemical, serological and histological parameters are

collected. In all, 125 patients died before the end of fol-

low-up. We study the dependence of the survival time on

seventeen covariates: continuous variables are age (in

years), alb (albumin in g/dl), alk (alkaline phosphatase in

units/litre), bil (serum bilirubin in mg/dl), chol (serum

cholesterol in mg/dl), cop (urine copper in g/day), plat

(platelets per cubic ml/1000), prot (prothrombin time in

seconds), sgot (liver enzyme in units/ml), trig (triglycer-

ides in mg/dl); categorical variables are asc (0 denotes

absence of ascites and 1 denotes presence of ascites), oed

(0 denotes no oedema, 0.5 denotes untreated or success-

fully treated oedema and 1 denotes unsuccessfully treated

oedema), hep (0 denotes absence of hepatomegaly and 1

denotes presence of hepatomegaly), sex (0 denotes male

and 1 denotes female), spid (0 denotes absence of spiders

and 1 denotes presence of spiders), stage (histological

stage of disease, graded 1, 2, 3 or 4) and trt (1 for control

and 2 for treatment). We focus only on the 276 obser-

vations without missing values. All seventeen variables

are included in the model. Table 2 gives the estimated

coefficients by the three methods. As reported in Tibsh-

irani (1997), the stepwise selection chooses eight vari-

ables, namely age, oed, bil, alb, cop, sgot, prot and stage,

which are similar to the results of the adaptive Lasso and

the L1/2 regularization shooting methods (eight variables)

and better than that of the Lasso (nine variables). In

regard to prediction accuracy, the IBS’s values of these

three methods are 0.1874, 0.1877 and 0.1875 respectively

in Table 3, which means that they have similar prediction

performances.

4.3 The high-dimensional experiment for the Cox

model

In our high-dimensional simulation for the Cox model, we

assume that 1,000 genes are considered from the above

Gompertz model method which was introduced in the part

1 of this section. Among of them, six genes are related to

time to cancer recurrence. In our experiment, we generated

simulation datasets in the setting:

b ¼ �0:7;�0:6;�0:5;�0:4; 0; 0; 0; 0; 0; 0; 0:4; 0; 0; 0:7
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{14

; 0; . . .; 0
zfflfflffl}|fflfflffl{986

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1;000

0
B@

1
CA

We considered the cases with 25 and 40 % of censoring

and used four samples, n = 200, 250, 300, 350. The

simulation results obtained by the three methods reported

in Table 4. Since this simulation dataset has six relevant

Table 2 Estimate coefficients by the Lasso, the adaptive Lasso and

the L1/2 regularization shooting method for Primary biliary cirrhosis

data

Covariate Lasso Adaptive L1/2

trt 0.0 0.0 0.0

age 0.3059 (0.0021) 0.4212 (0.0024) 0.4895 (0.00057)

sex 0.0 0.0 0.0

asc 0.0401 (0.0002) 0.0 0.0

hep 0.0 0.0 0.0

spid 0.0 0.0 0.0

oed 0.3021 (0.0006) 0.2994 (0.0008) 0.3348 (0.0002)

bil 0.6411 (0.0000) 0.7071 (0.0016) 0.6624 (0.0001)

chol; 0.0 0.0 0.0

alb -0.3843

(0.0009)

-0.6396

(0.0021)

-0.4668

(0.0001)

cop 0.4072 (0.0001) 0.4471 (0.0012) 0.4185 (0.0000)

alk 0.0 0.0 0.0

sgot 0.1481 (0.0024) 0.1820 (0.0059) 0.3333 (0.0008)

trig 0.0 0.0 0.0

palt 0.0 0.0 0.0

prot 0.2325 (0.0013) 0.2839 (0.0019) 0.3332 (0.0005)

stage 0.4043 (0.0016) 0.5083 (0.0016) 0.5709 (0.0004)

The standard deviations are given in parentheses. (Lasso the Lasso

method, Adaptive the adaptive Lasso method, L1/2 the L1/2 regulari-

zation shooting method)

