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bal region fitting energies are described by the combination of the local and global Gauss-
ian distributions with different means and variances, respectively. In this combination, we
increase a weighting coefficient by which we can adjust the ratio between the local and
global region fitting energies. Then we present an algorithm for implementing the pro-
posed model directly. Considering that, in practice, the selection of the weighting coeffi-
cient is troublesome, we present a modified algorithm in order to overcome this
problem and increase the flexibility. By adaptively updating the weighting coefficient
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Level set method and the time step with the contour evolution, this algorithm is less sensitive to the initial-
Chan-Vese model ization of the contour and can speed up the convergence rate. Besides, it is robust to the
LBF model noise and can be used to extract the desired objects. Experiment results demonstrate that

the proposed model and its algorithms are effective with application to both the synthetic
and real-world images.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation is always one of the major problems in image analysis and computer vision. In the past twenty years,
numerous different approaches have been continuously proposed for handling this problem, such as those recent methods
based on the fuzzy Dempster-Shafer inference system [16] and the feature space [36]. Due to the good performance, active
contour models [8,9,12,19] based on the theory of curve and surface evolutions and geometric flows have been extensively
studied and successfully used in the field of image segmentation. With explicit parametric curves, the original active contour
model was introduced in [19] for extracting objects. As indicated there, this model has some intrinsic disadvantages, such as
its difficulty in handling topological changes. In order to overcome this difficulty, level set method [29] which was firstly
proposed by Osher and Sethian could effectively handle topological changes by representing curves or surfaces as the zero
level set of a high dimensional function. Since the introduction of the level set method, it has become increasingly popular in
many aspects of image processing and analysis. Furthermore, it is specially applied to develop active contour models for im-
age segmentation.

Generally speaking, active contour models can be categorized into two different classes: edge-based models
[9,15,30,39,43] and region-based models [12,20,22,23,34,35,38]. Edge-based models use the edge information to drive the
active contour toward the object boundaries and stop there. This kind of models is sensitive to initial conditions and some-
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times with some boundary leakage problems, especially to the weak or fuzzy boundaries. Compared with the edge-based
models, region-based models do not rely on any edge and gradient information and are less sensitive to the noise and clutter.
Moreover, the region-based models are usually less dependent on the initialization since they exploit the global region infor-
mation of the image statistics. Therefore, in this paper, we mainly focus on the region-based models.

A large variety of region-based models and their related algorithms have been presented over the last twenty years and
among them an increasingly prevalent kind of approaches is mainly concerned with the application of statistical methods
[13]. These approaches are to define the data term usually by introducing statistical parametric models where each segmen-
tation region is characterized by a set of parameters. In this way, it can distinguish the region from the others, such as the
models based on Gaussian distribution [27,48], Gamma distribution [2], Weibull distribution [1], Wishart distribution [4],
Rayleigh distribution [35] and Fisher-Tippett distribution [18]. These models are mainly stated by maximizing a likelihood
estimation or maximizing a posteriori probability, which can be conditionally transformed to minimizing an equivalent en-
ergy functional. One of the most popular region-based models is Chan-Vese (C-V) model [12], which, as a special case of
Mumford-Shah energy functional [28], is defined by minimizing an energy functional to approximate the image in piecewise
constant forms. On the basis of the C-V model, in [6,7,10], the authors further present and develop a series of global mini-
mization methods. However, the C-V model is always based on the assumption that the image is statistically intensity homo-
geneous in each region so that it exists some limitations in practical applications. In fact, intensity inhomogeneous images
widely exist in the real world, such as medical imaging due to some technical limitations or artificial factors. As a whole,
intensity inhomogeneity is still considered as a challenging problem in image segmentation. Based on the single level set
model, a multiphase level set framework [40] is presented for the multi-region image segmentation, which can be used
to deal with the problem of intensity inhomogeneity. However, it requires periodical reinitialization of the level set function
so that the computational cost is expensive. And especially for the image with severe intensity inhomogeneity, the effective-
ness is unsatisfactory. Later on, local region information has been incorporated into the active contour models and it is worth
mentioning that local binary fitting (LBF) model [22,23], also called region-scalable fitting model, performs better than the C-
V model on extracting objects for the image with intensity inhomogeneity. But the LBF model is sensitive to the initialization
of the contour. And especially if the initial position of the contour is far away from the object boundaries, the LBF model may
be prone to getting stuck in local minima.

In practice, how to effectively integrate the advantages of the local and global region information plays an important role
in improving the segmentation quality. Apart from the LBF model, in [21,41,45], active contour models mainly based on the
local region information are further developed in various ways, which are effective to the image with intensity inhomoge-
neity. In [5,42], on the basis of complementary advantages, the local and global region information are incorporated with
each other to increase the flexibility and obtain more desirable results. On the other hand, based on the consideration of im-
age information and application, a major concern is to obtain the selective objects [3,32,46], which has some positive signif-
icance particularly with application to medical imaging in order to extract the partial desired objects for helping medical
diagnosis.

Among the region-based models, in the following we pay attention to the introduction of statistic methods. For simplicity,
letI:x € Q@ — R be a given image, where X is a vector to represent a point in the domain Q. Similarly to [13,31,35], we as-
sume that the intensity of each point is a random variable and its pixel intensity in each local region is independent and
identically distributed. Without loss of generality, we consider a two-region image segmentation problem based on the sta-
tistical methods. Generally the problem of maximizing likelihood estimation or maximizing a posterior probability based on
probability density functions is equivalent to minimizing an energy functional with their negative logarithm forms ex-
pressed as follows:

E(I(x),C) = — | logp(I(x); @1)dx — [ logp(I(x); Q,)dx, (1)

21 (23

where Q; and Q, represent inside and outside regions of the contour C, respectively.

