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Quantitative Studies on Asymptotic Growth Behaviors of
Trajectories of Nonlinear Discrete Dynamical Systems

Lisheng Wang and Zongben Xu

Abstract—This technical note studies quantitatively asymptotic growth
behaviors of trajectories (AGBT) of nonlinear autonomous discrete dynam-
ical system that has unbounded domain, non-Lipschitz continuous non-
linear operator, and stable or unstable equilibrium point. We explain how
trajectory motion speed is quantitatively determined in the system, and
study exact computation and sharp estimation of the smallest exponential
bound of trajectories. We characterize exponential stability and asymptotic
stability of the system from a new point of view, and provide a simple con-
dition to distinguish them from each other. These results extend existing re-
sults that were obtained in some special cases of the system, and are helpful
for quantitative analysis and understanding of AGBT of the system.

Index Terms—Asymptotic growth behaviors, nonlinear discrete dynam-
ical systems, trajectory motion speed.

I. INTRODUCTION

Suppose that X is a Banach space, £ C X is an arbitrary subset
containing the origin O as an interior point, 7" : £ — E isanonlinear
operator. This technical note considers the following nonlinear discrete
dynamical system (NDDS):

z(k+1)=T(x(k)). =(0)€E, k=0,1.2... (1)
where, O is an equilibrium point (i.e., 7(0) = @), trajectories of the
system converge to or diverge from the equilibrium point exponentially
as & — oco. This means that there exist constants 7 € (0, >c) and
M(3) > 0 such that the trajectory motion of the system satisfies

lz(B)| < M(3)- 5% |=0)|], Vz(0)e B, k=12... (2
here, 3 is called an exponential bound of trajectories, and M (3) the
growth coefficient corresponding to /3. Any positive number larger than
3 is an exponential bound as well. 3 can be less than one if system (1)
is exponentially stable in £ [1], but cannot be less than one in all other
cases. System (1) models many different NDDS in practice, such as
ones in neural networks, economic or biological systems, numerical
analysis [2], [3], [18], etc. Thus, it is useful to study dynamical behav-
iors and trajectory motion of system (1).

In many cases, users attempt to know or estimate how fast trajec-
tories of system (1) converge to or diverge from the equilibrium point
(namely, the speed of trajectory motion) [1], [2], [14], [15]. One pos-
sible way to the problem is to compute appropriate 4 and A (3) in
(2). By such computation, asymptotic growth behaviors of trajectories
(AGBT) of system (1) can be well described. In system (1), it is the
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infimum of all possible exponential bounds of trajectories rather than
any given /3 that can describe the fastest speed of trajectory motion or
real AGBT. Thus, this technical note focuses on the discussion of the
infimum. The infimum is denoted by # and called the essential expo-
nential bound (e-EB) of trajectories starting from E.

7 is an intrinsic quantity of system (1) [15]. While there is no expo-
nential bound less than 7, each exponential bound can be represented
as 5 + =0, here go > 0 is varied for different exponential bound. Fur-
thermore, for any sufficiently small = > 0, there must exist a growth
coefficient M (¢) > 0 (M (¢) is the function of ) such that the trajec-
tory motion of system (1) satisfies

[l (R < M

? Answering these two problems facilitates us to understand clearly
the mechanism of how trajectory motion speed (TMS) or AGBT is
quantitatively determined in system (1), and possibly is helpful for the
computation of  and A (£). Thus, this technical note will discuss the
e-EB 7, M (=) and several problems related to ;. These problems in-
clude:

(P1) What are the factors affecting 1 and M (=) and how n and
M (<) are determined by them?

(P2) Is there a simple condition to distinguish asymptotic stability
from exponential stability of system (1)?

(P3) Whether there are equivalent relationships between stability
properties of system (1) and contraction properties of T'?

(P4) Computation or sharp estimation of 1.

