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a b s t r a c t

In this paper we consider Gaussian RBF kernels support vector machine classification (SVMC) algorithm
with uniformly ergodic Markov chain (u.e.M.c.) samples in reproducing kernel Hilbert spaces (RKHS).
We analyze the learning rates of Gaussian RBF kernels SVMC based on u.e.M.c. samples and obtain
the fast learning rate of Gaussian RBF kernels SVMC based on u.e.M.c. samples by using the strongly
mixing property of u.e.M.c. samples. We also present the numerical studies on the learning performance
of Gaussian RBF kernels SVMC based on Markov sampling for real-world datasets. These experimental
results show that Gaussian RBF kernels SVMC based onMarkov sampling has better learning performance
compared to randomly independent sampling.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Support Vector Machine (SVM) is one of the most widely
used machine learning algorithms for classification problems
(Vapnik, 1998). Besides their good performance in practical
applications, they also enjoy a good theoretical justification in
terms of both universal consistency (Steinwart, 2001; Steinwart
& Christmann, 2008) and learning rates (Chen, Wu, Ying, & Zhou,
2004; Steinwart & Scovel, 2007) if the training samples come
from an independent and identically distributed (i.i.d.) process.
However, independence is a very restrictive concept (Steinwart,
Hush, & Scovel, 2009; Vidyasagar, 2003) and this i.i.d. assumption
cannot be strictly justified in real-world problems, and many
machine learning applications such as market prediction, system
diagnosis, and speech recognition are inherently temporal in
nature, and consequently not i.i.d. processes (Steinwart et al.,
2009). Therefore, relaxations of such i.i.d. assumption have
been considered for quite a while in both machine learning
and statistics literatures. For example, Yu (1994) established
the rates of convergence for empirical processes of stationary
mixing sequences. Modha and Masry (1996) established the
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minimum complexity regression estimation with m-dependent
observations and strongly mixing observations. Smale and Zhou
(2009) considered online learning algorithm based on Markov
sampling. Steinwart et al. (2009) proved that the SVM for both
classification and regression are consistent only if the data-
generating process satisfies a certain type of law of large numbers.
Zou, Li, and Xu (2009) established the generalization bounds of
empirical riskminimization (ERM) algorithmwith stronglymixing
observations. Mohri and Rostamizadeh (2010) studied the stability
bounds of learning algorithms for non-i.i.d. processes.

In this paper, we focus only on an analysis in the case when
the input samples are Markov chains, the reasons are as follows:
First, in real-world problems, Markov chain samples appear so
often and naturally in applications, such as biological (DNA or
protein) sequence analysis, content-basedweb search andmarking
prediction, and so on. Second, many empirical evidences (Curnow,
1988; Laarhouen & Aarts, 1987; Zou, Li, Xu, Luo, & Tang, 2013)
show that learning algorithms very often perform well with
Markov chain samples. Why it is so, however, has been unknown
(particularly, it is unknown how well it performs in terms of
learning rate and generalization). For these reasons, Zou, Peng, and
Xu (2013) introduced aMarkov sampling algorithm and presented
the numerical studies on the learning performance of SVMC with
Markov chain samples based on linear prediction models. Since
Gaussian RBF kernels are the most widely used kernels in practice
(Steinwart & Scovel, 2007), in this paper we consider Gaussian
RBF kernels SVMC algorithm with u.e.M.c. samples. We not only
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give an error analysis for Gaussian RBF kernels SVMC algorithm
with u.e.M.c. samples, but also obtain the fast learning rate for
Gaussian RBF kernels SVMC algorithm with u.e.M.c. samples. In
addition, we give a slightly modified version of Markov sampling
introduced in Zou, Peng et al. (2013) such that it suits the setting of
Gaussian RBF kernels, and then we present the numerical studies
on the learning performance of Gaussian RBF kernels SVMC based
on Markov sampling for real-world datasets. The experimental
results show that Gaussian RBF kernels SVMC based on Markov
sampling has better learning performance compared to randomly
independent sampling.

This paper is organized as follows: in Section 2, we give some
definitions and notations. In Section 3, we present themain results
on the learning rates of Gaussian RBF kernels SVMC based on
u.e.M.c. samples. In Section 4, we give the numerical studies on
the learning performance of Gaussian RBF kernels SVMC algorithm
based on Markov sampling. Finally, we conclude this paper in
Section 5.

2. Preliminaries

In this section, we present the definitions and notations used
throughout the paper.

2.1. SVMC algorithm

Let (X, d) be a compact metric space and Y = {−1, 1}. A
binary classifier is a function h : X → Y which labels every
point x ∈ X with some y ∈ Y . The misclassification error for the
classifier h : X → Y is defined to be the probability of the event
{h(X) ≠ Y }, that is, R(h) = Prob{h(X) ≠ Y }. In this paper, our
hypothesis space is a reproducing kernel Hilbert space (RKHS) HK
(Aronszajn, 1950). Namely, let K : X × X → R be continuous,
symmetric and positive semidefinite, i.e., for any finite set of
distinct points {x1, x2, . . . , xl} ⊂ X , the matrix (K(xi, xj))li,j=1 is
positive semidefinite. Such a function is called aMercer kernel. The
RKHS HK associated with the kernel K is defined to be the closure
of the linear span of the set of functions {Kx := K(x, ·) : x ∈ X}with
the inner product ⟨·, ·⟩HK = ⟨·, ·⟩K satisfying ⟨Kx, Kx′⟩K = K(x, x′),
that is, ⟨


i αiKxi ,


j βjKxj⟩K =


i,j αiβjK(xi, xj). The reproducing

property takes the form ⟨Kx, f ⟩K = f (x), ∀x ∈ X, ∀f ∈ HK .
Denote C(X) as the space of continuous functions on X with the
norm ∥f ∥∞ = supx∈X |f (x)|. Let κ = supx∈X

√
K(x, x); then the

reproducing property tells us that ∥f ∥∞ ≤ κ∥f ∥K ,∀f ∈ HK .
For a function f : X → R, the sign function of f is defined

as sgn(f ) = 1 if f (x) ≥ 0 and sgn(f ) = −1 if f (x) < 0. The
soft margin SVM classifier associated with the Mercer kernel K is
defined as sgn(fS) (Vapnik, 1998), where fS is a minimizer of the
following optimization problem involving a set of random samples
S = (xi, yi)mi=1 ∈ Zm:

fS = arg min
f∈HK

1
2
∥f ∥2

K +
C
m

m
i=1

ξi,

subject to yif (xi) ≥ 1 − ξi, ξi ≥ 0, (1)

where C is a constant which depends on m : C = C(m) and often
limm→∞ C(m) = ∞ (Chen et al., 2004).

