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Abstract We present a type of spherical neural network (SNN) with bounded sigmoidal
activation function and study its interpolation capability. We find that the provided SNN can
exactly interpolate the training samples. Furthermore, based on the special structure of the
presented SNN, we can bound the interpolation error by the modulus of smoothness of the
target function, which is different from the previous results on the spherical scattered data
interpolation problem.
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1 Introduction

The problem of fitting scattered data arises mainly from sampling an unknown function
defined on the sphere, and comes up frequently in many applications. These applications
emerge in many research fields such as geodesy, meteorology, astrophysics and geophysics.
More information on this topic can be referred to [10,11], and references therein. A routine
way to tackle such a problem is to interpolate the scattered data by a class of functions.
The success of this approach is based on many criteria including the cost of producing
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the interpolant, the robustness of the interpolation process, and how well the interpolant
approximating the target function.

Up till now, there have been several approaches to interpolate spherical scattered data. A
classical method is the spherical harmonics (SHs) interpolation. In particular, Womersley and
Sloan [27] constructed a spherical harmonic Lagrange interpolant and studied the approx-
imation properties of it; Narcowich and Ward [22] proved that there exist SHs which can
both exactly interpolate the samples and near-best approximate the target function. For more
details of SHs interpolation, we refer the readers to [12,23,24,26] and references therein.SHs
have been extensively used in the context of spherical scattered data fitting, however, there
exists a main problem called the curse of dimensionality for this approach, which makes the
parameters increase rapidly as the dimensionality of the problem increases.

Several strategies have been suggested to circumvent this problem. The simplest approach
is to model a multivariate function defined on the sphere as a sum of univariate functions. Thus,
spherical radial basis function networks (SRBFNs) and spherical neural networks (SNNs)
come into our sights. For SRBFNs, by using a strictly positive definite univariate function
as the activation function, Jetter and Stökler [14] got an error estimate for interpolation
by SRBFNs in a spherical Sobolev space. Narcowich and Ward [22] improved the results
of [14] by conquering the well-known “barrier of native space” problem. Five years later,
Narcowich et al. [23] improved the results of [22] again by deducing a Sobolev error estimate
for interpolation by SRBFNs. Some related topics about SRBFNs interpolation can be found
in [10,11,17,25,26]. Recently, Lin et al. [19] proved that the essential approximation rate can
be improved for a large number of functions by introducing SNNs. In [20], a Jackson-type
error estimate for the SNNs approximant was also established. Thus, there naturally arises
the following question: what about the interpolation capability of SNNs? In this paper, we
focus on giving a detailed study for this problem.

The SNN interpolants in this paper can be mathematically expressed as

Nn(x) :=
n∑

i=1

ciσ(gi (x)), x ∈ S
d , (1)

where ci ∈ R is the output weight, gi : S
d → R is the inner processing functions, a typical

example of which takes the form as gi (x) = wi · x + bi with wi ∈ R
d and bi ∈ R, and

σ : R → R is the activation function of SNNs. We denote by �σ,n the family of SNNs, i.e.

�σ,N :=
{

Nn(x) =
n∑

i=1

ciσ(gi (x)), x ∈ S
d

}
.

Taking account into the fact that the scattered points are located on the sphere, the SNN
method can be used to solve the following problem.

Problem. Let X := {xi }n
i=1 be a set of distinct points located on the unit sphere S

d ⊂ R
d+1

and let f (xi ) denote the corresponding values of an unknown target function f : S
d → R.

Find an SNN formed as (1) such that the following interpolation condition

Nn(xi ) = fi := f (xi ), i = 1, . . . , n (2)

holds.
In [20], we have presented a type of SNN with

gi (x) = Ai g(x) + bi ,

and study the approximation properties of this type of SNN, where g(x) is a general distance
function between x and the north pole of S

d . In this paper, we will prove that such type
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of SNN also possesses prominent interpolation capability. In fact, we will prove that there
exists an exact interpolation SNN for arbitrary samples. Furthermore, we will deduce an
upper bound estimate for the SNN interpolation via taking advantage of the special structure
of the SNN.Compared with the previous interpolation methods studied in [14,22,23], the
target functions in these methods are assumed to belong to some smooth classes, while the
restriction on the target function f in our method can be very mild. Indeed, we will deduce an
interpolation error estimate for arbitrary continuous function, and a modulus of smoothness
of it will be introduced to describe this error.