The system with exponential stability is more robust to various dis-
turbances than the system with only asymptotic stability. Whenever
system (1) is asymptotically stable in E, users usually attempt to know
whether or not it is exponentially stable in E. Thus, it is important to
study the problem (P2). In linear systems, stability properties are usu-
ally equivalent to contraction properties of linear operators. Hence, we
try to study whether similar results exist in the system (1) or not [i.e.,
the problem (P3)]. This will provide a different view to understand dif-
ferent stability properties of system (1).

TMS or AGBT has been deeply studied in linear systems. For ex-
ample, by the spectral radius of a matrix .4 and equivalent vector norms
in R", the e-EB of trajectories of «:(k + 1) = A(x(k)) can be well
characterized [2]. By the joint spectral radius of a matrix set and equiv-
alent norms of the matrix set, the e-EB or maximal Lyapunov exponent
(namely In 7) of trajectories of linear time-varying discrete dynamical
systems can be well described [4], [5]. By the pseudo-spectra of the
matrix A, the power growth of ||.A™|], which is closely related to the
estimation of the growth coefficient, can be quantitatively described
[6]- These useful concepts or tools developed in linear cases, however,
usually cannot be applied directly in nonlinear system (1).

In past two decades, stability properties of NDDS have been
studied widely by Lyapunov functions, see [7]-[13] and references
therein. Some researchers studied sufficient conditions for different
stability properties [7]-[10], and others studied the converse Lya-
punov problem for different nonlinear systems with different stability
properties [11]-[13]. These results are important and useful for us
to understand stability properties of various NDDS. Differing from
the existing results, this technical note tries to provide general under-
standing and quantitative analyses of TMS or AGBT of the system
(1) that might be stable or unstable in E. Some researchers have
discussed the estimation of 4 and/or M (3) of different NDDS [1],
[2], [14], [21]. However, exact computation or sharp estimation of 5
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andM (&), the mechanism of how TMS of system (1) is quantitatively ~ with the equilibrium point:* of nonlinear systems, and even some
determined, are seldom studied. equivalent vector norms do not belong to themif£ O.

Recently, some attempts have been made to describe or esfiinate (ii). T4, ¥, and¥; are measure functions determined|bly and
some special cases of system (1) [14], [18], [21]. Nonlinear spectral ra- FE, but independent of nonlinear systemé$ded onE'. Differing
dius and lub Lipschitz constant, introduced in [14] and [21], were used from ¥, ¥» and¥;, Lyapunov functions will not exist if system
to estimate exponential bounds of the NDDS with Lipschitz continuity. (1) is not stable, and Lyapunov functions of stable system (1)
But these values are only upper bounds rather than equallto[15] are varied wheff’ represents different systems. Hence, Lyapunov
and [17], we discussegland M (=) in a special case of the system (1) function based methods (such a§]) actually describe AGBT of
whereFE is bounded and” Lipschitz continuous. However, methods system (1) by different sets of functions wh&nrepresents dif-
in [15] and [17] cannot be applied to the NDDS that has no Lipschitz  ferent systems. By SEFs, we magscribe the TMS of system (1)
continuity or/and its domai® is unbounded. In [16], we studied the in a uniform manner, no matter whether the system is stabt in
quantitative relation betweenand Lyapunov functions of thdapally andT represents different systems.
exponentially stable system (1). However, the ideas in [16] cannot beln system (1)/|7(x)|| < M(3) - 8 - ||=|| holds for anyx € E.
applied to the NDDS that is not globally exponentially stable. This implies that for any SEF'(-) € U5, F(T(x)) < R(||-||, F(-)) -