A good classifier should produce decision functions whose risks
converge to the best classifier, the Bayes classifier, as m and
hence C(m) tend to infinity. Let ψ be a probability distribution
on Z = X × Y . The regression function of ψ is defined as
fψ (x) =


Y ydψ(y|x). Then the Bayes classifier is given by the sign

of regression function fc = sgn(fψ ). In this paper, we assume that
there is a constant B such that for any y ∈ Y , |y| ≤ B, which implies
that |fϕ(x)| ≤ B for any x ∈ X (Cucker & Smale, 2002).
To analyze the generalization ability of algorithm (1), we
rewrite (1) as a regularization scheme (Chen et al., 2004; Zhang,
2004): define loss function ℓ(f , z) as

ℓ(f , z) =


0, f (x)y > 1
1 − f (x)y, f (x)y ≤ 1. (2)

The generalization error is E(f ) = E[ℓ(f , z)]. If we define the
empirical error as Em(f ) =

1
m

m
i=1 ℓ(f , zi), then algorithm (1) can

be written as

fS,λ = arg min
f∈HK


Em(f )+ λ∥f ∥2

K


. (3)

Here λ = 1/(2C) is the regularization parameter.
Although we sometimes use generic kernels and RKHSs, in this

paper we are mainly interested in Gaussian RBF kernels, which
are the most widely used kernels in practice (Steinwart & Scovel,
2007). Recall that these kernels are of the form Kσ (x, x′) =

exp(−σ 2
∥x − x′

∥
2
2), x, x′

∈ X, where ∥x − x′
∥
2
2 is the squared

Euclidean distance between x and x′, σ > 0 is a free parameter
whose inverse 1/σ is called the width of Kσ (Steinwart & Scovel,
2007). We denote the corresponding RKHS by Hσ

K . Different from
the previously known works on SVMC algorithm in Steinwart and
Christmann (2008), Chen et al. (2004) and Steinwart and Scovel
(2007), our goal of this paper is to bound the generalization ability
of Gaussian RBF kernels SVMC based on u.e.M.c. samples.

2.2. Uniformly ergodic Markov chains

Suppose (Z, S) is a measurable space, a Markov chain is
a sequence of random variables {Zt}t≥1 together with a set of
transition probability measures Pn(A|zi), A ∈ S, zi ∈ Z, which is
defined as

Pn(A|zi) = Prob{Zn+i ∈ A|Zj, j < i, Zi = zi}, n ∈ N.

Thus Pn(A|zi) denotes the probability that the state zn+i will belong
to the set A after n-steps, starting from the initial state zi at time
i. It is common to denote the one-step transition probability by
P1(A|zi) = Prob{Zi+1 ∈ A|Zj, j < i, Zi = zi}. The fact that the
transition probability does not depend on the values of Zj prior
to time i is the Markov property, that is, Pn(A|zi) = Prob{Zn+i ∈

A|Zi = zi}. This is expressed in words as ‘‘given the present state,
the future and past states are independent’’.

Given two probabilities ν1, ν2 on the measure space (Z, S),
we define the total variation distance between the two measures
ν1, ν2 as ∥ν1 − ν2∥TV = supA∈S |ν1(A) − ν2(A)|. Thus we
have the following definition of u.e.M.c. (Meyn & Tweedie, 1993;
Vidyasagar, 2003).

Definition 1. A Markov chain {Zt}t≥1 is said to be uniformly
ergodic if for some γ < ∞ and 0 < ρ < 1,

∥Pn(·|z)− π(·)∥TV ≤ γ ρn, ∀n ≥ 1, n ∈ N

where π(·) is the stationary distribution of Markov chain {Zt}t≥1.

Remark 1. A weaker condition than uniformly ergodic is V -
geometrically ergodic (Meyn & Tweedie, 1993; Vidyasagar, 2003).
The difference between V -geometrically ergodic and uniformly
ergodic is that here the total variation distance between the
n-step transition probability Pn(·|z) and the invariant measure
π approaches zero at a geometric rate multiplied by V (z)
(Vidyasagar, 2003). Thus the rate of geometric convergence is
independent of z, but the multiplicative constant is allowed
to depend on z. Especially, if the space Z is finite, then all
irreducible and aperiodic Markov chains are V -geometrically (in
fact, uniformly) ergodic. And a Markov chain is V -geometrically
ergodic if the condition that V (·) has finite expectation with
respect to the invariant measure π holds.
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3. Estimating learning rates

To estimate the generalization ability of Gaussian RBF kernels
SVMC algorithm, we should bound the excess misclassification er-
rorR(sgn(fS,λ))−R(fc). Zhang (2004) established the relation be-
tween the excess misclassification error and excess generalization
error for loss function (2)

R(sgn(f ))− R(fc) ≤ E(f )− E(fψ ), f : X → R. (4)

This implies that the excess misclassification error R(sgn(fS,λ)) −

R(fc) can be bounded by the excess generalization error E(fS,λ)−

E(fψ ). For the excess generalization error E(fS,λ) − E(fψ ), the
following error decomposition method is standard (Chen et al.,
2004).

Lemma 1. Let fλ = argminf∈HK


E(f )+ λ∥f ∥2

K


, and fS,λ be

defined as (3). Then we have E(fS,λ) − E(fψ ) ≤ E(fS,λ) − E(fψ ) +

λ∥fS,λ∥2
K , which can be bounded by

{E(fS,λ)− Em(fS,λ)+ Em(fλ)− E(fλ)} + D(λ). (5)

The first term of (5) is called the sample error (Cucker & Smale,
2001), which can be written as (Wu, Ying, & Zhou, 2006)
Eζ1 −

1
m

m
i=1

ζ1(zi)


+


1
m

m
i=1

ζ2(zi)− Eζ2


, (6)

where ζ1 = ℓ(fS,λ, z) − ℓ(fψ , z), ζ2 = ℓ(fλ, z) − ℓ(fψ , z). The
second term of (5) is called the approximation error (Cucker &
Smale, 2001), which is defined as D(λ) = E(fλ)− E(fψ )+ λ∥fλ∥2

K .
Steinwart and Scovel (2007) introduced the geometric noise

exponent condition for the distribution on Z, and then they
established the bound of D(λ) for the space Hσ

K .

Definition 2 (Steinwart & Scovel, 2007). Let X ⊂ Rd be compact
and ψ be a probability measure on X × Y . We say that ψ has
geometric noise exponent α > 0 if there exists a constant C0 > 0
such that
X
|2η(x)− 1| exp


−τ 2x

t


ψX (dx) ≤ C0tαd/2, t > 0,

where ψX is the marginal probability measure of ψ on X , τx is
defined as

τx =

d(x, X0 ∪ X1), x ∈ X−1,
d(x, X0 ∪ X−1), x ∈ X1,
0, otherwise.

Here d(x, A) denotes the distance of x to a set Awith respect to the
Euclidean norm, X−1 = {x ∈ X : η(x) < 1

2 }, X1 = {x ∈ X : η(x) >
1
2 }, X0 = {x ∈ X : η(x) =

1
2 } and η(x) = Prob(y = 1|x).

Lemma 2 (Steinwart & Scovel, 2007). Let σ > 0, X be the closed unit
ball of the Euclidean space Rd and D(λ) be the approximation error
function with respect to Hσ

K . Furthermore, let ψ be a distribution on
X × Y that has geometric noise exponent 0 < α < ∞ with constant
C0 in Definition 2. Then there is a constant Cd > 0 depending only on
d such that for all λ > 0,

D(λ) ≤ Cd

σ dλ+ C0(2d)αd/2σ−αd .

In particular, if σ satisfies σ(λ) = λ−1/[(α+1)d], then there exists a
constant C1 such that D(λ) ≤ C1λ

α
α+1 .

To estimate the sample error (6), we have to regulate the
capacity of function set since the minimization (3) is taken over
the discrete quantity Em(f ). Here the capacity is measured by the
covering number (De Vito, Caponnetto, & Rosasco, 2005; Smale &
Zhou, 2005; van der Vaart & Wellner, 1996; Zhang, 2004).
Definition 3. For a subset F of a metric space and ϵ > 0, the
covering number N (F , ϵ) of the function set F is the minimal
n ∈ N such that there exist n disks in F with radius ϵ covering F .

