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Abstract This paper quantifies the approximation capability of radial basis function net-
works (RBFN5s) and their applications in machine learning theory. The target is to deduce
almost optimal rates of approximation and learning by RBFNs. For approximation, we show
that for large classes of functions, the convergence rate of approximation by RBFNS is not
slower than that of multivariate algebraic polynomials. For learning, we prove that, using
the classical empirical risk minimization, the RBFNs estimator can theoretically realize the
almost optimal learning rate. The obtained results underlie the successful application of
RBFNs in various machine learning problems.

Keywords Learning theory - Approximation theory - Radial basis function networks -
Rate of convergence

1 Introduction

In physical or biological systems, engineering applications, financial studies, and many other
fields, only a finite data set (x;, y;)7-, be obtained. Learning means synthesizing a function
that best represents the relation between the inputs and the corresponding outputs. A learn-
ing system is normally developed for defining the function and yielding an estimator. The
learning system comprises a hypothesis space, a family of parameterized functions that regu-
late the forms and properties of the estimator to be found, and a learning strategy or learning
algorithm that numerically yields the parameters of the estimator. The central question of
learning is and will always be: how well does the synthesized function generalized to reflect
the reality that the given samples purport to show us.

The analysis of a learning system can be regarded as studying approximation capabil-
ity of the hypothesis space and efficiency of the learning strategy. From the point of view
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of approximation theory, there are a multitude of ways to choose the hypothesis space, for
example, multivariate polynomials, splines, tensor products, radial basis function networks
(RBFN:Ss), etc. All of these choices have their own advantages, but have some common dis-
advantages as well. If the dimension of the considered problem (the number of variables) is
large, that is often the case in many applications, a reasonable choice is RBFNs, which is,
incidentally, also highly useful in lower dimensional problems.

RBFNs can be formally described as the devices producing input-output mappings de-
pending on some adjustable parameters. The input-output functions take the form of linear
combinations of radial functions by units, and can be evaluated in hardware using paral-
lel computation of every units. RBFNs have been extensively used in many fields such as
computer graphics (Wendland 2005), adaptive numerical solutions to differential equations
(Fedoseyev et al. 2002; Flyer and Wright 2009), machine learning (Caponnetto and DeVito
2007; Cucker and Smale 2001), etc.

A typical issue in RBFN approximation, called the density problem, concerns whether
RBFN can approximate an arbitrary function to any desired accuracy by increasing the num-
ber of hidden neurons. Under certain assumptions on the activation function, this problem
was perfectly resolved in the seminal paper (Park and Sandberg 1991). Similar results can
also be found in Park and Sandberg (1993) and Chen and Chen (1995). Another fundamen-
tal issue in RBFN approximation is the complexity problem which describes the relation-
ship between the accuracy of approximation and the number of hidden neurons. Generally
speaking, the study of complexity problem is more important and difficult than the density
problem, since in the former case, we are concerned with not only how many computational
units are needed to attain a prescribed accuracy, but also the judgement whether this number
can be reduced.

The complexity problem of RBFN approximation were widely studied in Bumann et al.
(1995), Buhman (2000), Johnson (1998), Mhaskar (1996), Powell (1990), Schaback (1995,
1996), Wendland (2000) and references therein. More precisely, several important upper
(and lower) bound estimations for RBFN approximation have been deduced for some spe-
cific activation functions such as Gaussian, thin-plate spline, etc. However, it is still unclear
whether these estimations are available for RBFNs with more general activation functions.
In this paper, we take an excursion in studying the approximation capability of RBFNs with
general activation functions. By imposing activation functions certain restrictions, we show
that for non-polynomial target functions, the approximation rate of RBFNs is not slower
than that of multivariate algebraic polynomials. Thus, the approximation property of alge-
braic polynomials automatically provides an upper bound estimation for RBFN approxi-
mation. Furthermore, we verify that the established upper bound is almost optimal in the
sense that up to a logarithmical factor the upper and lower bounds are asymptotically iden-
tical.