In this paper, based on the merits of the local and global region fitting energies, such as the LBF model and the C-V model,
respectively, we firstly propose an active contour model. In this proposed model, the local and global region fitting energies
are described by a combination of the local and global Gaussian distributions with different means and variances, respec-
tively. In this combination of the proposed model, we increase a weighting coefficient by which we can dynamically adjust
the ratio between the local and global region fitting energies. Subsequently, we introduce the level set method to realize the
contour evolution and deduce the corresponding gradient descent flow equation, which can be easily implemented by the
finite difference method. Secondly, we present an algorithm for implementing the proposed model directly. Nevertheless, in
practice, the selection of the weighting coefficient is not an easy task. If we set a large weight coefficient, we cannot effec-
tively deal with the image with intensity inhomogeneity. On the contrary, if we set it to be small, the proposed model is with
slow convergence and sensitive to the initialization of the contour. In summary, the selection of a suitable weighting coef-
ficient needs a large number of trials and modifications and the process is time-consuming. To overcome this problem, we
further present a modified algorithm in which the weighting coefficient and the time step of the iteration can be adaptively
updated with the contour evolution. That is to say, we can obtain an adaptive weighting coefficient and a fit time step, which
are helpful to detect the object boundaries and speed up the convergence rate. More specifically, for the convenience of the
initialization of the contour, sometimes we can set a relatively large weight coefficient at the beginning. And then when the
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contour goes near the object boundaries, we reduce the weighting coefficient gradually. Meanwhile, if it is necessary, we
decrease the time step for the benefit of detecting the object boundaries accurately. Therefore, this algorithm is effective
and fit to the image with intensity inhomogeneity. In addition, it is insensitive to the noise and can be specially used to de-
tect the desired objects.

The rest of this paper is organized as follows. In Section 2, we mainly review the popular C-V model and the LBF model. In
Section 3, we propose a new active contour model and its corresponding algorithms. In Section 4, we carry out some exper-
iments to demonstrate the effectiveness and performance of our algorithms. Finally, we summarize this paper in Section 5.

2. Background

In the region-based active contour models, the local or global region information is usually employed to define the image
fitting energy functional. In this section, in order to make preparation for the introduction of the proposed model, we first
briefly review the popular C-V model and the LBF model as two kinds of typical examples based on the global and local re-
gion fitting energies, respectively.

2.1. The C-V model

In [12], by simplifying the Mumford-Shah functional [28], Chan and Vese introduced the contour C to divide the image
into inside and outside regions which are expressed as in(C) and out(C), respectively. They used two constants ¢; and c;
to approximate the image intensities of every region. The energy functional of the C-V model is defined as follows:

E(C,c1,¢3) = pu- Length(C) + v - Area(inside(C)) + 44 /

I(X) — c12dX + 4, / I(x) — co|*dx, 2)
Jin(c) Jout(C)

where £ > 0, v > 0, 44 >0, 4, > 0 are parameters.

The first term of the energy functional (2) is the length restraint term of the contour and the second term is the area re-
straint term of the inside region. The last two terms, called fitting energy based on the inside and outside regions of the con-
tour, play a major role in the process of the contour evolution. In calculus of variations, by minimizing the energy functional
(2) with respect to the level set function ¢, the corresponding level set formulation is obtained as follows:

20 o) [aiv(Zh) — v - 00 — 1+ 2l - e ®)
where div(-) is the divergence operator and ¢ is the Dirac function. Similarly, c¢; and ¢, are obtained by
_ JI)H(¢(x))dx
€1 (¢) - W s (4)
s — L1000~ Ho(0))dx )

J(1 = H($(x)))dx

where H is the Heaviside function.

The C-V model, based on techniques of curve evolution and the level set method, is considered as one of the most widely
used models for two-region image segmentation. However, what is limited is that, the C-V model always supposes the image
with intensity homogeneity. In fact, from Eqgs. (4) and (5) we can observe that ¢; and ¢, are mainly related to the global prop-
erties for they rely on the region information inside and outside the contour, respectively. Because it does not take the local
image information into account, the C-V model cannot effectively segment the image with intensity inhomogeneity.

2.2. The LBF model

In image segmentation, the LBF model [22,23] was primarily proposed for exploiting the local region information to deal
with the problem of intensity inhomogeneity. Its energy functional is defined as follows:

E(C,/i(X),f2(X)) = A / [/m(o Ko(x = y)|I(y) - fi(x)*dy

gz [ { [ Kelx-ylity) - o)y | dx, (6)
out(C)
where 4, and A, are positive constants.

In the energy functional (6), f1(x) and f>(x) are two smooth functions that are used to locally approximate image inten-
sities inside and outside the contour, respectively, and K, is a Gaussian kernel function with standard deviation ¢ defined by

2
Ko(X—y) = (27:);"/20 exp (_ \xzagl ) A (7)
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In the LBF model, for each center point X, the values of f; (X) and f,(x) only fit the image intensities in a local region near x
because of the effect of the Gaussian kernel function K,(x —y). If y is near x, the value of K;(x —y) is large and the contri-
bution of the intensity I(y) to the energy functional is significant. On the contrary, when y goes away from x, K,(x —y) de-
creases drastically to zero so that the contribution of the intensity I(y) to the energy functional approaches to zero. In fact,
fi(x) and f,(x) can be considered as the local weighting averages of the image intensities in the Gaussian window inside and
outside the contour, respectively. In some sense, these local averages are more effective than the global averages c; and c,
shown in the C-V model.

Due to the introduction of the kernel function, and the utilization of the local region fitting energy of the image, the LBF
model can cope with the intensity inhomogeneity well. However, the local region information is not always enough for effec-
tive and accurate image segmentation. Furthermore, the LBF model depends on the initialization of the contour. And in par-
ticular, if we set the initial position of the contour far away from the object boundaries, the LBF model is prone to getting
stuck in local minima.

3. An active contour model and its algorithms

Notice that the local or global region information alone is not enough for image segmentation. Hence, in consideration of
their respective merits and limitations, we will consider to propose an active contour model with both the local and global
Gaussian distribution fitting energies and further present its algorithms for implementation in this section.