Let BH (R) := {f ∈ HK : ∥f ∥K ≤ R} be the closed ball of C(X).
Then the covering number of BH (1) is well defined (Steinwart &
Scovel, 2007; van der Vaart & Wellner, 1996). Let BσH (R) := {f ∈

Hσ
K : ∥f ∥K ≤ R}. For any ϵ > 0, we denote the covering number

of BσH (1) as N (BσH (1), ϵ). Steinwart and Scovel (2007) established
the following bound on the covering number N (BH (1), ϵ).

Lemma 3. Let σ ≥ 1, 0 < p < 1 and X ⊂ Rd be a compact
subset with nonempty interior. Then there is a constant Cp,d > 0
independent of σ such that for all ϵ > 0,

lnN (BσH (1), ϵ) ≤ Cp,d · σ (1−p/4)dϵ−p.

Then our main results are stated as follows:

Proposition 1. Set m(β)
= ⌊m⌈{8m/ ln(1/ρ)}

1
2 ⌉

−1
⌋, where

⌊u⌋(⌈u⌉) denotes the greatest (least) integer less (greater) than or
equal to u. Assume that {zi}mi=1 is a u.e.M.c. sample and R ≥ B. Then
for any 0 < δ < 1,

E(fS,λ)− E(fψ )+ 2λ∥fS,λ∥2
K

≤ 4D(λ)+
7(κ

√
D(λ)/λ+ B) ln(C2/δ)

3m(β)
+ 8R · ε(m, δ)

holds true with probability at least 1−2δ, where C2 = 1+γ e−2, and
ε(m, δ) ≤ max{m,m},

m =
80(κ + 1) ln(C2/δ)

3m(β)
,

m =


80Cp,dσ

(1−p/4)d(κ + 1)
3m(β)

 1
1+p

.

For the proof of Proposition 1, refer to Appendix B. As an
application of Proposition 1, we establish the learning rate of
Gaussian RBF kernels SVMC for u.e.M.c. samples.

Theorem 1. Let {zi}mi=1 be a u.e.M.c. sample. Taking λ =
 1
m

ϑ
, for

any ϵ > 0, 0 < δ < 1 and m ≥ mδ , there exists a constant C
independent of m such that

R(sgn(fS,λ))− R(fc) ≤C  1
m

θ
,

holds true with confidence at least 1− δ, where mδ = max{m′

δ,m
′′

δ },
m′

δ = max{ln(1/ρ)/8, 128/(ln 1/ρ)},

m′′

δ =
5 · 211(κ + 1)2(ln(2C2/δ))

2

9 ln(1/ρ)
·


ln(2C2/δ)

Cp,dσ (1−p/4)d

 2
p

,

ϑ = min

α + 1,

(α + 1)d
2 + (1 + p)(2α + 1)d


,

θ = min

α,

αd
2 + (1 + p)(2α + 1)d

− ϵ


.

For the proof of Theorem 1, refer to Appendix B. By Theorem 1,
we can find that for p → 0 and sufficiently large α, the learning
rate obtained in Theorem 1 is arbitrarily close to the best kernel
independent learning ratem−

1
2 (see, e.g., De Vito et al., 2005; Smale

& Zhou, 2005). In order to improve the learning rate obtained
in Theorem 1, we use the strongly mixing property of uniformly
ergodic Markov chains. That is, Rosenblatt (1972) proved that if
a stationary Markov chain satisfies both uniform ergodicity and
mixing (in the ergodic-theoretic sense), then it is strongly mixing.



J. Xu et al. / Neural Networks 53 (2014) 40–51 43
Definition 4 (Strongly Mixing). The sequence {ξt} is called α-
mixing, or strongly mixing, if for any k → ∞,

sup
A∈A0

−∞
,B∈A∞

k

{|P(A ∩ B)− P(A)P(B)|} = α(k) → 0,

whereα(k) is called theα-mixing coefficient,A0
−∞

andA∞

k denote
theσ -algebra generated by randomvariables ξi, i ≤ 0 and ξi, i ≥ k,
respectively.

Assumption 1 (Geometrically α-mixing (Vidyasagar, 2003)). As-
sume that the α-mixing coefficient of sequence {ξt} satisfies
α(k) ≤ α exp(−ckβ), k ≥ 1, k ∈ N for some α > 0, β > 0,
and c > 0.

Remark 2. Assumption 1 is satisfied by a large class of processes
(Modha & Masry, 1996), for example, certain linear processes
(which include certain ARMA processes) satisfy the assumption
with β = 1 (Withers, 1981), and many Markov processes (which
includes certain bilinear processes, nonlinear ARX processes, and
ARH processes) satisfy Assumption 1 (Davydov, 1973; Steinwart
et al., 2009). As a trivial example, i.i.d. random variables satisfy
Assumption 1 with β = ∞.

By Assumption 1, we establish the following learning rate of
Gaussian RBF kernels SVMC for u.e.M.c. samples.

Theorem 2. Let {zi}mi=1 be a u.e.M.c. sample. Take λ =
 1
m

ϑ
, for any

ϵ > 0, 0 < η < 1 andm ≥ mη , there exists a constantC independent
of m such that

R(sgn(fS,λ))− R(fc) ≤C  1
m

θ
holds true with confidence at least 1−η, where mη is a constant given
by mη ≥ max{m′

η,m
′′
η}, m

′
η = max{/c8, 22+5/β/cβ},

m′′

η =


80(κ + 1) ln(C4/η)

3 · 2
−2β+5
β+1 c

1
β+1

 β+1
β 

ln(C4/η)

Cp,dσ (1−p/4)d

 β+1
pβ

,

ϑ = min

α + 1,

(α + 1)d
2 + (1 + p)(2α + 1)d


,

θ = min

α,

2αdβ
(β + 1)[2 + (1 + p)(2α + 1)d]

− ϵ


,

and C4 = 1 + 4e−2α.

For the proof of Theorem 2, refer to Appendix B. To have a
better understanding of Theorem 2, we compare Theorem 2 with
the previously known results as follows: Zhang and Tao (2012)
studied the generalization bounds of ERM learning processes for
continuous-time Markov chains under three assumptions (see
Conditions C1, C2 and C3 in Zhang and Tao (2012)), and obtained
the learning rate m−

1
1.3 (see inequality (47) in Zhang and Tao

(2012)). Zou, Peng et al. (2013) obtained the weak learning rate
(m(β))−

1
4 with m(β)

= O(m−
1
2 ). While by Theorem 2, we can

find that for sufficiently large α, β and p → 0, θ is arbitrarily
close to 1. This implies that for sufficiently small p and larger
α and β , the learning rate obtained in Theorem 2 is arbitrarily
close to m−1, which is the optimal learning rate of i.i.d. samples in
statistical learning theory (Steinwart and Scovel (2007) established
the similar learning rate for Gaussian RBF kernels SVMC with i.i.d.
samples. Chen et al. (2004) obtained the similar learning rate for
SVMC with i.i.d. samples. Tong, Chen, and Peng (2009) established
the similar learning rate for SVM regression with i.i.d. samples).
This implies that the results obtained in this paper extend the
classical results of Gaussian RBF kernels SVMC with i.i.d. samples
in Steinwart and Scovel (2007) to the case of u.e.M.c. samples.
Table 1
5 real-world datasets.

Dataset Training size Test size Input dimension

Abalone 2089 2088 8
Shuttle 43500 14500 9
Magic 12680 6340 10
Waveform 4600 400 21
Splice 2 175 1000 60

4. Numerical studies

Inspired by the idea from MCMC methods (Curnow, 1988;
Laarhouen & Aarts, 1987), Zou, Peng et al. (2013) introduced a
Markov sampling algorithm such that Markov chain samples can
be generated from a given dataset D, and then they studied the
learning performance of SVMC based on Markov sampling for
linear prediction models. In this paper we generalize the study on
the learning performance of SVMC algorithm with Markov chain
samples based on linear predictionmodels to the case of nonlinear
prediction models, Gaussian RBF kernels. We give here a slightly
modified version ofMarkov sampling in Zou, Peng et al. (2013) that
suits our needs.