According to the well known “bias” and “variance” problem in learning theory (Cucker
and Smale 2001) a learning system should reflect a trade-off between the approximation ca-
pability and complexity of the hypothesis space. Therefore, from approximation to learning,
we should also take account of the price to be paid to get a given accuracy of approximation.
Past researches on learning (e.g. Caponnetto and DeVito 2007; Cucker and Smale 2001,
2002; Temlyakov 2008) has been mainly carried out within the theoretical framework of
reproducing kernel Hilbert space (RKHS). RKHSs are by definition the Hilbert spaces of
functions where point evaluations are continuous linear functionals. This makes the sam-
pling be stable and effective. But, the dimension of RKHS is usually infinite, which implies
that the cost of learning by using RKHS method is tremendously high. This observation
urges us to search for hypothesis spaces with lower complexities and similar approxima-
tion capabilities. Because of their prominent approximation capabilities, RBFNs are natural
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alternatives. From the previous work of Maiorov (2006a, 2006b) and Maiorov and Meir
(2001), we know that the complexity of RBFN manifold is much lower than that of RKHS.
Hence, taking RBFN manifold as the hypothesis space of learning process should be a more
reasonable choice. In this paper, using the well known empirical risk minimization rule in
the RBFN manifolds, we conclude that such choice is almost optimal in a certain sense.

The rest of paper is organized as follows. In Sect. 2, we present some preliminaries about
statistical learning theory and RBFN manifolds. In Sect. 3, we analyze the approximation
capacity of RBFNs. In Sect. 4, we derive the almost optimal learning rate of RBFNs. In
Sect. 5, we then present all related proofs.

2 Preliminaries
In this section, we give a fast review of statistical learning theory and RBFN manifolds.
2.1 Statistical learning theory

Let M >0, X C R be the input space and Y C [—M, M] be the output space. Suppose that
the unknown probability measure p on Z := X x Y admits the decomposition

px,y)=px(x)p(ylx).

Let z = (x;, y;)/", be a finite random sample of size m, m € N, drawn independently and
identically according to the unknown distribution p. Suppose further that f : X — Y is a
function that one uses to model the correspondence between X and Y, as induced by p. One
natural measurement of the error incurred by using f of this purpose is the generalization
error, defined by

£(f) = /Z (F () = y)dp,

which is minimized by the regression function (Cucker and Smale 2001), defined by

fox) = / ydp(y|x).
Y

We do not know this ideal minimizer f,, since p is unknown, but we have access to random
examples from X x Y sampled according to p.
Let Lf,x be the Hilbert space of px square integrable function on X, with norm denoted

by | - Il ,- With the assumption that f,, € Lf,x , it is known that, for every f € L7 , there holds

EN)—ESD =1 = 1ol )
The task of the least square regression problem is then to construct functions f, that approx-
imates f,, in the norm || - || ,, using the finite sample z.

So, the goal of learning is to find the best approximation of the regression function f,
within a space . We need still to address the question of how to find an estimator f, to f,,.
A popularly used approach is the following empirical risk minimization process. Define the
empirical risk of f € H by

1 m )
¢ = i)— Vi) .
)= — (i) =)

i=1
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We denote by
fai=arg 5}22 &E(f),

and call it the empirical minimizer. Given a finite ball in a finite dimensional manifold, the
problem of finding f, is numerically executable (Gyorfy et al. 2002).

2.2 Complexity of RBFN manifold

A RBFN can be mathematically expressed as

N

Ron(x):=)Y cjo(wilx —6;]), cj,w;€R, ; eRY, )
j=0

where N € N, N denotes the set of natural numbers, |A] is the Euclidean norm of vector A

and o is the activation function of RBFN. Both coefficients of the linear combinations c; and

parameters of the computation units w; and ; are adjustable in the process of learning.! We

denote by @, y the collection of functions formed as (2). Then, it is well known that @, y

is a nonlinear manifold since the sum of two elements sometimes does not belong to @, y.

Due to the nonlinearity, the complexity of the manifold @, y can not be measured by
the usual dimension of linear space. Thus, some other quantities should be introduced.
Three widely used measurements are ¢-entropy, Vapnik-Chervonenkis (VC) dimension and
pseudo-dimension (Maiorov 2006a; Mendelson and Vershinin 2003). The concept e-entropy
of a set is closely connected to the pseudo-dimension (or VC-dimension), which is stated as
follows.

Let B be a Banach space and V a compact set in B. The quantity H.(V,B) =
log, N (V, B), where N.(V, B) is the number of elements in least e-net of V, is called
g-entropy of V in B. The quantity N, (V, B) is called the e-covering number of V. For any
t € R, define

® 1, ift >0,

sgn(t) 1=

& —1, ifr<o.

If a vector t = (ty, ..., t,) belongs to R", then we denote by sgn(t) the vector (sgn(z), ...,

sgn(t,)). Let B¢ be the unit ball in the d-dimensional Euclidean space RY The VC dimension
of a set V over BY, denoted as VC dim(V, B?), is defined as the maximal natural number
m such that there exists a collection (i1, ..., it,,) in B¢ such that the cardinality of the
sgn-vectors set

S = {(sgn(v(ul)), ceey sgn(v(uni))) 1V E V}

equals to 2™, that is, the set S coincides with the set of all vertexes of unit cube in R™. The
quantity

P dim(V, IB%") :=max VC dim(V + g, IB%‘I),
g

is called pseudo-dimension of the set V over B¢, where g runs all functions defined on B¢
andV4+g={v+g:veV}.