The rest of paper is organized as follows. In the next section, we will introduce some
preliminaries. In Sect. 3, we will give an existence proof of the exact interpolation SNN. In
Sect. 4, we will deduce the interpolation error estimate for the SNN method.

2 Preliminaries

In this section, we give some preliminaries for this paper. We first introduce three quantities
associated with the scattered data set X . The mesh norm of X is defined by

h X := max
x∈Sd

min
j

d(x, x j ),

where d(x, y) is the geodesic (great circle) distance between the points x and y on Sd . The
mesh norm measures the maximum distance any point on Sd can be from X . The separation
radius is defined via

qX := 1

2
min
j �=k

d(x j , xk).

This is half of the smallest geodesic distance between any two distinct points in X . It is easy
to see that h X ≥ qX , and the equality can hold only for a uniform distribution of point on S1,
the circle. The mesh ratio

τX := h X

qX

≥ 1

provides a measure of how uniformly points in X are distributed on Sd .
Now we introduce a general distance corresponding to X on the sphere which can be

found in [20]. At first we rearrange the points in X to obey the following three rules:

(A1) x1 can be chosen arbitrary.
(A2) d(xk, xk+1) ≤ 4h X , k = 1, 2, . . . , n − 1.

(A3) For j �= k, xk xk+1 ∩ x j x j+1 =
⎧
⎨

⎩

xk+1, j = k + 1,

xk, j = k − 1,

∅, otherwise,
where xk xk+1 is the segment of minor arc of the great circle from xk to xk+1.

It was proved in [20] that the arrangement satisfying (A1), (A2) and (A3) exists and can be
easily implemented.

From the definition of h X , it follows that Sd ⊂ ⋃n
i=1 D(xi , h X ), where D(x, h) is the

spherical cap with center x and radius h. Thus, for arbitrary x ∈ Sd there exists at least one
point such that x ∈ D(xk, h X ). If we set

k := min{ j : x ∈ D(x j , h X )}, (3)
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then for arbitrary x ∈ Sd , there exists a unique k satisfying (3) such that x ∈ D(xk, h X ).
For arbitrary points x, y ∈ Sd , we define a general distance between x ∈ D(xk0 , h X ) and
y ∈ D(x j0 , h X ) as

d(x, y) :=

⎧
⎪⎨

⎪⎩

d(x, y), k0 = j0,∑k0
i= j0

d(xi , xi+1) + d(xk0 , x) + d(x j0 , y), j0 < k0,∑ j0
i=k0

d(xi , xi+1) + d(xk0 , x) + d(x j0 , y), k0 < j0.

(4)

It can be found in [20, Section 2] that d(x, y) defined in (4) is a distance between x and y.
Let g(x) := d(x, x1), then the SNN studied in the paper can be represented as

Nn(x) :=
n∑

i=1

ciσ(ai g(x) + bi ), (5)

where ai , bi , ci ∈ R.

3 Existence of Exact Interpolation SNN

A function σ(·) defined on R is called a sigmoidal function if it satisfies

σ(t) → 1 as t → +∞;
σ(t) → 0 as t → −∞.

Neural networks activated by such functions has been proved to possess good approximation
and interpolation capability in Euclidean space ([1–8,13,16,18,21]). Let A > 0, and denote

δσ (A) := sup
t≥A

max {|1 − σ(t)|, |σ(−t)|} .

By the definition of the sigmoidal function, it is easy to deduce that δσ (A) is non-increasing,
and satisfies

lim
A→+∞ δσ (A) = 0.