Remark 3. Since we have only the dataset D, to generate u.e.M.c.
samples, we introduce a technical condition f0 and two technical
parameters k and q: first, to define the transition probability, in
this paper we introduce the preliminary learning model f0. The
reason is that under the technical condition, we can compute
easily the transition probabilities P (or P ′, P ′′) and P , P ′ and P ′′

are always positive. Thus by the theory of Markov chain in (Qian
& Gong, 1998), we can conclude that the generated sequence
{z1, z2, . . . , zt} by Algorithm 1 is a u.e.M.c. sequence. Second,
to generate quickly Markov chain samples, we also introduce
the continuously reject number k and the constant q. Since for
some datasets, generating Markov chain samples is very time-
consuming byusing the samplingmethod in Zou, Peng et al. (2013).
Namely, as the loss ℓ(f , zt) of current sample zt is very small, then
the candidate sample z∗ will not be accepted since the acceptance
probability P = min{1, e−ℓ(f0,z∗)/e−ℓ(f0,zt )} is very small. In the
following experiments, we take k = 5 and q = 1.2. In addition, to
generate the balance training samples, we introduce the notions
m+, m− and m%2. The case of SVMC with unbalance training
samples is under our current investigation. Compared the above
Markov sampling with randomly independent sampling, we can
find that randomly independent sampling can be regarded as the
special case of Algorithm 1, that is, all the acceptance probabilities
P, P ′ and P ′′ in Algorithm 1 are always 1.

4.1. Experimental results

We present the numerical study on the learning performance
of Gaussian RBF kernels SVMC for 5 real-world datasets: Abalone,
Magic, Shuttle (http://archive.ics.uci.edu/ml/datasets.html), Splice,
Waveform (http://www.fml.tuebingen.mpg.de/Members/raetsch/
benchmark). We present the information of these datasets in
Table 1.

For randomly independent sampling, we decompose the
experiment into two steps: first, a training set ST of m training
samples was generated randomly from a given dataset. We use
Gaussian RBF kernels SVMC to train the set ST , and then we test
it on the given test set. Second, after the experiment had been
repeated for 50 times, the misclassification rates were presented
in Tables 2 and 3, where MR (i.i.d.) denotes the misclassification
rates based on randomly independent sampling.

For Markov sampling, we first generate a training set S ′

T of
m training samples by Algorithm 1. Then we use Gaussian RBF

http://archive.ics.uci.edu/ml/datasets.html
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark
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Algorithm 1Markov sampling for Gaussian kernels SVMC

Step 1: Draw randomly N1(N1 ≤ m) training samples {zi}
N1
i=1

from a dataset D. Use the Gaussian RBF kernels
SVMC algorithm to train these samples, and obtain
a preliminary learning model f0. Set m+ = 0 and
m− = 0. m is the number of training samples, and
m+ and m− denote the number of training samples
which label are +1 and −1, respectively.

Step 2: Draw randomly a sample from D and denote it the
current sample zt . If m%2 = 0, m%2 denotes the
remainder ofm divided by 2. Then setm+ = m+ + 1
if the label of zt is+1, or setm− = m− +1 if the label
of zt is −1.

Step 3: Draw randomly a sample from D and denote it the
candidate sample z∗.

Step 4: Calculate the ratio P of e−ℓ(f0,z) at the sample z∗ and
the sample zt , P = e−ℓ(f0,z∗)/e−ℓ(f0,zt ).

Step 5: If P = 1, yt = −1 and y∗ = −1 accept the candidate
sample z∗ with probability P ′

= e−y∗f0/e−yt f0 . If P =

1, yt = 1 and y∗ = 1 accept the candidate sample
z∗ with probability P ′

= e−yt f0/e−y∗f0 . If P = 1 and
yty∗ = −1 or P > 1 or P < 1, accept the candidate
sample z∗ with probability P . If there are k candidate
samples z∗ cannot be accepted continuously, then set
P ′′

= qP and then with probability P ′′ accept the
sample z∗. Set zt+1 = z∗,m+ = m+ +1 if the label of
zt is +1, or set m− = m− + 1 if the label of zt is −1.

Step 6: If m+ < m
2 or m− < m

2 then return to Step 3, else
stop it.

Table 2
Misclassification rates for 1000 training samples.

Dataset MR (i.i.d.) MR (Markov)

Abalone 0.3632 ± 0.1379 0.2216± 0.0023
Shuttle 0.0723 ± 0.0114 0.0619± 0.0042
Magic 0.2167 ± 0.0043 0.2133± 0.0023
Waveform 0.2116 ± 0.0025 0.2036± 0.0019
Splice 0.2650 ± 0.0039 0.2216± 0.0023

Table 3
Misclassification rates for 1500 training samples.

Dataset MR (i.i.d.) MR (Markov)

Abalone 0.4646 ± 0.1280 0.2231± 0.0069
Shuttle 0.0673 ± 0.0074 0.0594± 0.0053
Magic 0.2242 ± 0.0049 0.2159± 0.0010
Waveform 0.2226 ± 0.0017 0.2119± 0.0021
Splice 0.2648 ± 0.0029 0.2567± 0.0023

kernels SVMC to train the set S ′

T , and test it on the same test
set. After the experiment had been repeated for 50 times, the
misclassification rates were presented in Tables 2 and 3, where
MR (Markov) denotes the misclassification rates based on Markov
sampling.

From Tables 2 and 3, we can find that for the same size
of training samples and the same test set, all the means of
misclassification rates of Gaussian RBF kernels SVMC based on
Markov sampling are smaller than that of randomly independent
sampling, and all the standard deviations of misclassification
rates of Gaussian RBF SVMC based on Markov sampling are
also smaller than that of randomly independent sampling except
Waveform for 1500 training samples. To simplify the process of
these experiments, we take N1 = m in the above experiments. In
addition, the parameters λ and σ of Gaussian RBF kernels SVMC
based on randomly independent sampling and Markov sampling
are chosen by the method of 5-fold cross-validation, respectively.
Fig. 1. 50 times experimental misclassification rates for Abalone andm = 1000.

Fig. 2. 50 times experimental misclassification rates for Abalone andm = 1500.

4.2. Discussions and comparisons

To have a better understanding of learning performance of
Gaussian RBF kernels SVMC based on Markov sampling, we
also present the following figures on 50 times experimental
results of Gaussian RBF kernels SVMC based on Markov sampling
and randomly independent sampling. Here ‘‘red square’’ denotes
the results based on randomly independent sampling, ‘‘blue
hexagram’’ denotes the results based on Markov sampling. The
numbers on the vertical axis of figures denote themisclassification
rates, and the numbers on the horizontal axis of figures denote the
experimental times.

In Figs. 1 and 2, we can find that for Abalone, 1000 and 1500
training samples, the 50 times misclassification rates of Gaussian
RBF kernels SVMC based on Markov sampling are smaller than
that of randomly independent sampling except at most 3 times
experimental results.

In Figs. 3–5, we can find that for Shuttle, 1000 and 1500
training samples, the 50 times misclassification rates of Gaussian
RBF kernels SVMC based on Markov sampling are smaller than
that of randomly independent sampling except at most 12 times
experimental results. While for 4000 training samples, almost all
the 50 times misclassification rates Gaussian RBF kernels SVMC
based on Markov sampling are smaller than that of randomly
independent sampling.