Mendelson and Vershinin (2003) (see also Maiorov 2006a) has established the following
important relation between the Pseudo-dimension and ¢-entropy. This relation together with
Lemma 4 below will play a key role in deducing the upper bound of RBFN learning.

n the framework of kernel learning, the coefficients w j ’s are assumed to be 1.
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Lemma 1 Let V(BY) be a class of functions which consists of all functions f € V satisfying
| f(x)| <R forall x € B?. Then,

H.(V(B). L*(B)) < P dim(V. B) log, .
&

where c is an absolute positive constant.

3 Approximation by RBFNs
3.1 RBFN and polynomial approximation: a comparison

Denote by L?(B?), (0 < p < 0o) the space of real valued and p-integrable functions on B¢
endowed with the norm or (quasi-norm)

/p
11l = 1 Doy = {/ \foc)\”dx} <o,
B
C(B?) the space of continuous functions with the norm
:=max | f(x)|.
I/ llemd) = max | £ (o)

For the sake of simplicity, we denote | f1loo := || f ll ¢(sey and L®(B?) := C (BY).
Denote by P, := P, (B?) the space of multivariate algebraical polynomials

Pix)i= ) aw*, xeB,

lkij<n

where x = (x(1), ..., X@)), X* := xfll) . -xfj) and ¢k = ¢, k,,..k, € R. It is obvious that the
dimension of the linear space P, is (";‘1) (see Wendland 2005 for example). For any two

sets of functions W, U € L?(B¢), we denote also by

E‘(VV7 U)LP(JBd) .= sup E(f, U)Lp(]Bd) = sup inf ||f - g“p
few few €U

the distance of W and U.

To compare the approximation capabilities between two classes of functions, both the
approximation errors and the capacities of these classes should be taken into account. When
these classes of functions are parameterized families, their capacities can be measured by
the length of parameter vectors (depending on the number of variables e.g., on the degree of
an algebraic polynomial, on the number of knots in a spline, on the number of hidden units
in a RBFN, etc.). Our first result (Theorem 2) focuses on comparing the approximation
capability of RBFNs with that of polynomials. To this end, we should build a convergence
rate analysis for RBFN approximation whose target functions are algebraic polynomials.

Theorem 1 Let N and n be any natural numbers satisfying N > (2d + 5)n("_;+d). If

o :R — R is a function with (n + 1)-times bounded derivatives, and o (0) # 0 for s =
0,1,...,n, then, for arbitrary P, € P, and arbitrary ¢ > 0, there exists an RBFN, L%,
formed as (2), such that

|Py(x) = L (x)| <e. 3)

@ Springer



152 Mach Learn (2014) 95:147-164

It should be noted that at the first glance, the restrictions to the activation functions in
Theorem 1 seem a bit strong, and, further, we can check that the well known Gaussian
function does not satisfy the assumptions. This constraint can actually be relaxed and coped
with by adding a threshold to the RBFNs. The following Corollary 1 states such a variant.

Corollary 1 Let N and n be any natural numbers satisfying N > (2d + 5)n("_611+d). If

o : R — R is a function with (n + 1)-times bounded derivatives, and there exists at least a
point ty € [0, 1) such that c® (ty) # 0 for s =0, 1, ..., n, then, for arbitrary P, € P, and
arbitrary € > 0, there exists an RBFN, R, formed as
N
cha(wk|x — 6| + to), i, wr €R, 6, eR?
i=1

such that

|Py(x) — R}, (x)| <. 4)

There are many activation functions satisfying the assumptions of Corollary 1. For exam-
ple, the functions having (n 4 1)-th continuous derivatives, which are not algebraic polyno-
mials of degree n, satisfy the assumption. As a very special case, the well known Gaussian
functions meet the requirement of Corollary 1, and therefore, very commonly used in prac-
tice. To further characterize the approximation property of RBFNs , we prove the following
Theorem 2, which establishes a relationship between RBFN and algebraic polynomial ap-
proximation.