This implies that for arbitrary ε > 0, there exists an A0 > 0 such that

δσ (A) < ε, for A ≥ A0. (6)

The aim of this section is to prove that there exists an SNN, Nn , formed as (5) such that

Nn(xi ) = fi , i = 1, . . . , n. (7)

In order to prove the existence of exact interpolation SNN, we should choose the parameters
a j , b j , c j such that (7) holds. But it is not easy to fix all of these parameters. Taking the
method used in [21] into account, we can construct a j and b j at first, then use (7) to solve
the coefficients c j .

For arbitrary A > 0, set

a j = −2A

g(x j+1) − g(x j )
, j = 1, . . . , n − 1,

an = −2A

g(xn) − g(xn−1)
,

b j = 2Ag(x j )

g(x j+1) − g(x j )
+ A, j = 1, . . . , n − 1,

123



Spherical Neural Networks Interpolation

and

bn = 2Ag(xn)

g(xn) − g(xn−1)
+ A.

Then, we have

Nn(x) :=
n−1∑

j=1

c jσ

(
−2A

g(x) − g(x j )

g(x j+1) − g(x j )
+ A

)

+ cnσ

(
−2A

g(x) − g(xn)

g(xn) − g(xn−1)
+ A

)
.

On the other hand, it follows from the definition of g(·) that

−2A
g(xi ) − g(x j )

g(x j+1) − g(x j )
+ A ≥ A, if i < j,

−2A
g(xi ) − g(x j )

g(x j+1) − g(x j )
+ A = A, if i = j,

−2A
g(xi ) − g(x j )

g(x j+1) − g(x j )
+ A = −A if i = j + 1,

and

−2A
g(xi ) − g(x j )

g(x j+1) − g(y j )
+ A ≤ −A, if i > j + 1.

Therefore, for arbitrary 1 ≤ i ≤ j , there holds
∣∣∣∣1 − σ

(
−2A

g(xi ) − g(x j )

g(x j+1) − g(x j )
+ A

)∣∣∣∣ ≤ δσ (A), (8)

and for every j + 1 ≤ i ≤ n, there holds
∣∣∣∣σ
(

−2A
g(xi ) − g(x j )

g(x j+1) − g(x j )
+ A

)∣∣∣∣ ≤ δσ (A). (9)

The following Theorem guarantees the existence of the exact interpolation SNN.

Theorem 1 Let σ be a sigmoidal function. If we choose A large enough such that

δσ (A) <
1

4n

holds, then there exists a set of real numbers {c j }n
j=1 such that Nn(x) satisfying (7).

Proof Denote

ei, j (A) := σ

(
−2A

g(xi ) − g(x j )

g(x j+1) − g(x j )
+ A

)
, i, j = 1, . . . , n − 1,

ei,n(A) := σ

(
−2A

g(xi ) − g(x j )

g(xn) − g(xn−1)
+ A

)
, i = 1, . . . , n − 1,

en, j (A) := σ

(
−2A

g(xn) − g(x j )

g(x j+1) − g(x j )
+ A

)
, j = 1, . . . , n − 1,

en,n(A) := σ(A).
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Let Mn(A) := (ei, j (A))n
i, j=1 be the coefficient matrix of the system of Eq. (7), and

Dn(A) :=

∣∣∣∣∣∣∣∣

e1,1(A) e1,2(A) . . . e1,n(A)

e2,1(A) e2,2(A) . . . e2,n(A)

. . . . . . . . . . . .

en,1(A) en,2(A) . . . en,n(A)

∣∣∣∣∣∣∣∣

be its determinant. If we write

di, j (A) = ei, j (A) − ei+1, j (A) (i, j = 1, . . . , n − 1),

di,n(A) = ei,n(A) − ei+1,n(A) (i = 1, . . . , n − 1),

dn, j (A) = en, j (A) ( j = 1, . . . , n − 1), dn,n(A) = en,n(A),

then

Dn(A) =

∣∣∣∣∣∣∣∣

d1,1(A) d1,2(A) . . . d1,n(A)

d2,1(A) d2,2(A) . . . d2,n(A)

. . . . . . . . . . . .

dn,1(A) dn,2(A) . . . dn,n(A)

∣∣∣∣∣∣∣∣
.