Table 3 The integrated Brier score (IBS) obtained by the Lasso, the

adaptive Lasso and the L1/2 regularization shooting method for PBC

data

Lasso Adaptive L1/2

IBS 0.1874 0.1877 0.1875

Lasso the Lasso method, Adaptive the adaptive Lasso method, L1/2 the

L1/2 regularization shooting method
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features (six nonzero coefficients) in the 1,000 ones, the

idealized average numbers of variables selected (the Var

column) and correct zeros (the Corr column) by each

method are 6 and 994 respectively. From the Var and Corr

columns of Table 4, the results obtained by the L1/2

regularization method are obviously better than those of

other methods for different sample sizes and censoring

settings. For example, when n = 200 and the censoring is

25 %, the average numbers (Var) from the Lasso, the

adaptive Lasso, and the L1/2 regularization methods are

78.62, 31.54 and 19.61 (best). The correct zeros’ numbers

(Corr) of the three methods are 921.22, 968.22 and 980.07

(best) respectively. The results obtained by the L1/2 method

are obviously close to the idealized values in the Var and

Corr columns. Moreover, in the IBS column, the IBS’s

value of the Lasso, the adaptive Lasso and the L1/2

regularization shooting method are 0.1348, 0.1326 and

0.1311. This means that the L1/2 regularization shooting

method performs slight better than the other two methods

for the prediction accuracy. Similar results are observed for

the 40 % censoring case.

As shown in the Incorr columns of Table 4, the idealized

average number is 0 if the method can correctly identify all

relevant variables at each run, whereas, its maximal value is

6 if the method incorrectly identifies all the nonzero coef-

ficients to zero in all runs. When the sample size is relative

small (n = 200 and censoring rate = 25 %), the average

number of the incorrect zeros from the Lasso is 0.16, from

the adaptive Lasso is 0.24 and from the L1/2 regularization

shooting method is 0.32. The L1/2 regularization shooting

method performs worse than other two methods. When n

increases to 350, all the three algorithms never evaluated

the nonzero coefficients to zero. This means that the L1/2

regularization shooting method shrinks the small effect

covariates to zero more easily than the Lasso and the

adaptive Lasso when the sample size is relative small.

Similar results are observed for the 40 % censoring case.

4.4 Experiments on the high-dimensional and real

DLBCL (diffuse large B cell lymphoma) dataset

To further demonstrate the utility of the L1/2 regularization

shooting procedure in relating microarray gene expression

data to censored survival phenotypes, we re-analyzed a

published dataset of DLBCL by Rosenwald et al. (2002).

This dataset contains a total of 240 patients with DLBCL,

including 138 patient deaths during the follow-ups with a

median death time of 2.8 years. Rosenwald et al. (2002)

divided the 240 patients into a training set of 160 patients

and a test set of 80 patients and built a multivariate Cox

model. The variables in the Cox model included the

average gene expression levels of smaller sets of genes in

four different gene expression signatures together with the

gene expression level of BMP6. It should be noted that in

order to select the gene expression signatures, they per-

formed a hierarchical clustering analysis for genes across

all the samples (including both training and test samples).

In order to compare our results with those in Rosenwald

et al. (2002), we used the same setting of training and test

datasets in our analysis.

We applied the L1/2 regularization shooting method to

first build a predictive model using the training data of 160

Table 4 The simulation results based on the high dimensional simulated dataset by the three methods over 50 replications. The columns include

the average number of the selected variable (Var), the average number of the correct zeros (Corr), the average number of the incorrect zeros

(Incorr), and the integrated Brier score (IBS)

n 25 % censoring 40 % censoring

Method Var Corr(994) Incorr(0) IBS Var Corr(994) Incorr(0) IBS

200 Lasso 78.62 921.22 0.16 0.1348 74.30 925.54 0.16 0.1405

Adaptive 31.54 968.22 0.24 0.1326 23.20 976.60 0.20 0.1382

L1/2 19.61 980.07 0.32 0.1311 16.10 983.62 0.28 0.1371

250 Lasso 99.45 900.55 0.00 0.1346 98.66 901.34 0.00 0.1372

Adaptive 41.03 958.89 0.08 0.1328 32.60 967.34 0.06 0.1354

L1/2 24.47 975.37 0.16 0.1312 19.94 979.98 0.08 0.1342

300 Lasso 124.66 875.34 0.00 0.1328 105.60 894.40 0.00 0.1346

Adaptive 59.76 940.24 0.00 0.1313 41.36 958.64 0.00 0.1331

L1/2 29.20 970.78 0.02 0.1298 23.84 976.12 0.04 0.1318

350 Lasso 156.92 843.08 0.00 0.1313 126.40 873.60 0.00 0.1343

Adaptive 78.36 921.64 0.00 0.1300 52.44 947.56 0.00 0.1330

L1/2 33.44 966.56 0.00 0.1286 27.36 972.64 0.00 0.1317

Lasso the Lasso method, Adaptive the adaptive Lasso method, L1/2 the L1/2 regularization shooting method
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patients and all the 7,399 genes as features (predictors).