Theorem 2 Let 0 < p < 00, N and n be any natural numbers such that N > (2d + 5) x
n("7;+d). Ifo : R — Ris afunction with (n+1)-times bounded derivatives, and o (0) # 0

fors =0,1,...,n, then, for any f € L?(B%) and arbitrary & > 0, there holds
E(f, P n)Lr@dy < ECfs Po)Lr@dy + &. 5

The relationship between RBFN and polynomial approximation has already studied in
Maiorov (2003) and Lin et al. (2011a). In Maiorov (2003), Maiorov studied the approxima-
tion properties of the radial function manifold Gy whose elements take the form as

N
Gy(x):=Y cigi(lx—1]). c;€R, g;eCR), 1; eR. (6)
j=0

They proved that the approximation capability of Gy is not worse than that of polynomials

of degrees at most # provided N > (2d + 5)("7;”). Conversely, Lin et al. (2011a) deduced

that if the target function is radial and N ~ n?~!, then the approximation rate of polynomials
is also not slower than that of Gy. Noting that the utilized approximants in (6) are linear
combinations of different univariate functions, it is difficult to determine the capacity of Gy.
Thus, we can not say anything about the comparison between Gy and P,, since they are
not in the same framework. Furthermore, Gy is not a parameterized family, which makes it
computational infeasible. Differently, since @, y is parameterized, the capacity of @, y can
be measured by N. Theorem 2 shows that if the lengths of parameters of @, y and P, are

comparable, i.e., N = (2d + S)n(”_;rd) ~nd ~ (”;d), then for arbitrary non-polynomial
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function, the approximation rate of RBFN is not slower than that of polynomials. Noting
that the comparison is employed into a unified framework, we can draw the conclusion
that, as far as the approximation capability is concerned, RBFN is at least not worse than
polynomial.

A consensus on RBFN approximation is that it can break the “curse of dimensionality”.
The results in Barron (1993), Burger and Neubauer (2001), Mhaskar (2004) and Kainen
et al. (2012) verified this statement by deducing approximation rates at least N~'/2, which
is independent of d. However, it can be also found in these papers that, to achieve such
dimensional-independent approximation rates, the target functions should depend heavily
on the activation functions. It was pointed out in Barron et al. (2008, p. 68) that such re-
strictions may become more and more strong as the dimension d grows. Thus, although
the approximation error of RBFNSs is independent of the dimension, the applicable target
functions become more and more stringent as d grows. Different from these results, the
approximation result in this paper is established for arbitrary p-times Lebesgue integrable
functions. Based on this, the advantages of RBFN can be concluded as following:

(i) For certain classes of target functions, RBFN approximation can break the curse of
dimensionality, i.e., it yields an approximation rate at least N~'/2.

(i) For non-polynomial target functions, the approximation capability of RBFN is at least
not worse than that of algebraical polynomial.

3.2 Almost optimal approximation rate of RBFNs

In this part, we study the approximation rate of RBFN manifolds. At first, we need to char-
acterize the space of functions we wish to approximate. Let k = (ky, k», ..., k4), k; € N, and
define the derivative

£

D*f(x) = —
f( ) 8k1x(l)...akdx(d)

where |k| :=k; + --- + k4. The classical Sobolev class is then defined for any » € N by

ro.__ r(mdy .__ . k
W= Wi (B )._{f.ogﬁg |D*r], < o0.r en}.
Based on Theorem 2, the convergence rate of approximation by multivariate algebraical
polynomials (DeVore and Lorentz 1993) can easily provide an upper bound of RBFN ap-
proximation. We state this as the following Corollary 2.

Corollary 2 Let 0 < p <00, N and n be any natural numbers such that N > (2d 4+ 5) x
n("_;Ld). If 0 : [0,1] — R is a function with (n + 1)-times bounded derivatives, and

o®(0)#0 for s =0,1,...,n, then there exists a constant C depending only on d and
p such that

LP(]B‘I) = CN—g . (7)

E(W), @)

We naturally hope to know whether the upper bound given in (7) can be improved. To

clarify this, we need to study the lower bound of RBFN approximation. It was proved by

Maiorov and Pinkus (1999) (see also Maiorov 2005) that there exists an analytic, strictly
increasing and sigmoidal activation function o such that

C\N™TT < E(W), @on) ey < CaN 7T, ®)
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where C| and C, are constants depending only on p and d. For the thin-plate spline type
activation functions, Maiorov (2005) proved that if p =g =00 or p =2, 1 <g <2, the
upper and lower bounds of approximation by RBFNs are asymptotical identical as N4,
i.e., there exist constants C; and C, depending only on p, ¢ and d such that

CIN~1 < E(W), &) <C,N71. )

L4 (]Bd)
These assertions show that different activation functions may conduct different approxi-

mation rates. So, we turn to ascertain below which activation functions can imply the opti-

mality of the convergence rate in (7). In the following, we focus on two sets of functions:

(i) The class ¥, = {1/} which consists of exponential functions of the form v (t) = e?®,
where p(-) : Ry — R is a univariate algebraic polynomial with degree not greater
than u.