The stability problem is very important. While the lavecase iswell A (3) - 5 - F(x) holds for allz € E. This means that for each
developed, the nonlinear case is still growing up. So, this technical ngigen SEFF(-) € ¥3, we can dene a functionalL. (7. O, E) =

tries to develop a general framework to describe quantitatively TMS orsup F(FT((f)” .Here,L(T, O, E') canbe regarded as the nonlinear
AGBT of general nonlinear discrete dynamical syst@h Based on *#9-*€F ‘ @)l
our preliminary results in [17], [18], this technical note introduces a s@Perator modulus af. We haveL, (T 0. E) = o ber M if

of eqUiValent measure fUnCtionSM)M in E and déenes the nonlinear F() isa norm”.”. For any positive integeﬂs m, we have
operator modulus fdf'. By the tools, we prowle a theoretical expla-

nation on how; and (¢) are quantitatively determined in system (1), Le(T*" . 0,E) < Le(T*.0,E)- Lp(T"™,0,E).  (5)
study the exact computation and sharp estimatiopn ahd reveal that .

equivalence relations really exist besveexponential and asymptotic This implies that the limitlims. L (1*,0. E)* exists [16]. Denote
stability of system (1) and different contraction properti€s ofVe also
show that in many cases, the exponential stability and asymptotic sta-

bility of system (1) can be distinguistidrom each other based merely . ) . . . . .

on the information at a single point—the equilibrium point. These réﬂ\__ccordlng o (4),sz(_T., 0. E) is an Invariant quantlt)_/ derived from
. - different SEFs and different equivalent normg|df. This means that
sults are helpful in understanding TMS or AGBT of system (1). Theﬁy ¥
extend main results in [15]-[18nd present a theoretical basis for an " any|[[l, € ¥

important aspect of discrete-termodel development. Such quantita- Lip(T, 0. E) = lim Ly, (T, 0,E)"/*. @
tive studies allow for more accuraggstem analysis and modeling. Re- koo

searchers in the control engaring beld will bendst from the results To some extents] (T, 0. E) andLip(T. O. E) can be regarded
in this technical note, and potentially be able to use these results fr honjinear generalizations of the norm and spectral radius of a ma-
discrete-time system analysis and design. trix. Further, we havdip(T. O, E) = (iﬁlf Le(T.0. E), namely,

T R(ew,

Il. QUANTITATIVE DESCRIPTIONS OFTMS Lip(T, O, E) isthe irbmum of all nonlinear operator moduli @fover
In X, let ¥, denote the set of all equivalent vector normg|df, all SEFs (sge Theorem 1). This shows that for anyaiehtly small
and T, the set of all topologially equivalent metrics of -||. Then = > 0,thereisa SEF.(-) suchthatthe subordinatéd (T. 0. E) <

¥, C ¥, and they are two classes of different equivalent measufé?(T- O, E) + =. Here,F.(-) can be constructed explicitly as (9).
functions of|-||. In this section, we will introduce new equivalent mea- NO matter whether system (1) is exponentially stable &hds

Lip(T.0.E) = lim Lr(T*, 0,E)'/*F, (6)

sure functions of|-|| in E. bourded andr" is Lipschitz continuous, we have:
Suppose thaf'(r) : E C X — [0,cc) is a positive denite func- Theorem 1:For system (1), the following gquantitative results are
tion. F(x) is called a strongly equivalent function (SEF)|leff in £ if ~ Stated with respect to the TMS: )
there exist two constas(’, > C; > 0 such that (i) The eEB of trajectories starting fror' has the following prop-
N erties:
Cyolzl] € Fle) < Cy - |||, Wz € E. (4)
n=>Lip(T,0,E)= inf Ly(T, O E). (8)
Here,Cs and(, are called strongly equivalent céefents between Flevs
F(.).and||.||,They descie quanti_tativelythe metric-_bas?‘ed_equivalent (i) For any subciently smalle > 0, the growth codfcient
relation betweef)-| andF(-). The irbmum of all possible-* is called M(=) can be regarded approximately as the equivalent ratio
the equivalent ratio betweefl| and (), denoted byr(||-||. F'(-)). between||-| and a spetic SEF F.(-) whose subordinated

R(|l-|. F(-)) may be repiced approximately by a certain choice of L. (T,0, ) < y+=. Namely, M (=) = R(|-|| F.(-)). Here,

o _ _ F.(-) can be constructed as thatin (9) (in (B)p(T., O, E) can
Let ¥3 denote the set of all SEFs §f|] in E. It is easy to see that be replaced by,).