In Figs. 6 and 7, we can find that for Magic and 1000 training
samples, the 50 times misclassification rates of Gaussian RBF
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Fig. 3. 50 times experimental misclassification rates for Shuttle andm = 1000.

Fig. 4. 50 times experimental misclassification rates for Shuttle andm = 1500.

Fig. 5. 50 times experimental misclassification rates for Shuttle andm = 4000.

kernels SVMC based on Markov sampling are smaller than that
of randomly independent sampling except 14 times experimental
results. While for 1500 training samples, all the 50 times
experimental results of Gaussian RBF kernels SVMC based on
Markov sampling are better than that of randomly independent
sampling.

In Figs. 8 and 9, we can find that for Waveform, 1000 and
1500 training samples, all the 50 times misclassification rates of
Fig. 6. 50 times experimental misclassification rates for Magic andm = 1000.

Fig. 7. 50 times experimental misclassification rates for Magic andm = 1500.

Fig. 8. 50 times experimental misclassification rates forWaveform andm = 1000.

Gaussian RBF kernels SVMC based onMarkov sampling are smaller
than that of randomly independent sampling.

In Figs. 10 and 11, we can find that for Splice, 1000 and
1500 training samples, all the 50 times misclassification rates of
Gaussian RBF kernels SVMC based onMarkov sampling are smaller
than that of randomly independent sampling. In addition, we also
compare the total times (second) of training and sampling based
on Markov sampling with that of randomly independent sampling
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Fig. 9. 50 times experimental misclassification rates forWaveform andm = 1500.

Fig. 10. 50 times experimental misclassification rates for Splice andm = 1000.

Fig. 11. 50 times experimental misclassification rates for Splice andm = 1500.

in Table 4. Here ‘‘Times (Markov)’’ and ‘‘Times (i.i.d.)’’ denote the
total times of training and sampling based onMarkov sampling and
randomly independent sampling, respectively. ‘‘Abalone-1000’’
denotes the average times of training and sampling of 50 times
experiments for Abalone with 1000 training samples.

FromTable 4, we can find that, the average times of training and
sampling based onMarkov sampling are less than that of randomly
Table 4
Comparisons for the total times of training and sampling.

Dataset Times (i.i.d.) Times (Markov)

Abalone-1000 38.0543 18.3295
Shuttle-1000 29.3699 33.8851
Magic-1000 40.9011 20.3814
Waveform-1000 57.5039 59.8591
Splice-1000 39.3179 27.8640
Abalone-1500 136.7234 128.9456
Shuttle-1500 107.4241 108.7373
Magic-1500 202.0325 125.6450
Waveform-1500 79.1662 217.7864
Splice-1500 136.1976 77.4119
Shuttle-4000 566.9826 540.9785

independent sampling except Shuttle with 1000 and 1500 training
samples, Waveform with 1000 and 1500 training samples.

Finally, we interpret the learning performance of Gaussian
RBF kernels SVMC based on Markov sampling as follows: first,
in the process of Markov sampling, the candidate samples z∗
are accepted with different acceptance probabilities, while for
random sampling, all the candidate samples z∗ are accepted with
probability 1. Second, by these acceptance probabilities defined in
Step 5 of Algorithm 1, we can find that the samples that have the
same or similar property (with respect to the loss function ℓ(f , z))
will be acceptedwith another probability P ′, which implies that the
Markov chain samples are different compared to randomsampling.
More importantly, after many times transitions, the samples that
close to the interface of two classes data will be sampled and
be accepted with high probabilities, which are the reasons that
the learning performance of Gaussian RBF kernels SVMC based
on Markov sampling is better than that of randomly independent
sampling.

5. Conclusions

In this paper we study the generalization performance of
Gaussian RBF kernels SVMC algorithm based on u.e.M.c. samples.
We not only establish the learning rates of Gaussian RBF kernels
SVMC algorithm based on u.e.M.c. samples, but also obtain the
fast learning rates for Gaussian RBF kernels SVMC algorithm with
u.e.M.c. samples by using the strongly mixing property of u.e.M.c.
samples. The learning rate obtained in this paper is same as the
optimal learning rate of learning algorithm that established in
Chen et al. (2004), Steinwart and Scovel (2007), Tong et al. (2009).
This implies that the results obtained in this paper extend the
classical results of SVMCbased on i.i.d. samples in Chen et al. (2004)
and Steinwart and Scovel (2007) to the case of u.e.M.c. samples. To
our knowledge, these studies here are the first works on this topic.
In order to study the learning performance of Gaussian RBF kernels
SVMC based on Markov sampling, we also present the numerical
studies on benchmark repository usingGaussian RBF kernels SVMC
based onMarkov sampling. The experimental results show that the
Gaussian RBF kernels SVMCbased onMarkov sampling can provide
smallermisclassification rates compared to randomly independent
sampling.

Along the line of the present work, several open problems
deserve further research, for example, the study on the learning
performance of Gaussian RBF kernels SVMCbased onMarkov chain
samples for the data sets with higher input dimensions, and the
study on the Markov sampling algorithm for regression problem
and online learning algorithms. All these problems are under our
current investigation.
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Appendix A. Main tools

Our main tools are as follows: let {ξi}
∞

i=−∞
be a stationary

process defined on a probability space (ξ∞, S∞, P̃). For −∞ <
i < ∞, let Ak

−∞
denote the σ -algebra generated by random

variables ξi, i ≤ k, and similarly let A∞

k denote the σ -algebra
generated by random variables ξi, i ≥ k. Let P̃k

−∞
and P̃∞

k denote
the correspondingmarginal probabilitymeasures, respectively. Let
P̃0 denote themarginal probability of each of the ξi. Let Āk−1

1 denote
the σ -algebra generated by the random variables ξi, i ≤ 0 as well
as ξj, j ≥ k.

Definition 5 (Vidyasagar, 2003). The sequence {ξt} is called
geometrically β-mixing, if there exist constants ν > 0 and λ1 < 1
such that for any k ≥ 1, k ∈ N

sup
C∈Āk−1

1

|P̃(C)− (P̃0
−∞

× P̃∞

1 )(C)| = β(k) ≤ νλk1,

where β(k) is called the β-mixing coefficient.

Lemma 4 (Vidyasagar, 2003). Suppose {ξt} is a β-mixing process on
a probability space (ξ∞, S∞, P̃). Suppose g : ξ∞

→ R is essentially
bounded and depends only on the variables ξi, 0 ≤ i ≤ l. Let P̃0 denote
the one-dimensional marginal probability of each of ξi. Then

|E(g, P̃)− E(g, P̃∞

0 )| ≤ lβ(k)∥f ∥∞,

where E(g, P̃), E(g, P̃∞

0 ) are the expectations of g with respect to P̃ ,
P̃∞

0 , respectively.

Lemma 5 (Vidyasagar, 2003). Let {ξt} be a V-geometrically ergodic
Markov chain. Then the sequence {ξt} is geometrically β-mixing, and
the β-mixing coefficient β(k) is given by

β(k) = E

∥Pk(·|ξ)− π(·)∥TV , π


=


∥Pk(·|ξ)− π(·)∥TVπ(dξ).

Lemma 6 (Saunders, Gammerman, & Vovk, 1998). Let W be a
random variable such that E(W ) = 0, and W satisfies the Bernstein
moment condition, that is, for some K1 > 0,

E|W |
k
≤

Var(W )
2

k!K k−2
1 (7)

for all k ≥ 2. Then for all 0 < ζ < 1/K1,

E[exp(ζW )] ≤ exp

ζ 2E|W |

2

2(1 − ζK1)


.