(ii) The class @, = {¢}, which consists of all rational functions of degree at most u, that
is, the functions of the form ¢ (t) = %2, where a(-), 8(-) : R, — R are univariate alge-

% 5
braic polynomials with degrees not larger than u, and B(¢) # 0 forall t ¢ R,..

Theorem 3 below shows that, when restricted to the above classes of activation functions,
the upper bound (7) is almost optimal for RBFNs.

Theorem 3 Letu, N,r e N, 1 <p,q <oocandr/d > (% — $)+. If o € @, U, satisfying

o (0)#0fors=0,1,...,N, then there exist constants C; and C, depending only on d,
q,u and p such that

Ci(Nlog N)" < E(W}, ®.y) gy < CaN 4, (10)

where (t), := max({z, 0}.

A series of important estimates for approximating functions in W, by RBFNs were
deduced in Bejancu (1997, 2000), Johnson (1998), Lin et al. (2011a, 2011b), Maiorov
(2003, 2005), Schaback (1995, 1996) and Xie and Cao (2013). For more details, Shcak-
back (1995, 1996) gave the upper bound error for approximation by RBFNs with the well-
known plate spline activation function when the target function belongs to W} . Maiorov
(2005) deduced the lower bound of RBFN approximation and also proved that the up-
per and lower bounds were asymptotically identical. Xie and Cao (2013) deduced an up-
per bound estimate for the Gaussian RBFN with fixed width. Compared to these work,
the novelty of our results stated in Corollary 2 and Theorem 3 is that we focus on a
class of activation functions rather than a specific one. It is easy to check that the well
known inverse multiquadrics and Wendland functions (Wendland 2005) fulfill the assump-
tions in Corollary 2, as is the Gaussian function after adding a threshold to the RBFN
(see Corollary 1). It can also be found that the established approximation error in (10)
depends on the dimension d, which differs from the approximation results in Burger and
Neubauer (2001), Mhaskar (2004) and Kainen et al. (2012). However, this is not a neg-
ative result since the target function is independent of the activation function. The lower
bound in (10) also shows that the established approximation rate can not be essentially im-
proved.
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4 Learning by RBFNs

If we have a particular approximant f, to f, in hand, the quality of its performance is
measured by

Ef) —EUS) = fu— Foll} (11)

The error (11) clearly depends on z and therefore has a stochastic nature. As a result, it is
impossible to say something about (11) in general for a fixed z. Instead, we can look at its
behavior in statistics as measured by the expected error

Ep’"(”fz_fp”p) ::/ ”fz_fp”dpm7

m

where the expectation is taken over all realizations z obtained for a fixed m, and p™ is the m
fold tensor product of p.

It follows from the law of large numbers that by choosing suitable f,, E (|| f, —
foll,) = 0 as m — oo. How fast it tends to zero depends at least on three things: (i) the
nature of f,; (ii) the approximation properties of the hypothesis space H: (iii) how well we
do in constructing the estimators f,. Let M(®) be the class of all Borel measures p on Z
such that f, € @. Recall that we do not know p so that the best we can say about it is that it
lies in M(®). We enter into a competition over all estimators E,, : z — f, and define

en(®):=inf sup Em(|lf, — fz||i).
m peM(O)
It is easy to see that e, (®) quantitively measures the quality of f,. If ¥ = {f € W] :
[ flloo < M} with r > %, then it can be found in DeVore et al. (2006, Eq. (3.26)) that
enW)>Cm™ 754, m=1,2,..., (12)

where C is a constant depending only on M and d.
Since y € [-M, M], it is reasonable to set the hypothesis space a subset of @, y as

Hi'ly = {88 € Pon. llgll <2M}. (13)
Then, we construct the estimator as
fZ:argminfeﬂyNgz(f). (14)

The following Theorem 4 is the main result of this section.

Theorem 4 Let u € N, and o € @, UW, satisfy c“(0)#£0 for s =0,1,..., N. Suppose
d

that f, € Wi and N = [m@+2 1. If f, is defined in (14), then there exist constants C, and C,
depending only on d, u,r and M such that,

Cim™ BT <e,(@) < sup Epn(1f, — fill2) < Com™ % log?m. (15)
PEM(Y¥)

Due to the nonlinearity, the learning strategy (14) can not be solved easily and may poten-
tially be turned into numerical methods (Gyorfy et al. 2002). At this point, we do not address
the numerical feasibility of our learning strategies. Our main interest is to understand what
is the best performance we can expect for the regression problem using RBFN manifold as
the hypothesis space. Very fortunately, using the simple empirical risk minimization process
in the RBFN manifolds, we can prove that the RBFN manifold is a reasonable choice of
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hypothesis space, since it provides a learning rate as (12), which is usually regarded as the
baseline of learning rate analysis.