different equivaént norms in¥, have the same set of SEFs#h Fur- Proof: We brst proveLip(I. 0. E) = _iuf Lp(T.0.E).

ther, SEFs have the following properties: I'()ETs i

(). ¥, C ¥, but there are some SEFs that are not vector nomfsy (8). we haveLp.(T., O.E) > LipT. 0. _E) forany F'(-) € ¥s.
A metric functionis a mapping from¥ x X to [0, ). Hence, | NS implies thatp(?}gq,a Li(T.0.E) = Lip(T.0. E). By (7), for
SEFs are a class of new equivalent measure functioft$|@fi £, any= > 0, there is a positive intege¥ such thatL . (7V. 0. E) <
differing from the strongly equivalent metrics in [15], topologi-(Lip(T, O, E) + )™ . Denote

cally equivalehmetrics of]|-|| and equivalent vector normspf]. .

U3 may be regarded as a special case of the strongly equivaler}fi(ﬂ _ Z(Lip(T. O.F)+ )"t HTN—k (x)

functional in [18]. But strongly equivalent functional are varied i

, Ye€E. (9)

k=1
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smaller than =. This demonstrates that a NDDS might exhibit different
TMS or AGBT in Banach spaces and in metric spaces.

IV. EXPONENTIAL STABILITY AND ASYMPTOTIC STABILITY

Lemma 1: If system (1) is uniformly asymptotically stable in E,
then the e-EB of trajectories starting from different bounded subsets
(containing O as an interior point) of E is a constant.

Proof: Suppose that D, C E and D, C E are two bounded
sets containing O as an interior point. Let W C D; N D, represent
a neighborhood of 0. Denote the e-EBs of trajectories starting from
D1, D,. W by m, 92 and n,,, respectively. Then we have , < 1
and 7., < 72. Let o represent an exponential bound of trajectories
starting from W. By (2), there is M («) > 1 such that [|=(k)|| <
M(a) - o - ||2(0)| holds for any =(0) € W and any positive integer
k. Since trajectories starting from Dy converge uniformly to O, there
exists a positive integer A such that 7%z € W forany # € D, and
any positive integer ¥ > K. Thus, for any 2:(0) € D, and any positive
integer m > K

(177 2(0)]| = ||=( 4LH-”(T(; G2

m)|| < M (a){ a2 (0)]]. (14)

This implies 7, = 11111 LH 1(rr., o, Dl)l/m < «. a can be arbi-
trary exponential bound S0 1 < n.. Thus, we have 5, = 5. Sim-
ilarly, 7= = 7, can be proved. This implies 1 = n2. The proof is
completed. [ |

The constant in Lemma 1 is called the local essential exponential
bound (local e-EB) of trajectories of system (1), denoted by &. If T
is continuously differentiable in a local neighborhood of O, then by
Lemma 1 of [17], we have &€ = p(T'(0)).

In a special case of system (1) where X = R", E is bounded and T
iscontinuous in £/, by Lemma 1, it is easy to imply that system (1) is ex-
ponentially stable in E if and only if system (1) is asymptotically stable
in E and locally exponentially stable (namely, exponentially stable in
a local neighborhood of O). When F' is unbounded, we have:

Theorem 2: In system (1), suppose that X = ™, E is unbounded,

T is continuous in E and lim sup H( H)” < « holds for a constant
Jell—oo

«a € (0,1). Then system (1) is exponentially stable in E if and only if it
is asymptotically stable in £ and locally exponentially stable. Further,
the e-EB 1 < max{a, &}.