In particular, If |W | ≤ 3K1 almost everywhere, then the Bernstein
moment condition (7) holds true (Modha & Masry, 1996).

By Definition 5, Lemmas 4–6, we establish the following
concentration inequality for u.e.M.c. samples.
Lemma 7. Let {zi}mi=1 be a u.e.M.c. sample. Denote Vi = φ(zi), where
φ is a real-valued measure function and

m(β)
= ⌊m⌈{8m/ ln(1/ρ)}

1
2 ⌉

−1
⌋, where ⌊u⌋(⌈u⌉) denotes the

greatest (least) integer less (greater) than or equal to u. Assume that
|Vi| ≤ d1 for any 1 ≤ i ≤ m and E[V1] = 0. Then for any ε > 0,

Prob


1
m

m
i=1

Vi ≥ ε


≤ (1 + γ e−2) exp


−ε2m(β)

2(E|V1|
2 + εd1/3)


.

Proof. We decompose the proof into three steps.
Step 1: By Remark 1, uniformly ergodic Markov chain is V -
geometrically ergodic. Then by Lemma 5, we have that uniformly
ergodic Markov chain is geometrically β-mixing,

β(k) = E

∥Pk(·|z)− π(·)∥TV , π


≤ γ ρk. (8)

Thus we can use the β-mixing property of u.e.M.c. to prove
Lemma 7 as follows: we decompose the index set I = {1, . . . ,m}

into different parts by following the idea from Vidyasagar (2003),
that is, given an integer m, choose any integer km ≤ m, and define
lm = ⌊m/km⌋ to be the integer part of m/km. For the time being,
km and lm are denoted respectively by k and l, so as to reduce
notational clutter. Let r = m − kl, and define

Ii =


{i, i + k, . . . , i + lk}, i = 1, 2, . . . , r,
{i, i + k, . . . , i + (l − 1)k}, i = r + 1, . . . , k.

Let pi = |Ii|/m for i = 1, 2, . . . , k, and define am(z) =
1
m

m
i=1 Vi,

bi(z) =
1
|Ii|


j∈Ii

Vj. Then we have 1
m

m
i=1 Vi = am(z) =

k
i=1

pibi(z).
Since exp(·) is convex, we have that for any τ > 0,

exp[τam(z)] = exp


k

i=1

piτbi(z)


≤

k
i=1

pi exp[τbi(z)].

It follows that

E(eτam(z), P̃) ≤

k
i=1

piE(eτbi(z), P̃). (9)

Since

exp[τbi(z)] = exp


τ

|Ii|


j∈Ii

Vj


=


j∈Ii

exp

τVj

|Ii|



≤


exp


τd
|Ii|

|Ii|

≤ eτd,

where in the last step we use the assumption |Vj| ≤ d. Note that
the quantities E(eτbi(z), P̃) are all the same since the stochastic is
stationary. Moreover, since the components in the index set Ii are
separated by at least k. By Lemma 4, we have that for any τ > 0

E(eτbi(z), P̃) ≤ (|Ii| − 1)β(k)∥eτbi(z)∥∞ + E(eτbi(z), P̃∞

0 )

≤ (|Ii| − 1)β(k)eτd + E(eτbi(z), P̃∞

0 ). (10)

Since under the measure P̃∞

0 , the various zi are independent, by
Lemma 6, we have that for any 0 < τ < 3|Ii|/d

E(eτbi(z), P̃∞

0 ) = E


j∈Ii

exp(τVj/|Ii|), P̃∞

0


=


j∈Ii

E

exp(τVj/|Ii|), P̃∞

0


=


E

exp


τV1

|Ii|


, P̃0

|Ii|

≤ exp


τ 2E|V1|
2

2|Ii|(1 − τd/3|Ii|)


.



48 J. Xu et al. / Neural Networks 53 (2014) 40–51
By inequality (10), we have that for any 3|Ii|/d > τ > 0

E(eτbi(z), P̃) ≤ exp


τ 2E|V1|
2

2|Ii|(1 − τd/3|Ii|)


+ (|Ii| − 1)β(k)eτd.

Thus by inequality (9) and the above inequality, we have that for
any 3|Ii|/d > τ > 0

E(eτam(z), P̃) ≤

k
i=1

pi


exp


τ 2E|V1|

2

2|Ii|(1 − τd/3|Ii|)



+ (|Ii| − 1)β(k)eτd

. (11)

Step 2: We now bound the second term on the right-hand side of
inequality (11) which is denoted henceforth by φi, 1 ≤ i ≤ k. By
inequality (8), we have that for any 0 < τ ≤ 3|Ii|/d,

φi = exp


τ 2E|V1|
2

2|Ii|(1 − τd/3|Ii|)


+ (|Ii| − 1)β(k)eτd

≤ exp


τ 2E|V1|
2

2|Ii|(1 − τd/3|Ii|)


+ e|Ii|e−2γ ρk

· eτd

≤ exp


τ 2E|V1|
2

2|Ii|(1 − τd/3|Ii|)


+ γ e−2e{k ln ρ+4|Ii|}.

The above inequality follows from the fact that |Ii − 1| ≤ e|Ii|−2

for |Ii| ≥ 2. We require exp{k ln ρ + 4|Ii|} ≤ 1. But |Ii| ≤

(m/k + 1); thus the bound holds if 4(m/k + 1) ≤ k ln(1/ρ) or
4(m + k) ≤ k2 ln(1/ρ). Since m + k ≤ 2m, then the bound holds
if {8m/ ln(1/ρ)}

1
2 ≤ k. Let k = ⌈{8m/ ln(1/ρ)}

1
2 ⌉. Since for all

i = 1, . . . , k, |Ii| ≥ l, and l = ⌊m/k⌋, we have

φi ≤ exp


τ 2E|V1|
2

2l(1 − τd/3l)


+ γe−2. (12)

Since inequality (12) is true for all τ , 0 < τ ≤ 3|Ii|/d. To make the
constraint uniform over all i, we then require τ satisfy 0 < τ <
3l/d ≤ 3|Ii|/d. Since τ 2E|V1|

2/2l(1− τd/3l) > 0, we have that for
any 0 < τ < 3l/d, φi ≤ (1 + γe−2) exp


τ 2E|V1|

2/2l(1 − τd/3l)

.

Returning to inequality (11), we have that for 0 < τ < 3l/d,

E(eτam(z), P̃) ≤ (1 + γe−2) exp


τ 2E|V1|
2

2l(1 − τd/3l)


. (13)

Step 3: ByMarkov’s inequality and inequality (13), we have that for
any 0 < τ ≤ 3l/d,

Prob


1
m

m
i=1

Vi ≥ ε


= Prob

e
τ


1
m

m
i=1

Vi


≥ eτε


≤ C2 exp


−τε +

τ 2E|V1|
2

2l(1 − τd/3l)


,

where C2 = 1 + γ e−2. Substituting τ =
lε

(E|V1|2+εd/3)
and noting

that the selected value for τ satisfies τ ≤ 3l/d, then we have that
for any ε > 0

Prob


1
m

m
i=1

Vi ≥ ε


≤ C2 exp


−lε2

2(E|V1|
2 + εd/3)


.

By the inequality above and replacing l by m(β), we complete the
proof of Lemma 7.