Optimal (or almost optimal) learning rates of some existing learning methods have been
already studied in Caponnetto and DeVito (2007), DeVore et al. (2006), Gyorfy et al. (2002),
Maiorov (2006b), Shivaswamy and Jebara (2007), Zhang et al. (2011) and Zhou and Jetter
(2006). For example, Gyorfy et al. (2002, Chaps. 4-6) proved that the local averaging meth-
ods such as partition estimate, Nadaraya-Watson kernel estimate and k-nearest neighbor
estimate can achieve the optimal learning rate for WQ'. Zhou and Jetter (2006) pointed out
that the polynomial estimate can also get the almost optimal learning rate for W; .2 Maiorov
verified the almost optimality for feed-forward neural network estimate in Maiorov (2006b).
Following these work, we proved, as shown in Theorem 4, that, up to a logarithmical fac-
tors, RBFN can also attain the optimal learning rate for W;. This result shows that, as far
as the theoretical optimality is concerned, the RBFN approach is also one of the most best
choices to cope with regression problem. Furthermore, we find that to achieve such an op-

d
timal learning rate, only are m +2' neurons sufficient, which is less than that of the kernel
methods. This result underlies the successful application and potential advantage of RBFNs
in machine learning problems.

5 Proofs of theorems

In this section, we provide the proofs of theorems stated in Sects. 3 and 4. To this end,
Lemma 2 below, which can be found in Maiorov (2003, Eq. (26)) will play a key role.

Lemma 2 Let L and n be any natural numbers satisfying L > (2d + 5)("_1+d). Then for

d
any P, € P,, there exists a set of points {ay, ..., a;} C B? such that
L n
Pax)=> Y Rk Hlx—arl/, xeB, (16)
k=1 j=0

where R(k, j) are constants depending only on k and j.

Proof of Theorem 1 Since o (t) € C"[0,1] and 6 (0) 40 (s =0, 1,..., n), then for every
t€[0,1], n € (0,1) and 1 <m < n, it follows from Taylor’s formula (e.g. Xie and Cao
2010) that

o' (0 o™ (0
1(‘)Mt+"'+ 0)

o(ut) =0(0) + (D)™ + s (1), a7

m!

where

m

uw

S (t) = m

/ (0™ (uu) = o™ () (t — )"~ du (18)
0

and

o () =" ()]

v=pu"

2In Zhou and Jetter (2006), the learning rate was deduced for classification problem by using SVM algorithm
associated with the polynomial kernel and the learning rate is indeed not optimal. But we can deduce the
almost optimal learning rate for regression problem by using the same method as in Zhou and Jetter (2006).
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Hence
m m!
t =m0(ﬂt)+4m—1(f)+rm(l), (19)
where ¢, is a univariate algebraic polynomial of degree m — 1 and
m!
m(l) = ——————5,(f).
(1) e (0)° (0
A direct computation shows that
[rn | < Mun, —1<t=<1, (20)
where M,, := max_j<<| %.
From (16), for arbitrary P,(x) € P,, there exists a set of points {a,...,a;} C B¢ such
that
Hﬂ—ZZﬁonw. @1
Jj=0 i=1
Therefore,

L L
P,(x) =) RG.mlx —al"+ Y R(i.n—Dlx —a|""

i=1 i=1
L L
ok Y RGDIx —ail + YR 0).
i=1 =1

Since x, a; € B, we have |x — a;| < [0, 2]. For arbitrary ¢ > 0, if we take g, € (0, 1/2] such
thatforall j =1,2,...,L

Z\R(l n)|M,8, < —1. (22)

Then, by (19), there holds §,|x — a;| € [0, 1] and
n!

WU(SHM - ail) + q;171(|x - ai|) + ra(lx — ai|)'

Ix —a|" =

Thus,

L
o (8ulx —ail) + > R, n)gu1(1x — a)

i=1

P,(x) = ZR(; n)——

i=1 S ® (0)

L L
+ Y RGEmr(Ix —ail) + Y RGn— Dlx —a;|"!

i=1 i=1
L L
+o Y RGEDIx —a + Y RG.0).
i=1 i=1
In other words, for any given ¢ > 0, there exists §,, € (0, 1/2] such that

P, (x)_ZR(l n)—0

i=1

5o <">(0) 0 (8u1x = ail) + Puci () + Ry (1), 23)
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where