3.1. An active contour model with local and global Gaussian distribution fitting energies

As stated in Section 2, the C-V model and the LBF model have their respective advantages and disadvantages, because the
former is mainly based on the global region information and to the latter, the local region information is pivotal. Hence, with
a view to finding more applicable methods, it is natural and meaningful to consider integrating their merits. In image seg-
mentation, whether the object boundaries and the fine structures can be accurately detected largely depends on the local
neighbor region information. Meanwhile, to reduce the impact of the noise and the possibility of getting stuck in local min-
ima, the global region information plays a leading role. Particularly it is crucial to decrease the sensitivity to the initialization
of the contour. In fact, the local and global region fitting energies are based on the local and global region information of the
image, respectively. Motivated by the contributions and methods in [21,41,48], and the works of the LBF model [22,23], we
propose an active contour model for incorporating the local and global region information of the image. From a statistical
point of view, in the proposed model, the fitting energy is described by a combination of the local and global Gaussian dis-
tributions with different means and variances, respectively. Firstly, by increasing the length of the contour as a restraint term
as shown in [12], we define an energy functional as follows:

E(C. 11 (X), (%), 0 (X), 63(X). s 115, 02, 02) = v - length(C) — (1 0){ / [ Ko(X — y)log py (1Y), 11 (X), a%(x))dy} dx

o

23
—0{ logp, (100, s, )dx + | logp4<1<x>7u4,ai>dx}, (8)
Q Q

[}

+f [ Ko (% — ) log py (1Y) 12(%), 63(%))dy

where v and 6 are nonnegative constants.

In the energy functional (8), the first term is the length restraint term, and the second and third terms are the local and
global region fitting energies, respectively. Here, we still focus on two regions: 2; = in(C), Q, = out(C). K, is a Gaussian ker-
nel function defined as (7) in the LBF model and its role is similar to a window function. u;(x) and u,(x) are two functions in
the variable x, which are respectively used to approximate the local mean intensities of the neighbor region of the point x
inside and outside the contour C. Similarly, 62 (x) and 03(x) approximate the local variances of the neighbor region intensities
of the point x inside and outside the contour C. Besides, different from the former description, u; and u4 represent global
mean intensities inside and outside the contour C. Analogously, 62 and 62 represent global variances of intensities inside
and outside the contour C. p;,(I(y), u1(X), 02(x)) and p,,(I(¥), U2(X), 6%(X)) are probability density functions of local region
intensities defined as the Gaussian distributions

PN
Pall9) (). GH0) = o e <— %) o

where i= 1,2, correspond to the inside and outside regions of the contour C. On the other hand, p;(I(x),us,02) and
ps(I(X),u4, 03) are probability density functions of global region intensities defined as

_ 1 X —wy)?

pj(l(x)7 uj, 0-12)
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where j = 3,4, correspond to the inside and outside regions of the contour C. To be simple, we call Egs. (9) as local probability
density functions and Eq. (10) as global probability density functions. Besides, we call u; (x) and u,(X) as local means, g% (x)
and g2(x) as local variances, u; and uy as global means, 63 and o3 as global variances. Therefore, the combination of the sec-
ond and third terms in the energy functional (8) is called local and global Gaussian distribution fitting energies.

Further considering the expression of the energy functional (8), we set 0 < 0 < 1 and call it as a weighting coefficient in
the following, by which we can adjust the ratio between the local and global region fitting energies. In fact, if 0 = 1, the en-
ergy functional is fully based on the global region fitting energy. On the other hand, if 0 = 0, the energy functional completely
relies on the local region fitting energy.

According to the introduction of the level set function ¢, we assume Q; = {¢ > 0} and Q, = {¢ < 0}. Correspondingly, the
contour C is expressed by the zero level set as C = {¢ = 0}. As can be seen in [12], we introduce the Heaviside function H and
the Dirac function ¢, and then the energy functional (8) is rewritten as follows:

E(¢,u1(X), Uz (X),0%(X), 0% (X), U3, Us, 03,0%)

2
—v/VH(¢>(x))dx+(1—9){/ Vzg(x—y) (log\/ﬁﬂoga1 (x)+%>m¢(y))dy} dx

2
| [Ketx-y) <log¢2—n+logaz(x)+%>a —H(¢(y>)>dy} dx}

2 2
+9{/ <log\/ﬁ+log03+(l(x;6%u3))H(d)(x))dXJr/ <log\/ﬁ+loga4+(1(xio_ﬁu4))(1—H(¢(x)))dx}, (11)

where o;(X)(i = 1,2) are called local standard deviations, and similarly o;(j = 3,4) are called global standard deviations.

With the level set evolution, usually it may become too steep or flat, which is unfavorable for numerical stability. There-
fore, it is necessary to reinitialize the level set function for maintaining the signed distance property [14,17,24,37]. In order to
preserve the level set function regularity and eliminate the reinitialization, we introduce a general distance regularized level
set evolution (DRLSE) [25] energy term proposed by Li et al. as follows:

$) = / PV $(X)])dx, (12)

where p is called a double-well potential function defined by

(l —cos(2nz)), ifz<1,
( (13)
1(2 - 1), ifz>1
Consequently, the total energy functional of this paper is expressed as follows:
F(¢, 1 (%), U2 (%), 07 (X), 05(X), U3, Us, 03, 03) = URy(¢) + E($, U1 (X), Uz(X), 07(X), 03 (X), U3, Us, 03, 03), (14)

where p is a positive constant. Depending on the expression of the Gaussian distribution, the total energy functional incor-
porates the local and global region information of the image via the introduction of the weighting coefficient. Besides, owing
to the introduction of DRLSE, we eliminate the complex reinitialization procedure of traditional level set methods.