Proof: We only need to prove the sufficient condition. Let 3 €
(0, 1) denote the exponential bound of trajectories starting from a local
neighborhood of (0. Denote L = max{«a.3}, ¢ = 1 — L. Since

lim sup % < a < 1,forany = € (0,c), there exists b > 0 such

[lz|l—

that ”?( ”)” < &+ ¢ < 1 holds for any = € E with ||x|| > &. Denote
E(2b) = {x € E:||=|| > 2b} and B(2b) = {x € E : ||z|| < 2b}.
Observe that for any = € E(2b) and any positive integer i, if T"(x) €

E(2b) holdforall: = 1,2,...,k — 1, then we have

7

() < (@) llzll < (L) [Jell. (15)

In the following we verify the exponential convergence of trajectories
starting from B(2b) and E(2b), respectively.

It is known that system (1) is uniformly asymptotically stable in E as
well. By Lemma 1, we imply that the e-EB of trajectories starting from
B(2b) is not larger than 5. This implies that for any positive integer &
and any x(0) € B(2b), there exists (J > 1 such that
2z (0)]] -

ek < Q- (34" 20| < Q- (L+

(16)

Subsequently, we prove that trajectories starting from E(2b) con-
verge exponentially to (. Since system (1) is asymptotically stable in
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E, we have hm T*(x) = O forany = € E(2b). This implies that
for each glven € e E(2b), we can assume that there exists a positive
integer m,. such that 7" (x) € E(2b) for all positive integersi < .,
and 77+ (x) € B(2b). For each fixed positive integer k, there are two
possible cases: either & > m, or & < m,. For any fixed x € E(2b)
and any fixed positive integer &, we consider the two cases respectively
below:
(i) If & > m,, then by using (15) and (16), we get

[Eates el

| QT+ T L) | S Q(T) (17)

(ii) If & < m,, then T?(x) € E(2b) for any positive integer i < k.
Thus, by (15), we have

<(L+2)F-

|ﬁ‘ (18)

]

By (17) and (18), for any x(0) € E(2b) and any positive integer %,
we have
e (@Il < Q- (L+2)" - [|l=(0)].
By (16) and (19), for any «(0) € E and any positive integer &, we
thus have ||« (%)|| < Q- (L 4 &) - ||(0)]|. Since L 4+ ¢ < 1, system
(1) is exponentially stable in £. Since = is allowed to be arbitrary and
/3 can be arbitrary exponential bound, by Lemma 1, 7 <= max{a,&}.
The proof is completed.

(19)

]

Remark 3:

(i) System (1) is locally exponentially stable if there exists a small
neighborhood " of @ and a constant ¢ € (0,1) such that
|[Tz|| < ¢-||lz| holds for any = € U. If T is continuously
differentiable in a local neighborhood of O, then system (1) is
locally exponentially stable if and only if p(T'(0)) < 1.

(if) Asymptotic stability and exponential stability of system (1) can
be distinguished from each other by a simple condition: local
exponential stability of system (1) or p(T'(0)) < 1

V. EXPONENTIAL BOUNDS OF TRAJECTORIES

The e-EB 7 and the local e-EB ¢ are intrinsic quantities of exponen-
tially stable system (1). £ describes the smallest exponential bound of
trajectories starting from any bounded set £ N B{(+) of O. Here, » > 0
may be arbitrary. » describes the smallest exponential bound of trajec-
tories starting from the whole region E. If E is bounded, then = &.
If £ is unbounded, then & < 7. We have the following results:

(i) Forany given sufficiently large & > 0 and sufficiently small = >

0, thereexistsa 3L (h, ¢) > O such that forany «(0) € ENB(h)

[EHC [l (O

Here, M (h, =) might be varied with .
(ii) For any given = > 0, there exists a M (=) > 0 such that for any
x(0) € E

)l < M(h

(e E=0,1.2,.... (20)

le(B)]| < M) - (p+)" - [2(0)], k=0,1,2,.... (21)

Based on Lemma 1 and the proof of Theorem 2, we have:
Corollary 1: Suppose that system (1) is exponentially stable in the

unbounded set E. (i) If lim sup ”ﬂffu)” < « for a constant &« € (0, 1),

[ll|—
then we have £ < n < nlax{

&}, (i) If lim sup (EACal]

e < &, then
[Jz|l—

we have n = &.
Remark 4: 1f T is continuously differentiable in a local neigh-
borhood of O, then p(7"(0)) < 5 < max{wa, p(T'(0))}. Further,
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if T is bounded inE (namely, sup ||T(z)|| < 20) or satides
rell