L
Ry(x) := Y R(G, myra(1x — ayl),

i=1

and

L L
Poi(x) =) R mgu1 (X —ail) + Y RG,n—Dlx —a;|"™!
i=l

i=1

L L
+...+ZR(i, D|x — a;| —I-ZR(LO)
i=1 =1

L

L
=Y DG.n—Dlx—al"" +)_ Din—2)x —a|">
i=1

i=1

L L
+o+ Y DG DIx — gl + Y DG, 0).

i=1 i=1
Here D(i, j) are constants depending only on i and j. It follows from (22) that
e
R, e 24
|R,(x)| < . (24)
Furthermore, choose 8,1 € (0, 1/2] such that

L
o [DGn = DM, 18, <

i=1

A similar process as (21)—(24) then yields

(n— 1!
——0O
8y~ 10"=1(0)

L
Pyi(x) =) Dli.n—1)

i=1

(871—1 |x —a; |) + Pn—2(x) + Rn—l(x)7
where

L L
Pia(x) =Y D@i.n—Dgua(lx —ail) + > Dli.n—2)|x — ;"

i=1 i=l

L L
_|_.‘.+ZD(1', 1)|x—a,-|+ZD(i,0)
i=1 i=1

L

L
=Y EGn=2k—a|"?+ ) EGin—3lx —al"’
i=l1

i=1

L L
o Y EGDIx—al+ Y EG.0),
i=1 i=1
E(i, j) are constants depending only on i and j, and
L
Ry1(x):=Y D@, n—Dr,(1x —al).

i=1
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Similarly, we obtain

|Ru1(x)] < (25)

e
n+1’
After repeating the above method n + 1 times, we then finally obtain

L L
Pi(x) =" Aino (Sulx —ail) + Y Ain10(81lx — i)
i=1 i=1
L
+oo Y Ao (Solx —ail) + R(x)
i=1
n L
= A jo(8;1x —ail) + R(x),
j=0 i=1

where

R(x):=) R;(x)
j=0
and A; ; are constants depending on i, j, €, and o. From (24) and (25) it is easy to deduce
that

|R(x)| < (n+1)n€? —e.

Thus, with the RBFN L,

Ln

LS, = cha(wk|x — 9k|)

k=1
there hold the following
|P,,(x) — L(}(,(x)| <&, xeBl.
This implies Theorem 1. ]

Proof of Theorem 2 1t is obvious that there exists a P, € P, such that

£

f = Pull, < ECf, P)pray + 53

On the other hand, Theorem 1 shows that for P, € P, there exists an L, formed as (2) such
that

- e

1P =L, < 3
Combining these two inequalities, the estimation (5) then directly follows. This finishes the
proof of Theorem 2. O

To prove Theorem 3, we need the following Lemma 3 which can be found in Maiorov
and Meir (2001).
Lemma3 Let ; > (% - $)+. Assume o is one of the following types: (i) A piecewise poly-
nomial function; (ii) A rational function; (iii) A Gaussian. Then for any 1 < p, q < oo, there
exists an absolute constant C such that

E(W,, ®5x), = C(NlogN) ™. (26)
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Proof of Theorem 3 1t follows from Corollary 2 that the second inequality of (10) holds. On
the other hand, since o € @,,, we obtain from Lemma 3 that the first inequality of (10) also
holds. This arrives to Theorem 3. O

In order to prove the upper bound of Theorem 4, we need the following two lemmas,
which can be found in Maiorov (2006b) and Zhou and Jetter (2006), respectively.

Lemma 4 For any natural N and any positive number &, the following inequality holds

(i) He(HYy. L*B) <cd"Nlog* 2 if o € W,
(ii) Ho(HYy, L*(B?)) <cd“NlogNlog® ifo € @,.

Lemma 5 Let G be a set of functions on Z such that, for some ¢ >0, |g — E(g)| < B almost
everywhere and E(g*) < cE(g) for each g € G. Then, for every € > 0,

E(®) — 5 2, 8(z) J me
P ezm n < < NglY, B —% (-
robiez {?Z'E E(g) +e <*/E}<N(g “l ))eXp{ 2c+%}

Proof of Theorem 4 For simplicity, we only prove (15) for o € ¥,. The case o € @, can be
similarly justified. From (1), it follows that

Iz = Folly = {ECf) = Efp) = (Ef) = EFD)} + Ef) = E(f) =S + Sa.
Therefore,
Epn(Ifs = foll}) < Epn({E(f) = E(fp) = (E(f) = ED)}) + Epn (E(f2) = E([))-
Now we use Lemmas 4 and 5 to estimate S;. Set
Faw = {(F 0 =3) = ([0 =)+ £ € HYly}-

Then for any fixed g € Fay, there exists f € H), such that g(z) = (f(x) — y)* —
(f,(x) — ¥)?. Therefore,

l m
Ep(@)=E(f) =) =0, — gg(z» =&(f) = &(f,).