In practice, as mentioned in [12,23], usually the Heaviside function H and the Dirac function § are respectively approx-
imated by a smooth function H, and its derivative J, defined by

H.(2) = % {1 +% arctan (%)},

and
1 ¢

ne+22

0s(2) =
Therefore, the total energy functional (14) can be approximated as follows:

Fs(¢>u1 (X)7 Uz(x), 6%(")7 6%(")7”37 Uy, 6%’ O-Azl) = ﬂRP(¢) + Ek(¢7 251 (X),Uz(x), 6%()()7 O’%(XL u37 Uy, 6%7 6421) (15)

By using the standard gradient descent method, at first, we fix ¢ and minimize the energy functional (15) with respect to
other variables alternately. Then we obtain the local means and variances as follows:

JKo(x—y)I(y)H:(¢(y))dy

=

) = X = Y (oW))dy (16)
_ JKs(x—=WI(y)(1 — Ho((y)))dy
200 =R )1~ Hao(y)dy (17)
JKo(x = y)(I(y) — u1(X))*He(¢(y))dy
A = X -YHGW (18)
52— I Kex=Y)(19) 100" ((1 ~ H,(p(y)))dy "

JKe(x—y)(1 - He($(y)))dy ’



48 H. Wang et al./Information Sciences 263 (2014) 43-59

and the global means and variances as follows:
JI(x ))dx

e W’ (20)
JI)(1 — Hy($(x)))dx
U= T H(em)dx (21)
, JU®) - usPH(d(x)dx
I ATTC I . @2
6421 _ f(I(x) - u4)2(1 — Hﬁ((/)(x)))dx. 23

J(1 = H(6(x)))dx

Subsequently, we keep all the variables fixed except for ¢, then minimizing the total energy functional (15) with respect to ¢
is equivalent to solving the gradient descent flow equation as follows:

O = div(d (V9T 9) + vou()div (15 ) = 0,01 - 0)(er — ) + des — )] (24)

where d,(z) is defined by
_P@

dp(2) = -

In addition, e;, e, are given by
o } (I(x) — ui(y))* .
and es, ey are given by
2
e —loga; + (X W) ;34 (26)

2
Zaj

In the level set formulation (24), our analysis mainly focuses on the right-hand side. The first term udiv(d,(|V¢|)V¢) de-
rived from DRLSE is used to maintain the regularity of the level set function. In particular, the parameter y controls the
weight of regularization and it should be relatively small as stated in [25]. The middle term vof(dw)dlv(‘w) is the length re-
straint term of the contour C. The last term —d.(¢)[(1 — 0)(e; — e2) + 0(es — e4)] originated from the local and global region
fitting energies plays a dominant role in the total energy functional.

Remark 1. In the proposed model (8) or (11), we have not simply integrated or combined the C-V model and the LBF model.
Considering the problem from another perspective, we employ the Gaussian distribution to design the local and global fitting
energies. If 0=1, 63=03=05 and 0 — oo, the proposed model will degenerate to the C-V model. If
0=0, g3(X) = 03(x) = 0.5, the proposed model will be the same as the LBF model.

3.2. Algorithms and numerical approximation

In the proposed model, the contour is driven by the local and global region fitting energies, both of which are complemen-
tary to each other. When the contour is in the neighbor region of the object boundaries, the local region fitting energy plays a
dominant role to control the movement and stop of the contour. On the other hand, when the contour is far away from the
object boundaries, the global region fitting energy has a decisive effect on the contour evolution.

As noted in Section 3.1, 0 is considered as the weighting coefficient of the local and global region fitting energies. Clearly,
once the value of 0 is set, simultaneously 1 — 0 is also determined. In terms of application to the image with severe intensity
inhomogeneity, we should choose a relatively small 6. At this time, 1 — 0 is relatively large, which means that the contour
evolution is mainly driven by the local region fitting energy. By contrast, if the intensity inhomogeneity is low, a relatively
large 0 should be set so as to make the global region fitting energy be dominant for the convenience of initializing the con-
tour and speeding up the convergence rate. Therefore, in practical applications, it is very requisite to choose a suitable 0 for
obtaining preferable segmentation results.

For solving the level set formulation (24), we first need to calculate the local means u; (X), > (X), variances ¢2(X), 632(X), e
and e,. More specifically, the calculations of u;(X) and u,(x) are described in details as follows:

_ Ket) « H0H (9]
KoX) + Hy(p(x))
Ko (%)  [[(%)(1 — Hy((X)))
Ko@)+ (1 - H($(x))

U (X)

[15) (X) =
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And the calculations of g2(x) and 2 (x) are described by

o2 (x) = JKo(x = y)(I(y) — us (X))’ He(¢(y))dy
! JKo(x —y)H,((y))dy
_ JKexX—y)[PWH(oW))dY  2ui(x) [ Ko (X — ) [I(Y)He(d(y))ldy L) [Ko (X~ y)H(4(y)dy
JKs(x—y)H:(o(y))dy JKs(x—y)H:((y))dy JKs(X—y)H:(o(y))dy
_ Ko(®) # [PXH(6(X)] 21 (X){Ko(X) * [[(X)Hs(6(X))]} L BOIKo (X)  Ho(¢())]
K5 (X) * Hy((X)) Ko (X) * Hy((X)) K;(X) «Hy(¢(x)) ~

o2(x) — Ko+ (P00 = H(900)] _ 2a(X){Ko ()« 1(X)(1 ~ Hi($Xx)))} BIIKo(X) (1 = Ho(§(X)]
2 Kq(x) « (1 = He(¢(X))) Ks(X) + (1 — Hy(¢(X))) Ka( ) * (1 — Hi(¢(x)))
Then e; and e, are calculated as follows:
7 _ 1, 1 u;(X) 1 u?(Xx)
ei _KU(x)*loga,(x)Jer (X) {KG(X) * (a?(x))} I(x) | Ko (X) * (0,?(x) +5 Ko (x) * 2x) |
Secondly, we can use the analogical process to describe the calculations of the global means us(X), u4(X), variances
0%(X), 02(X), e3 and ey.
Note that it is unnecessary to reinitialize the level set function due to the introduction of DRLSE. For its excellent effect on
maintaining the regularity and stability, as described in [25,41,42,45], we can initialize the level set function as follows:

i=1,2.

a, X € Qq
$o(X) ={ —a, otherwise (27)

where Q, C ©, and a is a positive constant. Furthermore, we use a simple finite difference explicit scheme to discretize the
level set formulation (24) as follows:

¢n+1 _ ¢n
At

V¢"
V"

where we take into account the Neumann boundary condition.
Next, a direct implementation of the proposed active contour model is presented in Algorithm 1.