Lemma 8. Let {zi}mi=1 be a u.e.M.c. sample and G be a set of functions
on Z. Suppose that there is some a > 0 such that E(g2) ≤ aE(g) for
any g ∈ G and |g − E(g)| ≤ A almost everywhere for any g ∈ G.
Then for any ε > 0,

Prob

sup
g∈G

E(g)−
1
m

m
i=1

g(zi)
√
E(g)+ ε

≥
√
ε


≤ C2N


G,
ε

4


exp


−εm(β)

32(a + A/3)


.

Proof. Letµ = E(g) and σ 2
= E[(g −µ)2]. For any ε > 0 and any

1 ≥ α1 > 0, by Lemma 7, we have

Prob


µ−

1
m

m
i=1

g(zi)
√
µ+ ε

≥ α1
√
ε


≤ C2 exp


−α2

1ε(µ+ ε)m(β)

2[σ 2 + (Aα1
√
ε
√
µ+ ε)/3]


. (14)

By assumption, we have σ 2
≤ E[g2

] ≤ cE[g] = cµ, and

σ 2
+

Aα1
√
ε
√
µ+ ε

3
≤ cµ+

A(µ+ ε)

3
≤ (µ+ ε)


c +

A
3


.

By (14), we have that for any ε > 0, any 1 ≥ α1 > 0

Prob


µ−

1
m

m
i=1

g(zi)
√
µ+ ε

≥ α1
√
ε


≤ (1 + γ e−2) exp


−α2

1εm
(β)

2(c + A/3)


. (15)

Let {gj}
n1
j=1 ⊂ G with n1 = N (G, α1ε) such that G is covered by

balls Dj = {g ∈ G : ∥g − gj∥∞ ≤ α1ε} centered at gj with radius
α1ε. Then for any 1 ≤ j ≤ n1, by inequality (15), we have

Prob


E(gj)−

1
m

m
i=1

gj(zi)
E(gj)+ ε

≥ α1
√
ε


≤ (1 + γ e−2) exp


−α2

1εm
(β)

2(c + A/3)


. (16)

For any g ∈ G, there is some j ∈ {1, . . . , n1} such that ∥g −

gj∥∞ ≤ α1ε. This implies that |E(g) − E(gj)| ≤ ∥g − gj∥∞ ≤ α1ε,
|
1
m

m
i=1 g(zi)−

1
m

m
i=1 gj(zi)| ≤ ∥g − gj∥∞ ≤ α1ε. It follows that 1m m

i=1
g(zi)−

1
m

m
i=1

gj(zi)


√
E(g)+ ε

≤ α1
√
ε,

E(g)− E(gj)
√
E(g)+ ε

≤ α1
√
ε.

The second inequality above implies that

E(gj)+ ε

< 2
√
E(g)+ ε (Chen et al., 2004). Thus we have

Prob

sup
g∈G

E(g)−
1
m

m
i=1

g(zi)
√
E(g)+ ε

≥ 4α1
√
ε


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≤

n1
j=1

Prob


E(gj)− Em(gj)

E(gj)+ ε
≥ α1

√
ε



≤ (1 + γ e−2)N (G, α1ε) exp


−α2
1εm

(β)

2(c + A/3)


.

Taking α1 =
1
4 in the above inequality, we finish the proof of

Lemma 8.

Lemma 9 (Cucker & Smale, 2002). Let c1, c2 > 0, and p1 > p2 > 0.
Then the equation xp1 − c1xp2 − c2 = 0 has a unique positive zero x∗.
In addition x∗

≤ max{(2c1)1/(p1−p2), (2c2)(1/p1)}.

To prove Theorem 2, we use the following lemma for strongly
mixing (Modha & Masry, 1996).

Lemma 10. Let {zi}i≥1 be a stationary strongly mixing sequence with
the mixing coefficient satisfying Assumption 1. Let an integer m ≥ 1
be given. For each integer i ≥ 1, let Ui = f (zi), where f is some real-
valued Borelmeasurable function. Assume that |U1| ≤ d2 a.s. and that
E[U1] = 0. Set m(α)

= ⌊m⌈{8m/c}1/(β+1)
⌉
−1

⌋. Then for all ε > 0

Prob


1
m

m
i=1

Ui ≥ ε


≤ (1 + 4e−2α) exp


−ε2m(α)

2(E|U1|
2 + εd2/3)


.

By Lemma 10 and using the similar argument conducted as that
in Lemma 8, we establish the relative uniform convergence bound
for strongly mixing sequence.

Lemma 11. Let {zi}mi=1 be strongly mixing and G be a set of functions
on Z. Suppose that there is some c ′

≥ 0 such that E(g2) ≤ c ′E(g) for
any g ∈ G and |g − E(g)| ≤ A′ almost everywhere for any g ∈ G.
Then for any ε > 0,

Prob

sup
g∈G

E(g)−
1
m

m
i=1

g(zi)
√
E(g)+ ε

≥
√
ε


≤ (1 + 4e−2α)N


G,
ε

4


exp


−εm(α)

32(c ′ + A′/3)


.

Appendix B. Proofs of main results

Proof of Proposition 1. We decompose this proof into two steps.
Step 1: Estimate the second term of sample error (6): 1

m

m
i=1 ζ2(zi)

−Eζ2. By the definition ofD(λ), we have λ∥fλ∥2
K ≤ E(fλ)−E(fψ )+

λ∥fλ∥2
K = D(λ). It follows that ∥fλ∥K ≤

√
D(λ)/λ. By |fψ (x)| ≤ B

for any x ∈ X , we have |ζ2| = |(1 − yfλ(x))+ − (1 − yfψ (x))+| ≤

b := κ
√
D(λ)/λ + B. It follows that |ζ2(z) − Eζ2| ≤ 2b, E(ζ 2

2 ) ≤

b · |E(fλ)− E(fψ )| ≤ D(λ)b.
Set Vi = ζ2(zi)− Eζ2,m ≥ i ≥ 1. By Lemma 7, we have that for

any ε > 0

Prob


1
m

m
i=1

ζ2(zi)− Eζ2 ≥ ε



≤ (1 + γ e−2) exp


−ε2m(β)

2b(D(λ)+ 2ε/3)


.

Then we have that for any 0 < δ < 1, inequality

1
m

m
i=1

ζ2(zi)− Eζ2 ≤ ε1(m, δ)
is valid with probability at least 1 − δ, where

ε1(m, δ) =
2b ln(C2/δ)

3m(β)

+


2b ln(C2/δ)

3m(β)

2

+
2b ln(C2/δ)D(λ)

m(β)
,

and C2 = 1 + γ e−2. Notice that

ε1(m, δ) ≤
7b ln(C2/δ)

3m(β)
+ D(λ),

and replacing b by κ
√
D(λ)/λ+B, we have that for any 0 < δ < 1,

the following inequality holds true with probability at least 1 − δ

1
m

m
i=1

ζ2(zi)− Eζ2 ≤
7(κ

√
D(λ)/λ+ B) ln(C2/δ)

3m(β)
+ D(λ). (17)

Step 2: Estimate the first term of sample error (6): Eζ1 −
1
m

m
i=1 ζ1(zi). Let FR = {(1 − yf (x))+ − (1 − yfψ (x))+, f ∈

BσH (R)}, R > 0, and g = (1 − yf (x))+ − (1 − yfψ (x))+.We have

E(g) = E(f )− E(fψ ) ≥ 0,
1
m

m
i=1

g(zi) = Em(f )− Em(fψ ).