Since | f(x)| <2M and | f,(x)| < M almost everywhere, we deduce that
lg@| =[(F @) = £,)((F@) = y) + () = y))| < 15M.
It then follows that |g(z) — E(g)| < 30M? almost every where and
Epn(8?) <30M|[f = f,ll; =30M>Epn(g).
Now we apply Lemma 5 with B = ¢ = 30M? to the set of functions Fy;, which yields
sup {E) =€} —{&(f) = &(fp))
feBoy VIEH) —E(f)) +e
Em(g) — % Yo g(z) -

sup <ve
8€Fom VEm(g) te

with confidence at least

1= N (Far, C(Bd))exp{—%lzz}.
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Observe that for any g, g» € oy there exist f1, f> € Hfg n such that

g@=(fim -y = (-7’ j=12

It is obvious that

21@ — ©:@| = (L) =)’ = (HE& —y)°| <M1 fi = follo-

We see that for any ¢ > 0, an (6LM)-covering of 7—[(1}{ v Provides an e-covering of ). There-
fore,

N (Fom,s C(Bd)) <N (Hg/,[N’ C(Bd))'

oM
Thus, the confidence is
me me
1 —M(ng, C(IB%‘[)) exp{—SOM2 } >1 —Nﬁ (HZN, C(Bd)) eXp{_SOMZ ]

Since

Ny (il C(B) = N (Holy, 1 (B)).

it follows from Lemma 4 that

2
J\/’ﬁ (HZN, C(IB%‘I)) < f:xp{cd"Nlog2 12M }

Thus, we have

(ECf) — £ — (Ef) — EF)) }
Prob,czm <
1Obeez { NEAETIAET ve
3 y , 12M? _me
>1 exp{cd N log 30312 }

Since

1
VEVE) — EUD) +e < Sl — EC) +e,

we conclude that with confidence at least

1 {a”‘Nl 212M2_ me }
exp4 ¢ og 30812
there holds
1
(g(fz) _g(fp)) - (gz(fz) - gz(fp)) = E(g(fz) - g(fp)) +e.
Hence,
Probezn {{E(f) — E(f)} = 2{&(f) — &(fp) )} <&}

> 1 —expycd"N log? 24M° o e

- 160M2 |
Set

T:= {S(fz) - g(fp)} - 2{“:z(fz) - Sz(fp)}

Then

Ef) =E(f)) =T +28. 27)

@ Springer



162 Mach Learn (2014) 95:147-164

For arbitrary p > 24M , there holds

Epm(T):/O Prob,ezn ({E(f,) — E(f,)} = 2{&(f) — Efp)} > e}de

5 +/°° e M me )
X C 0, —_ &
S 8 e T 1e0m?
2

- +/oo {d”Nl log 221 me }d
<nu expic ogmlog ————tde
% & 160M2

00 24M2 cd" N logm
< u+exp R / < ) de
"

160M?2 &
mu 24M2 cd" N logm
< —
Bl INTT07E ( " ) .
my cd" N logm
< —
= MR "o | ’
By setting 1 = 160cd“M2%g2"’, we obtain
320cd" M?N log* m
Epn(T) < . . (28)
Now, we turn to estimate E,» (S,). Note first that
m 2 1
Ep”’(SZ):Ep”‘(gz(fz g(f,o < Z fz(xi)_ _EZ fﬂ(xl Yi >
el ot (L3 (re) 1 i (f, () —
= m in — Xi) — Vi - — Xi
g feHUN m il y m = P

< inf (Ep((f0)=)) = Ep (0 =))

-fE o, N
. 2
= it [ (r0- @)
feHo.N ]Bd
From Theorem 3, the deﬁnition of H(’y - and the well known Sobolev embedding theorem,

it follows that when r > 5, there holds

1

inf {/Ed(f(x) - fp(x))zdp} < Egn (W5, H)'\) ey SCN 7.

ferlly
Therefore, we have
Epn(S) <CN™7. (29)

If we setting N = erLer, then (27), (28) and (29) imply that there exists a constant C de-
pending only on M, d and u such that

2
Ep”’(”fz —fo IIf)) < Cm~ 7+ log*m,

which arrives to the upper bound of (15). However it follows from (12) that there exists a
constant C depending only on M and d that satisfies

2
Ep’"(”fz - fp”?;) >Cm™ 7+,
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which gives a lower bound estimation of learning. With this, the proof of Theorem 4 is
completed. ]
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