— iv(ey (V97 V9") + va(9div () = 0.87)I(1 — 0)es —ex) + 0 ea), (28)

Algorithm 1. The implementation of the proposed active contour model: fixed weighting coefficient 0 and time step At

Input: I

Initialize: ¢° = ¢o(X), i, v, ¢, 0.
Choose: 0, At.

n=1.

while the solution is not converged do
Compute u;(X), U2(X), 0%(X), 0%(X) by using Egs. (16)-(19) sequentially.
Compute us, us, 03, 05 by using Egs. (20)-(23) sequentially.
Update level set function ¢™*! by solving level set formulation (24).
n=n-+1.

end while

Remark 2. In Algorithm 1, the choice of 0 relies on the degree of the intensity inhomogeneity of the image.

In practice, as we have pointed out above, it is necessary to choose a suitable weighting coefficient 0 to better balance the
local and global region fitting energies for image segmentation. Moreover, to some extent, apart from the cooperation, both
of them exist with mutual competition. For example, setting a large 0 for the image with severe intensity inhomogeneity,
such as magnetic resonance (MR) image may lead to undesirable results. The reason is that the global region fitting energy
plays a leading role under this condition. On the other hand, if 0 is too small, the proposed model is with slow convergence
and sensitive to the initialization of the contour. As a special case, it may get stuck in local minima and fail in extracting the
desired objects far away from the initial contour. What is more, in terms of actual applications, sometimes we only need to
obtain some selective objects rather than overall ones, so we try to set a small 6 and initialize the contour near the desired
object at this moment. Actually, it is illogical and improper to always set a small 6 because sometimes initializing the contour
near the desired object is not an easy task, especially for the image with multiple objects or a complex background. In addi-
tion, even to a common image, selecting a suitable constant 0 needs a great number of trials and modifications and the pro-
cess is time-consuming.
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Considering the existing problem about the choice of the weighting coefficient, we further present a modified algorithm
in which the weighting coefficient 6 and the time step At can be adaptively changed with the contour evolution. In other
words, they are not always two fixed constants. For simplicity, we can set a relatively large 0 and a relatively large At for
the benefit of initializing the contour and speeding up the convergence rate at the beginning. Then when the contour goes
near the object boundaries, we reduce 0 gradually in order to decrease the weight of the global region fitting energy and
increase the weight of the local region fitting energy. Meanwhile, if it is necessary, we reduce At to decrease the convergence
rate for the benefit of detecting the object boundaries accurately. Specifically, the main idea and procedure are described as
in Algorithm 2.

Algorithm 2. The implementation of the proposed active contour model: changing weighting coefficient 0 and time step At

Input: L.
Initialize: ¢° = ¢o(X), i, v, &,0,T1, T2, T3, Ty.
Compute: [M, N] = size(I).
Choose: 0, At.
n=1.
while the solution is not converged do
Compute u;(X), Uz(X), 02(X), 05(X) by using Egs. (16)-(19) sequentially.
Compute u3, Uy, 03, 05 by using Egs. (20)-(23) sequentially.
c=0,L=0.
fori=1toMdo
forj=1to Ndo
if |¢"(i,j)| < T and |VI(i,j)| > T, then
c=c+1.
if c > T then
0=20/2.
if At > T4 then
At = At/2.
end if
L =1, break.
end if
end if
end for
if L ==1 then
break.
end if
end for
Update level set function ¢™! by solving level set formulation (24).
n =n+ 1. end while

Remark 3. In Algorithm 2, we first need to access the size of the image I by [M, N] = size(I), where M is the height and N is the
width. c is a counter for counting pixels. Ty, T,, Ts and T, are preset threshold constants. Considering the level set function
and the image with the same domain, we adopt the index (i, j) to find the relation between ¢(i,j) and I(i,j). More specifically,
in every iteration, all the points on the level set surface and all the pixels of the image are used to realize the loop. For each
index (i,j), if the corresponding point on the level set surface meets |¢"(i,j)| < Ti, then this point is considered to be close to
the present zero level set. On this basis, for the same index (i, ), if the corresponding pixel of the image meets |VI(i,j)| > T,
which means the position of this pixel with high gradient, then ¢ = c + 1. Generally speaking, the gradient of the object
boundary of the image is always high. Further if ¢ > T3, it means these pixels with high gradients are enough, and conse-
quently we deduce that the present zero level set is close to object boundaries. In other words, the contour C is near the
object boundaries, then we have 6 = 0/2. to decrease the weight of the global region fitting energy and increase the weight
of the local region fitting energy. Meanwhile, if At > T4, then At = At/2. L is a flag to be used to judge whether we have
reduced 6 because it is permitted to change once in each iteration.

Remark 4. In Algorithm 2, the choices of the four threshold constants T, T», T; and T4 are very important to improve the
segmentation quality and reduce the iteration time. In general, T; should be relatively small for it is used to deduce whether
the point on the level set surface is near the present zero level set. Based on the same index (i,j), T, is used to judge whether
the corresponding pixel of the image is in or near the high gradient areas. T; is used to judge whether these pixels are
enough, which should be relatively large in order to avoid mistaking due to the interference of noise. T, is used to judge
whether it is necessary to continually reduce At.
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Remark 5. In Algorithm 2, |VI(i,j)| = /I2(i,j) + Iﬁ(i,j), where I(i,j) and I, (i,) are calculated by using the central difference

scheme in the interior points and the forward or backward difference scheme on the boundary points.