Table 5 shows the GenBank ID and a brief description of

top nine genes selected by our proposed L1/2 regularization

method. It is interesting to note that seven of these genes

belong to the gene expression signature groups defined in

Rosenwald et al. (2002). These three signature groups

include Germinal-center B cell signature, MHC, and

Lymph-node signature. On the other hand, two genes

selected by the L1/2 method are not in the proliferation

signature group defined by Rosenwald et al. (2002).

Based on the estimated model with these genes, we

estimated the risk scores using the method proposed by Gui

and Li (2005). To further examine whether clinically rel-

evant groups can be identified by the model, we used zero

as a cutoff point of the risk scores and divided the test

patients into two groups based on whether they have

positive or negative risk scores (f ðxÞ ¼ bT x).

As a comparison, the Lasso, the adaptive Lasso and the

L1/2 regularization methods are validated on the test dataset

of 80 patients defined in Rosenwald et al. (2002), and their

corresponding Kaplan–Meier curves are shown in Fig. 1.

In Fig. 1, the horizontal coordinate is the predictive sur-

vival time (years) and the vertical coordinate is the pre-

dictive survival probabilities. The p values (lower the

better to indicate statistical significance) of the Lasso for

the test dataset is 0.0007, which are significantly larger

than those of the adaptive Lasso and the L1/2 regularization

methods. This means that lasso method performs the worst

for the survival prediction compared with other two

methods.

On the other hand, in order to assess how well the model

predicts the outcome, we also use the idea of receiver-

operator characteristics (ROC) curves for the test dataset

including censored observations and the area under the

curve (AUC) as our criteria. These methods were devel-

oped by Heagerty et al. (2000) in the context of the medical

diagnosis. Figure 2 shows the specific time ROC curves

corresponding to the three methods at the beginning of the

following-ups. We can see that the AUC’s values from the

Lasso, the adaptive Lasso and the L1/2 regularization

shooting methods are 0.702, 0.726 and 0.716 respectively.

Note that a larger AUC at time t indicates better predict-

ability of time to event at time t as measured by sensitivity

and specificity evaluated at time t. It means that for the

DLBCL datasets, the lasso method performs the worst than

the other two methods.

In Table 6, the IBS’s value of the Lasso, the adaptive

Lasso and the L1/2 regularization shooting method are

0.2188, 0.2040 and 0.2049. We can see that the adaptive

Lasso and the L1/2 regularization shooting methods perform

slight better than Lasso for the prediction accuracy.

Table 5 GenBank ID and descriptions of the top 9 genes selected by

the L1/2 regularization method based on the 160 patients in the

training dataset

GenBankID Signature Description

NM_005191

AA714513 MHC Major histocompatibility complex, class

II, DR beta 5

AA767112 MHC Major histocompatibility complex, class

II, DP beta 1

X82240

AA805575 Germ Thyroxine-binding globulin precursor

AA505045 Germ Homo sapiens, clone MGC:3963

IMAGE:3621362, mRNA, complete cds

AA598653 Lymph Osteoblast specific factor 2 (fasciclin I-

like)

AA598653 Lymph Secreted protein, acidic, cysteine-rich

(osteonectin)

LC_24433 Lymph

As indicated are the gene expression signature groups that these genes

belong to; Germ germinal-center B cell signature, MHC MHC class II

signature, Lymph lymph-node signature. Genes NM_005191 and

X82240 do not belong to these signature groups

Fig. 1 The Kaplan–Meier curves for the high and low risk groups

defined by the estimated scores for the 80 patients in the test dataset.

The scores are estimated based on the models estimated by the Lasso

method (plot a), the adaptive Lasso method (plot b) and the L1/2

regularization shooting method (plot c). The maximal follow-up time

is 20 years
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5 Conclusion

In this paper, we have presented a novel L1/2 regularization

shooting method, which is used for variable selection in the

Cox’s proportional hazards model. Its performance is val-

idated by both simulation and real case studies. In the

experiments, we use two real datasets. One of the datasets

is low-dimensional and high-sample size settings (n [ p),

from the result we can see that the L1/2 regularization

shooting algorithm performs better than the Lasso and the

adaptive Lasso methods for variable selection and predic-

tion accuracy. The other dataset is the high-dimensional

and low-sample size settings, with applications to micro-

array gene expression data (n \\ p, DLBCL). Results

indicate that our proposed L1/2 regularization shooting

algorithm is very competitive in analyzing high dimen-

sional survival data in terms of sparsity of the final pre-

diction model and predictability. The proposed L1/2

regularization procedure is very promising and useful in

building a parsimonious predictive model used for classi-

fying future patients into clinically relevant high-risk and

low-risk groups based on the gene expression profile and

survival times of previous patients. The procedure can also

be applied to select important genes which are related to

patient’s survival outcome.
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