From the assumption of A, it follows that if t ≥ A, then

|σ(−t)| <
1

4n
, |1 − σ(t)| <

1

4n
.

Thus, by the definition of di, j (A), we have

d j, j (A) = σ(A) − σ(−A) = 1 − (1 − σ(A)) − σ(−A)

≥ 1 − 1

4n
− 1

4n
= 1 − 1

2n
≥ 1

2
(1 ≤ j ≤ n − 1),

and

dn,n(A) = σ(A) = 1 − (1 − σ(A))

≥ 1 − 1

4n
≥ 1 − 1

2n
≥ 1

2
.

On the other hand, it follows from (8) and (9) that for arbitrary 1 ≤ j ≤ n, there holds

n−1∑

i=1,i �= j

|di, j (A)| =
n−1∑

i=1,i �= j

|ei, j (A) − ei+1, j (A)|

=
j−1∑

i=1

|ei, j (A) − ei+1, j (A)| +
n∑

i= j+1

|ei, j (A) − ei+1, j (A)|

=
j−1∑

i=1

|1 − ei, j (A) − (1 − ei+1, j (A))| +
n−1∑

i= j+1

|ei, j (A) − ei+1, j (A)|

≤
j−1∑

i=1

(|1 − ei, j (A)| + |1 − ei+1, j (A)|) +
n−1∑

i= j+1

(|ei, j (A)| + |ei+1, j (A)|)

< (n − 1) · 1

2n
.
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Furthermore,

|dn, j | = |en, j (A)| ≤ 1

4n
<

1

2n
.

Therefore,

d j, j (A) ≥ 1

2
>

n∑

i=1,i �= j

|di, j (A)|, j = 1, . . . , n.

Then by the strictly diagonally dominant matrices are invertible principle (see [15]), we have

Dn(A) �= 0,

which means that the Eq. (7) is solvable. This completes the proof of Theorem 1. 
�

It follows from Theorem 1 that if A is large enough, then there exists exact interpolation
SNN with sigmoidal activation function. Thus, the SNN method is feasible for spherical
scattered data interpolation.

4 Interpolation Error Estimate

In this section, we will deduce the interpolation error for the SNN. To this end, we first
construct an approximate SNN interpolant and deduce the error estimate for the approximate
interpolation. Then, we study the error between the approximate interpolation SNN and the
exact interpolation SNN. Under this circumstance, we can deduce an upper bound error
estimate for the exact interpolation SNN.

We first need introduce a modulus of smoothness on the sphere. Let SO(d + 1) be the
(compact) group of rotations on Sd . For ρ ∈ SO(d + 1), the modulus of smoothness on Sd

is defined as

ω( f, t) := sup
ρ∈Ot

max
x∈Sd

| f (ρx) − f (x)|,

where

Ot :=
{
ρ ∈ SO(d + 1) : max

x∈Sd−1
arccos(x) · ρx ≤ t

}
.

For more details of the modulus of smoothness ω( f, t), we refer the readers to [9].
The approximate interpolation SNN can be constructed as follows:

N a
n (x) :=

n−1∑

j=1

( f j − f j+1)σ

(
−2A

g(x) − g(x j )

g(x j+1) − g(x j )
+ A

)

+ fnσ

(
−2A

g(x) − g(xn)

g(xn) − g(xn−1)
+ A

)
.

It is obvious that the only difference between Nn(x) and N a
n (x) is the coefficients, which are

given explicitly in the latter one.
The following Lemma 1 [20, Theorem 2] will play an important role in our proof.
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Lemma 1 Let N a
n (x) be defined above, and σ be a bounded sigmoidal function. If f ∈ C(Sd)

satisfying f (xi ) = fi , i = 1, . . . , n, then there holds

| f (x) − N a
σ (x)| ≤ δσ (A)

⎛

⎝
n−1∑

j=1

| f j − f j+1| + | fn |
⎞

⎠+ (9 + 8‖σ‖)πd−1τ d
Xω( f, h X ),

where ‖σ‖ := maxt∈R |σ(t)|.
By the help of Lemma 1, we can deduce the following error estimate.