In Algorithm 2, by employing the value of the level set function and the gradient information of the image, we mainly
focus on judging whether the contour C is close to the object boundaries. Generally, we consider when the zero level set
is near the high gradient areas, which means that the contour C is close to the object boundaries. Therefore, we decrease
the weighting coefficient 0, which signifies changing the weight between the local and global region fitting energies. From
Algorithm 2, we can obtain an adaptive weighting coefficient 6 and a fit time step At, which are helpful to detect the object
boundaries accurately and reduce the iteration time. Besides, as far as we are concerned, it can deal with the problem of the
initialization for different requirements. To be specific, we can select a relatively large weighting coefficient 0 at the
beginning.

4. Experimental results and discussions

In this section, a series of synthetical and real-world images are used to test the effectiveness and performance of the pro-
posed active contour model and its corresponding algorithms. All the experiments are mainly divided into two categories for
respectively verifying Algorithms 1 and 2, which are implemented in Matlab 7.0 on a personal computer with Inter Pentium
CPU 2.80GHz and 4 GB of memory. Unless otherwise specified, the default parameters are set as a=2,u = 0.04,
v =0.00001 x 255?, £=1.0, 6 =3.0, At=1.0, T; =0.1, T, =4.0, T3 =10, T, =0.2. In the following experiments, the
choice of the weighting coefficient 0 mainly depends on the degree of the intensity inhomogeneity of the image.

4.1. Experiments for Algorithm 1

In the beginning, we test the effectiveness of Algorithm 1. As discussed in Section 3.2, it is very critical for Algorithm 1 to
set a suitable weighting coefficient 0 to balance the weight between the local and global region fitting energies. Fig. 1 shows
the comparison results of the C-V model and Algorithm 1 on a synthetic image with blurred boundaries. We use two kinds of
the initialization as in Fig. 1(a) and (d). Fig. 1(b) and (e) are the results of the C-V model which are accurate and desirable.
With the same initial contours, Algorithm 1 can achieve similar results as in Fig. 1(c) and (f), where we choose 0 = 0.8 owing
to the image with low intensity inhomogeneity. From the comparison results we can see that the effectiveness is similar be-
tween the C-V model and Algorithm 1.

Fig. 2 shows a comparison on the C-V model, the LBF model and Algorithm 1 for a synthetical image and two X-ray
images. All of them are typical images with intensity inhomogeneity [23]. The first column presents the initial contours.
The second column shows the results of the C-V model in which partial objects and backgrounds are mixed with each other.
These results clearly demonstrate that the C-V model cannot handle the intensity inhomogeneity well as explained in Sec-
tion 2.1. The third and fourth columns are the results of the LBF model and Algorithm 1, respectively, and both of them are
similar. Due to these images with intensity inhomogeneity, we choose 6 = 0.01 in the first row, 0 = 0.05 in the second row

(a) (b) (c)
=
k (d) (e) ()

Fig. 1. Comparison results for a synthetic image. (a) and (d) are initial contours. (b) and (e) are the results of the C-V model. (c) and (f) are the results of
Algorithm 1.
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Fig. 2. Comparison results for images with intensity inhomogeneity. Column 1: initial contours. Column 2: results of the C-V model. Column 3: results of
the LBF model. Column 4: results of Algorithm 1.

Fig. 3. Results of Algorithm 1 with application to two real-world images. Column 1: initial contours. Column 2 and Column 3: intermediate results. Column
4: final results.

and 6 = 0.05, v =0.000015 x 255 in the third row. These experiment results illustrate that our algorithm can obtain sat-
isfactory results by choosing a suitable weighting coefficient 0, like the LBF model.

Fig. 3 demonstrates the effectiveness of Algorithm 1 with application to real-world images. Every row is the initial con-
tour, intermediate results and the final result from left to right. The process of the contour evolution indicates that the con-
tour is driven by the local and global region fitting energies and gradually moves toward the object boundaries. We choose
6 =0.2 and v = 0.00002 x 255°.

Next, we test the performance of Algorithm 1 on some synthetic images with noise in Fig. 4. We set the different locations
for initial contours. Fig. 4(a) and (g) show that the initial contours intersect with the objects and backgrounds. Fig. 4(b) and
(h) are the corresponding results. Fig. 4(c) shows that the initial contour is completely inside the object and Fig. 4(d) is the
final result. Fig. 4(e) shows that the initial contour is fully outside the object and the final result is shown in Fig. 4(f). Fig. 4
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Fig. 4. Results for synthetic images with noise. (a), (c), (e) and (g) are initial contours. (b), (d), (f) and (h) are the results of Algorithm 1.

indicates that Algorithm 1 is less sensitive to the noise and the initialization of the contour. We choose 0 = 0.5 and
v = 0.00002 x 255°.

4.2. Experiments for Algorithm 2

As described and analyzed in Section 3.2, sometimes selecting a suitable constant 6 for Algorithm 1 requires many trials
and this process is time-consuming. Therefore, we further present Algorithm 2 in which we can obtain an adaptive 0 and a fit
At with the contour evolution. In particular, for the image with intensity inhomogeneity, when the initial contour is far away
from the object boundaries, choosing a relatively large or small constant 0 is not suitable for Algorithm 1. In practice, accord-
ing to Algorithm 2, it is appropriate to follow a flexible way that we choose a relatively large 6 and a relatively large At at the
beginning and gradually decrease them when the contour goes near the object boundaries. In the following experiments, we
concentrate on demonstrating the effectiveness and performance of Algorithm 2.