Tl —

e =0, theny = p(T'(O)).

lim sup

[la]] —o0

If system (1) is only asymptotically stable rather than exponentially

stable inZ, then we have > 1, but do not know whether = 1 holds
or not. In some special cases of system (1), we have:

Corollary 2: In system (1), suppose th& = R",T is continuous
in E and is continuously differentiable in a local neighborhoodof
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exponentially stable (gs(T'(0)) < 1if f(x) is continuously
differentiable in a local neighborhood 6f).

(c) If f:(x:) is continuousf () is continuously differentiable in a
local neighborhood af?, and the network is only asymptotically
stable rather than exponentially stableRifi, thenn = 1.

Example 4: Consider a system as follows:

xr

1+=

2k +1) = T(z(k). T(z) = 2(0) # —1.2(0) € R'. (24)

system (1) is only asymptotically stable rather than exponentially stable

in £. Then we havey = 1 if E is bounded, or ifF is unbounded but

lim sup Hﬂ 7‘"” < 1.
[[z||—o0

Proof: We only need to provg < 1 in both cases. Since system

(1) is uniformly asymptotically stable i&, we havet = p(T'(0))

andp(T'(0)) < 1[9]. This impliesé¢ < 1.If E is bounded, then *

by Lemma 1, we have = ¢ < 1. By using the proof similar as
one in Theorem 2, we can prove that< 1 if E is unbounded but

”ﬂ(f‘f” < 1. The proof is completed. n

lizn sup

[l=]|—eo

VI. EXAMPLES

Example 1:In system (1), ifE = X andT is a positive homo-
geneous operator (namelfj{Az) = M- T(x) foranyx € X and
anyA > 0), thenLip(T, O, X) = Lip(T, 0, B(r)) for anyr > 0.
Further,Lip(T, 0, X) = p(T'(0)) holds if T is continuously differ-
entiable in a local neighborhood 6f.

Example 2: Consider a system in [9] as follows:

2(k+1) = T(2(k)). T(z) = <‘““’: ' fj_

x2
2) .2(0) € B2 (22)
rae
The system has the unique equilibrium pdintp(7”(0)) = 1, and is
asymptotically stable rather than exponentially stablB3r{9]. Since
fim sup 7G0T <1 by Corollary 2, we have = 1. Similarly, for the

xZ
o oo [l

system in Example 2.10 of [9], we can also imply that 1.
Example 3:Consider the discrete-time recurrent neural network

z(k+1)=Dx(k)+ Pf(Az(k) +u) +u2. x(0) € R" (23)

where,D = diag(d,.do,...,d,) is a diagonal matrix wittd <
|d:| < 1,ui.uz € I are two constant external input8, and A
are two real-valued matriceg(x) = (fi(x1), fa(za), ..., fulz N
is the nonlinear activation function ariin sup Wl — g, Filx)

[Tl
[lll—
— fi(D)]] < bzl for a constanﬂz > 0 and any

satides|| f; (x;)

r; € R'. Equation (23) includes neural network models in [71, [14
[18] and [22], [23] as special cases. According to [3], by changi

coordinates, the NDDS whose equilibrium point is notCatan be
transformed into one whose equilibrium point isCat Thus, without
loss of generality, we assume tliatis the unique equilibrium point of
(23). Denotel'(z) = Dx + Pf(Ax + ) + us foranyz € R".