Theorem 2 Let Nn(x) be the exact interpolation SNN and σ be a bounded sigmoidal func-
tion. If f ∈ C(Sd) satisfying f (xi ) = fi , i = 1, . . . , n and A is large enough such that

δσ (A) ≤ min

⎧
⎨

⎩
1

4n
,

τ d
Xω( f, h X )

n
(∑n−1

j=1 | f j − f j+1| + | fn |
)

⎫
⎬

⎭ , (10)

then there exists a constant C depending only on σ and d such that

| f (x) − Nn(x)| ≤ Cτ d
Xω( f, h X ), ∀x ∈ Sd . (11)

Proof of Theorem 2 Since

δσ (A) ≤ τ d
Xω( f, h X )

n
(∑n−1

j=1 | f j − f j+1| + | fn |
) ,

it follows from Lemma 1 that

| f (x) − N a
n (x)| ≤ Cτ d

Xω( f, h X ).

Thus, it is sufficient to bound the error between N a
n and Nn . Since (10) holds, then the system

of equations (7) is solvable. We denote its solution as Vc := (c1, . . . , cn), and its coefficient
matrix as M . Let V f = ( f1, . . . , fn), then the system of Eq. (7) can be written as

MV T
c = V T

f , (12)

where V T denotes the transpose of the vector V . Let

U :=

⎡

⎢⎢⎢⎢⎣

1 1 . . . 1 1
0 1 . . . 1 1
. . . . . . . . . . . . . . .

0 0 . . . 1 1
0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎦
,

then by a simple calculation, we can obtain the inverse matrix of U as

U−1 =

⎡

⎢⎢⎢⎢⎣

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 −1
0 0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎦
.

Write

Mn(A) − U = (αi j )
n,n
i, j=1,
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then it follows from (8) and (9) that

|αi j | ≤ δσ (A).

Therefore, if we write

U−1(Mn(A) − U ) = (βi j )
n,n
i, j=1,

then
|βi j | ≤ 2δσ (A), |βnj | ≤ δσ (A), i = 1, . . . , n − 1, j = 1, . . . , n. (13)

Denoting

VF := ( f1 − f2, . . . , fn−1 − fn, fn), �Vc := Vc − VF ,

we have

U V T
F = V T

f .

So it follows from (12) that

(U + (Mn(A) − U ))(V T
F + �V T

c ) = V T
f .

That is

U�V T
c = −(Mn(A) − U )�V T

c − (Mn(A) − U )V T
F .

Hence

�V T
c = −U−1(Mn(A) − U )�V T

c − U−1(Mn(A) − U )V T
F .

The above identity together with (13) yields

n∑

i=1

|�VCi | ≤ (2n + 1)δσ (A)

n∑

i=1

|�VCi | + (2n + 1)δσ (A)

(
n1∑

i=1

| fi − fi+1| + | fn |
)

,

which implies

n∑

i=1

|�VCi | ≤ (2n + 1)δσ (A)

1 − (2n + 1)δσ (A)

⎛

⎝
n∑

j=1

| f j − f j+1| + | fn |
⎞

⎠ .

Because

|Nn(x) − N a
n (x)| ≤

n∑

i=1

|�VCi |‖σ‖,

then

|Nn(x) − N a
n (x)| ≤ (2n + 1)δσ (A)‖σ‖

1 − (2n + 1)δσ (A)

⎛

⎝
n−1∑

j=1

| f j − f j+1| + | fn |
⎞

⎠ . (14)

Furthermore, since

δσ (A) ≤ min

⎧
⎨

⎩
1

4n
,

τ dω( f, h X )

n
(∑n−1

j=1 | f j − f j+1| + | fn |
)

⎫
⎬

⎭ ,
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there exists a constant depending only on d , σ and f such that

| f (x) − Nn(x)| ≤ Cτ d
Xω( f, h X ),

which finishes the proof of Theorem 2. 
�
In Theorem 2, there are not any smooth assumptions on the target function, which is

different from SRBFN method [14,22,23]. Furthermore, it follows from (6) that there always
exists a sufficiently large A such that (10) holds.
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