Fig. 5 shows some comparisons of the performance between the LBF model and Algorithm 2 on medical images with
intensity inhomogeneity. As a matter of fact, it is significant about how to extract the desired objects for medical images.
Every row presents the initial contour, the result of the LBF model and the result of Algorithm 2 from left to right. In the first
row, an X-ray image of the vessel is tested and the final results of two methods are similar. Nevertheless, for the ultrasound
image in the second row and especially the MR image with a tumor in the third row, it is clear that the performance of Algo-
rithm 2 is better than the LBF model. We choose 0 = 1.0, T, = 1.0 in the first row, 6 = 0.1, v = 0.00002 x 255 in the second
row and 0 = 0.1, v = 0.000026 x 255%, T, = 1.0 in the third row. Furthermore, Fig. 5 also demonstrates that Algorithm 2 is
effective to extract the desired objects. Specifically, the comparison iterations of convergence and CPU time in seconds cor-
responding to Fig. 5 are listed in Table 1, which show that Algorithm 2 takes more iterations and CPU time than the LBF mod-
el. In fact, according to the discussion in Section 3.2, it is reasonable for our algorithm to be of more computational
complexity.

In order to specify the change of the weighting coefficient, Fig. 6 shows three examples to illustrate the effectiveness of
Algorithm 2. The first and second rows exhibit the images with intensity inhomogeneity, where we choose 0 = 1.0,
v = 0.000035 x 255, T, =6.0 and 6 = 1.0, v = 0.00004 x 255%, T; = 0.3, T, = 1.0, respectively. The third row is a micro-
scope image of cells where we choose 6 = 1.0, v = 0.000032 x 255%. The first column presents the initial contours and the
second column shows the intermediate results. The third column is the final results. According to Algorithm 2, when the con-
tour goes near the object boundaries, the weighting coefficient 0 and the time step At will correspondingly decrease. The
fourth column is the changing curves of 0 and At for the first 50 iterations. From the curves we can observe that 6 and At
remain unchanged at the beginning and then gradually reduce with the increasing iterations. After 50 iterations, 0 ap-
proaches to zero which indicates that the dominant fitting energy of the proposed model has shifted from the global region
fitting energy to the local region fitting energy. Furthermore, reducing 0 and At is beneficial to accurately detect the object
boundaries. And especially for the concave boundaries in Fig. 6(b) and the fuzzy boundaries in Fig. 6(k), Algorithm 2 performs
very well.

From the viewpoint of the content and structure, even though Algorithm 2 is more complex than Algorithms 1, and 1 is
sensitive to the choice of the initial contour. That is to say, an unfit initialization may lead to slow convergence or
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Fig. 5. Comparison results for medical images. Column 1: initial contours. Column 2: results of the LBF model. Column 3: results of Algorithm 2.

Table 1
Iterations and CPU time of the experiment in Fig. 5.
LBF [22,23] Algorithm 2
Iterations Time (s) Iterations Time (s)
Vessel image 400 8.94 1500 85.08
Ultrasound image 300 5.87 2000 81.49
MR image 500 10.22 1400 74.61

dissatisfactory results. Besides, in order to speed up the convergence rate for Algorithm 2, we can choose a relatively large 0.
Fig. 7 indicates the relationship between Algorithms 1 and 2 based on the same initial conditions. The first row is a synthet-
ical image with noise and its size is 206 x 195 pixels. Fig. 7(a) is the initial contour. Fig. 7(b) is the result of Algorithm 1
where 0 =0.01, v=0.00002 x 255, Fig. 7(c) is the result of Algorithm 2 where 0=1.0, v =0.00002 x 255°,
T, =0.01, T, =6.0, T3 =20, T4 = 1.0. The second row is a MR image and its size is 136 x 132 pixels. Fig. 7(d) is the initial
contour. Fig. 7(e) is the result of Algorithm 1 where 6 = 0.2, v = 0.00002 x 2552, This result seems not to be desirable for all
the boundaries are detected completely. Fig. 7(f) is the result of Algorithm 2 where 6 = 1.0, v = 0.00002 x 2552, T; =
0.05, T4 = 0.5. Here, we obtain the desired result. As discussed in Section 3.2, when the contour goes near object boundaries,
0 becomes smaller and smaller with the contour evolution. In fact, the global region fitting energy is dominant at the begin-
ning and the local region fitting energy plays a leading role after some iterations. These experiment results illustrate that
Algorithm 2 is flexible to extract the desired objects. The comparison iterations of convergence and CPU time for Fig. 7
are listed in Table 2, from which we can clearly observe that Algorithm 2 with fewer iterations and less CPU time is faster
than Algorithm 1.

For validating the effectiveness of Algorithm 2 on the image with intensity inhomogeneity, a series of synthetical images
have been tested and the corresponding results are shown in Fig. 8. Fig. 8(a) is the initial contour and Fig. 8(b) is the result,
where 6 =0.1, v =0.00003 x 255%, T, = 1.0. Fig. 8(c) is the initial contour and Fig. 8(d) is the result, where 6 = 0.5, v =
0.000038 x 255%, T, = 0.5. Fig. 8(e) is the initial contour and Fig. 8(f) is the result, where 0 = 0.6, v = 0.00003 x 2552,
T, = 0.5. Fig. 8(g) is the initial contour and Fig. 8(h) is the result, where 6 = 1.0, v = 0.00003 x 255%. These experiment
results verify that the effectiveness of Algorithm 2 is satisfying when applied to the synthetical images with intensity
inhomogeneity.
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Fig. 6. Results and curves. (a), (e) and (i) are initial contours. (b), (f) and (j) are the intermediate results of Algorithm 2. (c), (g) and (k) are the final results of
Algorithm 2. (d), (h) and (1) are the changing curves of 6 and At for the first 50 iterations.

Fig. 7. Comparison results of two algorithms. (a) and (d) are initial contours. (b) and (e) are the results of Algorithm 1. (c) and (f) are the results of Algorithm
2.
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Table 2
Iterations and CPU time of the experiment in Fig. 7.
Algorithm 1 Algorithm 2
Iterations Time (s) Iterations Time (s)
Synthetical image 1150 190.51 650 108.33
MR image 1200 86.69 1000 72.18

(a) (b)

() (9) (h)

Fig. 8. Results for synthetic images with intensity inhomogeneity. (a), (c), (e) and (g) are initial contours. (b), (d), (f) and (h) are the results of Algorithm 2.