We haveL. (T, 0. R") < o andhmsup Hﬂ(rHFH < ~ < 1. Here,
[[=]|—

v =max{|d;|:i=1,2,...,n}.By Theorems 2 and Corollary 2, we starting from(—1. +oc) converge ta? with the e-EBy; =

can easily imply the following results:

The functionT is not Lipschitz continuous iR, O is the unique
equilibrium pointand™ (Q) = 1. Foranyx(0) #Z —1 and any positive
integerk, we haver(k + 1) = I;JO’(O) Let{2 denote the sef— L :
n € ZT}, whereZ ™" represents the set of all positive integers. For any
(0) € 2, there exists a positive integer such that +m. - 2(0) = 0,
and thuse(m + 1) cannot be dened. Hence, in (24), we only need
to consider the trajectory motion speed of the trajectories starting from
R' — Q.

The system is not locally exponentially stable, and not asymptoti-
cally stable ink?", but uniformly asymptotically stable {fi, >c). Since

hm:,up Bl = 0 and|T()| < |«| holds for anyz € [0, ), by
[|=|l—

the proof of Theorem 2, we can imply that the e-EB of the trajectories
starting from(0. o) is not larger than one (namely, < 1). Mean-
while, we have; > 1, because the system is not exponentially stable.
This implies that the trajectories starting frqih oc) converge ta?

with the e- EBn =1.

For anyz(0) € (—>,—1),2(1) € (1,). Hence, the trajectories
starting from(—2>c. —1) have the same e-EB as one of the trajecto-
ries starting from(1, ~). In other words, the trajectories starting from
(—o0, —1) also converge t® with the e-EBy; = 1.

For any given suciently smalle > 0, there exists a positive integer
k. suchthal + k. -x(0) < 0 holds for any:(0) € (—1, —=)— . This
implies thate (k. 4+ 1) € (0, >¢) for any=(0) € (-1, —2) — Q. Thus,
for any given sufciently smalk € (0. 1), the trajectories starting from
(=1, —=) — © have the same e-EB as one of the trajectories starting
from (1. oc). Namely, the trajectories starting fram 1, —=) — 2 also
converge ta” with the e-EBn = 1. Based on the results above, we
can deduce that for any given safently small= > 0, the trajectories
starting from(0. =), (—>c, —1) and(—1, —z) — 2 converge td with
the e-EBy = 1.

Example 5: Consider the system as follows:

w(k+ 1) =Tk), =(0)€R', T(x)=sign(x). (25)

Here, T is not continuous ink', the system has three equilibrium
points x] —1,25 = 0,25 = 1, and is not asymptotically stable

]ln I*. However; andz; are exponentially stable iR, = (—oc, 0)
n?pst = (0, +2c), respectively. In such case, we may analyze how
a

st the trajectories starting frof; (or D3) converge tar] (or x3).
Alternatively, we may also analyztie e-EB of trajectorles startlng
from the wholeR ', with respect toe} or z3. Lety(k) = =(k) — 23,
Then (25) is transformed intgp(k + 1) = G(y(k)), y(0) € R".
Here,G(y) = sign(y + z3) — «%, andO is exponentially stable in
(—1,+). By Corollary 1, in the transformed system, the trajectories
0. Thus, in
system (25), the trajectories starting frdm (or D3) converge tor}

(@) If the network is globally exponentially stable, then the e-ERor %) with the e-EBy = 0. For anyrz € R' and any positive integer
n < max{~,&}. Further, if the network has small state feedback;, IT"(x) — 27| < 2|2 — 2f| and|T*(x) — %] < 2|« — 23| holds.

coetbcients in the sense 6f < &, themy = £. Here£ isthe local
e-EB ¢ can be replaced by(T'(0)) = p(D + P - f'(u1) - A)

Thus, with respect te] (or z7), the e-EB of trajectories starting from
R* equals to 1, and the growth céefent may be selected as 2. With

if f(«) is continuously differentiable in a local neighborhood ofespect ta:;, trajectories starting fron' have no bounded e-EB.

0).
(b) If fi(:
in R” n‘ and only if it is asymptotically stable i®" and locally

Example 6: Consider a system as follows:

) is continuous, then the network is exponentially stable

v(k4+1) =T(x(k)), =(0)eR', T(x)==2". (26)