For any f ∈ BσH (R), we have ∥f ∥∞ ≤ κ∥f ∥K ≤ κR. It follows
that |g(z)| ≤ κR + B := b1, |g(z) − E(g)| ≤ 2b1. Then we have
E(g2) ≤ (κR + B)(E(f )− E(fψ )) = b1E(g).

Denote E ′(f ) = E(f )−Em(f ). By Lemma 8, we have that for any
ε > 0

Prob


sup

f∈BσH (R)

E ′(f )− E ′(fψ )
E(f )− E(fψ )+ ε

≥
√
ε



= Prob

sup
g∈FR

E(g)−
1
m

m
i=1

g(zi)
√
E(g)+ ε

≥
√
ε


≤ C2N


FR,

ε

4


exp


−3εm(β)

160(κR + B)


.

Since for any g1, g2 ∈ FR, |g1(x) − g2(x)| ≤ ∥f1 − f2∥∞, we have
that for any ε > 0, an ε/(4R)-covering of BσH (1) provides an ε/4-
covering of FR (Wu et al., 2006). Then

Prob


sup

f∈BσH (R)

E ′(f )− E ′(fψ )
E(f )− E(fψ )+ ε

≥
√
ε



≤ C2N

BσH (1),

ε

4R


exp


−3εm(β)

160(κR + B)


.

It follows that for fS,λ that minimizes the regularized empirical
error (3) over BσH (R),

Prob


E ′(fS,λ)− E ′(fψ )
E(fS,λ)− E(fψ )+ ε

≥
√
ε



≤ C2N

BσH (1),

ε

4R


exp


−3εm(β)

160(κR + B)


. (18)

Set the right-hand side of inequality (18) to the same value δ above
and by Lemma 3, we have

C2 exp

Cp,dσ

(1−p/4)d

4R
ε

p

−
3εm(β)

160(κR + B)


= δ.
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It follows that

ε1+p
−

160(κR + B) ln(C2/δ)

3m(β)
· εp

−
160Cp,dσ

(1−p/4)d(κR + B)(4R)p

3m(β)
= 0.

By Lemma 9, we can solve this equation with respect to ε :=

ε2(m, δ), and then we have ε2(m, δ) ≤ 4R · max{m1,m2},

m1 =
80(κ + 1) ln(C2/δ)

3m(β)
,

m2 =


80Cp,dσ

(1−p/4)d(κ + 1)
3m(β)

 1
1+p

.

Using the fact that
√
ε
√

E(f )+ ε ≤
1
2E(f )+ ε, by inequality (18)

wehave thatwith probability at least 1−δ, the following inequality
is valid

Eζ1 −
1
m

m
i=1

ζ1(zi) ≤
1
2
[E(fS,λ)− E(fψ )] + ε2(m, δ).

By Lemma 1 and inequality (17) and the above inequality, we
complete the proof of Proposition 1.

Proof of Theorem 1. Denote∆S = E(fS,λ)−E(fψ )+2λ∥fS,λ∥2
K . By

the definition of fS,λ, we have

λ∥fS,λ∥2
K ≤ Em(fS,λ)+ λ∥fS,λ∥2

K

≤ Em(0) =
1
m

m
i=1

(1 − yi0)+ ≤ 1.

It follows that ∥fS,λ∥K ≤ 1/
√
λ for almost all S. This implies that

for any S, fS,λ ∈ BσH (R) with R = 1/
√
λ. In addition, by the facts

that ⌈t⌉ ≤ 2t for all t ≥ 1, ⌊t⌋ ≥ t/2 for all t ≥ 2 (Steinwart
et al., 2009), we have m(β)

≥ m
1
2 [ln(1/ρ)]

1
2 /(8

√
2) as m satisfies

m ≥ max{ln(1/ρ)/8, 128/(ln 1/ρ)}.
By Proposition 1, we have that the inequality

∆S ≤ 4D(λ)+
7(κ

√
D(λ)/λ+ B) ln(C2/δ)

3m(β)

+ 8R


640

√
2Cp,dσ

(1−p/4)d

3(ln(1/ρ))
1
2 m

1
2

 1
1+p

(19)

holds true provided thatm satisfies

m ≥ max


ln(1/ρ)

8
,

128
(ln 1/ρ)

,

5 · 211(κ + 1)2(ln(C1/δ))
2

9 ln(1/ρ)
·


ln(C1/δ)

Cp,dσ (1−p/4)d

 2
p

.

Denote W(R) = {S ∈ Zm
: ∥fS,λ∥K ≤ R}. Choosing λ =

 1
m

ϑ
, by

inequality (19) and Lemma 2, we have that there is a set VR ⊆ Zm

with measure at most δ such that for any S ∈ W(R) \ VR,

∆S ≤ λ
α
α+1


C3Rλ

1
2(α+1) + 2C3


, (20)

where C3 > 1 is a constant independent ofm. Startwith R = R(0) =

1/
√
λ, by (20), we have Zm

= W(R(0)) ⊆ W(R(1)) ∪ VR(0) , where

R(1) ≤ λ
−1

2(α+1) (C3λ
−α

4(α+1) + 2C3).
By (20), for j = 2, 3, . . . ,we iteratively derive (Tong et al., 2009)

Zm
= W(R(0)) ⊆ W(R(1)) ∪ VR(0) ⊆ · · ·

⊆ W(R(j)) ∪


j−1
k=0

VR(k)


,

each VR(k) has measure at most δ and R(j) is given by

R(j) ≤ λ
−1

2(α+1) (C3λ
−α

2(α+1)


1
2

j
+ 2jC3). (21)

For ϵ > 0, choose J ∈ N such that
1
2

J

≤
2 + (1 + p)(2α + 1)d

αd
· ϵ.

Replacing j by J in (21), we have that for S ∈ W(R(J))

∥fS,λ∥K ≤ λ
−1

2(α+1) (C3λ
−α

2(α+1)


1
2

J
+ 2JC3).

This together with (20) gives

E(fS,λ)− E(fψ ) ≤ ∆S ≤C  1
m

θ
, ∀S ∈ W(R(J)) \ VRJ .

Since
j−1

k=0 VR(k) has measure at most Jδ, replacing δ by δ/J , the
measure of W(R(J)) \ VR(J) is at least 1 − δ. We complete the proof
of Theorem 1.

Proof of Theorem 2. Rosenblatt (1972) proved that if a stationary
Markov chain satisfies both uniform ergodicity and mixing (in
the ergodic-theoretic sense), then it is strongly mixing. Thus by
Lemmas 10 and 11, and using the similar argument conducted as
that in Proposition 1, we have that for any 0 < η < 1 and all
S ∈ W(R) = {S ∈ Zm

: ∥fS,λ∥K ≤ R}, inequality

E(fS,λ)− E(fψ )+ 2λ∥fS,λ∥2
K

≤ 4D(λ)+ 8Rε(m, η)+
7(κ

√
D(λ)/λ+ B) ln(C4/η)

3m(α)
(22)

holds true with probability at least 1− 2η, where C4 = 1+ 4e−2α,
and ε(m, η) ≤ max{m,m},

m =
80(κ + 1) ln(C4/η)

3m(α)
,

m =


80Cp,dσ

(1−p/4)d(κ + 1)
3m(α)

 1
1+p

.

In addition, by the facts that ⌈t⌉ ≤ 2t for all t ≥ 1, ⌊t⌋ ≥

t/2 for all t ≥ 2 (Steinwart et al., 2009), we have m(α)
≥

2−
2β+5
β+1 c

1
β+1 m

β
β+1 . For m ≥ max{c/8, 22+5/βc−β

}. By the similar
argument conducted as that in the proof of Theorem 1, we can
finish the proof of Theorem 2.
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