(d)

Fig. 9. Results for Algorithm 2 with application to medical images. Column 1: initial contours. Column 2 and Column 3: intermediate results. Column 4:
final results.

Subsequently, a further experiment is carried out to test the effectiveness of Algorithm 2 on medical images again and its
results are shown in Fig. 9. We choose an ultrasound image in the first row and a brain MR image in the second row. Every
row is the initial contour, intermediate results and the final result. Here, taking account of the convergence rate, we choose
0 = 1.0 for the ultrasound image and the object boundaries are detected well. Similarly, for the brain MR image, we set
0=1.0, T; =0.01, T4 = 1.0. The result manifests that almost all white matter is successfully extracted. The iterations of
convergence and CPU time for Fig. 9 are shown in Table 3.

At last, we focus on demonstrating the effectiveness of Algorithm 2 on a synthetical image with the noise and intensity
inhomogeneity as in Fig. 10. Fig. 10(a) and (e) are two different initial contours. Fig. 10(b) and (f) are the results of interactive
active contour (IAC) [33] model, where the performance is not desirable. As described in [33], the IAC model is mainly an
integration of geodesic active contour (GAC) model [9] and the C-V model. Because of incorporating the edge information
and the global region information, without involving the local region information, it is unable to deal with the problem of
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Table 3
Iterations and CPU time of the experiment in Fig. 9.
Iterations Time (s)
Ultrasound image 800 40.21
MR image 900 39.09

(9) (h)

Fig. 10. Comparison results for a synthetical image with noise and intensity inhomogeneity. (a) and (e) are initial contours. (b) and (f) are the results of the
IAC model [33]. (c) and (g) are the results of Wang et al. [42]. (d) and (h) are the results of Algorithm 2.

Table 4
Iterations and CPU time of the comparison experiment in Fig. 10.
IAC [33] Wang et al. [42] Algorithm 2
Iterations Time (s) Iterations Time (s) Iterations Time (s)
Row 1 150 5.16 1500 30.62 1500 84.45
Row 2 150 3.87 1500 30.55 1500 84.38

the intensity inhomogeneity well. Fig. 10(c) and (g) are the results of Wang et al. [42] which is a direct combination of the C-
V model and the LBF model. Fig. 10(d) and (h) are the results of Algorithm 2. These experiment results demonstrate that
Algorithm 2 is robust to the presence of the noise and intensity inhomogeneity. In our algorithm, the weighting coefficient
and the time step can be dynamically changed with the alteration of the contour location, which is more flexible than the
model in [42]. We set 6 = 0.1, v = 0.00003 x 255%, T; = 0.02, T4 = 1.0. The comparison iterations of convergence and
CPU time for Fig. 10 are listed in Table 4, which illustrates that our algorithm takes more computational time. Even so,
our algorithm is very flexible and effective.

4.3. Discussion on parameters

In Sections 4.1 and 4.2, according to different experiment images, we choose different parameters. Like other related
methods, the choices of parameters are essential to improve the quality of segmentation. In Algorithm 1, the selection of
the weighting coefficient 0 relies on the degree of the intensity inhomogeneity of the image. But for Algorithm 2, it is rela-
tively convenient. In fact, as shown in Section 4.2, in most cases, we choose 0 = 1.0 because its value will be adaptively chan-
ged with the level set evolution. Here, we mainly focus on discussing the parameters Ty, T,, Ts and T4, which play a
significant role to obtain satisfactory results. Generally, T; should be small. T, should be large because it is a threshold of
the gradient module. Especially to the image with strong noise, it is reasonable to be relatively large. For the image with
weak or fuzzy boundaries, it should be small. T3 is a threshold of the counter. For the image with many high gradient areas,
it should be large. For the image with clear object boundaries and a simple background, it can be chosen as a small value. T,
is a threshold to be used to judge whether it is necessary to reduce the time step. For the image with complex object bound-
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aries, we should set it to be small so that the time step is continuously reduced for the benefit of detecting the boundaries
accurately. On the other hand, if it is too small, the time step may become smaller and smaller, which will impact the speed
of our algorithm, and especially increase the computational cost. Based on a lot of tests and our experience, we have
T, €0,0.5], T, € [2,10], T3 € [8,20] and T4 € [0.1,1.0].

5. Conclusion

In this paper, an active contour model and its corresponding algorithms with local and global Gaussian distribution fitting
energies have been proposed for image segmentation. First of all, based on the advantages of the local and global region fit-
ting energies, we proposed an active contour model which incorporates both the local and global region information of the
image. In this proposed model, we increased the weighting coefficient to combine the local and global region fitting energies
which are described by the local and global Gaussian distributions with different means and variances, respectively. Subse-
quently, an algorithm has been presented for implementing the proposed model directly, in which the effectiveness mainly
depends on the choice of the weighting coefficient under certain conditions. Generally, for the image with low intensity
inhomogeneity, this algorithm is satisfactory. However, in practice, selecting a suitable weighting coefficient may be difficult
and time-consuming. To overcome this problem, we further presented a modified algorithm which can obtain an adaptive
weighting coefficient and a fit time step with the contour evolution. In our algorithm, we can choose a relatively large
weighting coefficient at the beginning, then it will decrease when the contour goes near the object boundaries. This algo-
rithm is less sensitive to the initialization of the contour and can speed up the convergence rate. Furthermore, it is flexible
to change the weight between the local and global region fitting energies, which is beneficial and significant to improve the
quality of segmentation. Therefore, it is effective for the image with intensity inhomogeneity. In addition, it is robust to the
noise and can be used to extract the desired objects. In the future work, we will proceed to extend the proposed model and
its corresponding algorithms to the color image segmentation [11,44] and the applications to tracking [26,47].
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