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1. Introduction to such signal as a block-sparse signal in this paper. Follow-
ing [8,9], we model a block-sparse signal xe RN over

The problem of block-sparse signal recovery naturally 7 ={dy,dy,...,dn} as concatenation of x in m blocks of

arises in a number of genetics, communications, image length d, i.e.,

processing and computer vision applications. Prominent T

examples include DNA microarrays [2], equalization of sparse

communication channels [3], color imaging [4], motion X=|X1... X Xdy 1+ Xdy +-dp - XN—d+1--XN | M

segmentation [5], and more. In such contexts, we often X[1] x[2] X[m]

require to recover an unknown signal x e RN from an under-
determined system of linear equations y = ®x, where y ¢ RM
are available measurements, and @ is an Mx N (M <N)
measurement matrix. Unlike previous works in compressed
sensing [6,7], the unknown signal x is not only sparse but
also exhibits additional structure in the form that the
nonzero coefficients appear in some fixed blocks. We refer

where X[i] denotes the ith block of x and N=3" ,d;. In
this term, we say that x is a block k-sparse if x[i] has non-
zero Euclidean norm for at most k blocks. If d;=1 for all
ie{1,2,...,m}, the block-sparse signal degenerates to the
conventional sparse signal well studied in compressed sen-
sing. Denoting X0 =Y ,I(IIX[i]ll; > 0) with an indicator
function I(-), a block k-sparse signal x thus can be defined as a
signal that satisfies 11X/, 9 < k. It is known that under certain
- conditions on measurement matrix @ (ie., [8]), there is a
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I /lp norm minimization:
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If the measurement y is moderately flawed, the above
problem (2) turns to be the following noisy version:

n}(in\lx\lzyo subject to l1dx—yl, <e, 3)

where ¢ represents the noise level. Similar as the standard lo-
minimization problem, problem (2) is also NP-hard and
computationally intractable except for very small size. Moti-
vated by the study of compressed sensing, one then com-
monly uses the strategy to replace the I /ly norm with its
closest convex surrogate l,/l; norm, then solve the mixed L/l
norm minimization problem:

mxin Ixll,1 subject to y=®x, 4)

where lIxl,; =" ,IX[i]ll,. (4) is a convex optimization
problem and can be recast as a second-order cone program,
thus can be solved very efficiently.

To investigate the theoretical performance of mixed
I>/l;-minimization, Eldar and Mishali [8] introduced the
notion of the block-restricted isometry constant (block-
RIC), &7, of a measurement matrix @ e RM*N, i.e,, 8 is the
smallest non-negative number such that

(=8 lcl? < locl? <1 +6)lcl?, 5)

for all vectors ce RN that are block k-sparse over Z. In
terms of block-RIC, they established a sufficient condition,
i.e., the block-restricted isometry property (block-RIP)
condition for exact recovery of block-sparse signals. More
precisely, if the measurement matrix @ satisfies Sz <
~2-1, then the mixed L/l; minimization method is
guaranteed to recover any block k-sparse signal exactly.
Furthermore, it is also proved that random matrices with
Gaussian entries satisfy the block-RIP with overwhelming
probability. Recently, Lin and Li [10] improved the suffi-
cient condition on &y7 from 0.414 to 0.4931, and estab-
lished condition &7 < 0.307 for exact recovery. There are
also a number of works based on non-RIP analysis to
characterize the theoretical performance of mixed L/l;-
minimization. For example, Eldar et al. [9] provided the
exact and robust recovery conditions based on block
coherence; Huang and Zhang [11] developed a theory for
the mixed [,/l; minimization method by using a concept
called strong group sparsity.

Among the latest researches in standard compressed
sensing, many authors [12-14] have showed that I,-mini-
mization with 0 <p <1 allows exact recovery of conven-
tional sparse signals from much fewer linear measurements
than that by /; minimization. Naturally, it would be interest-
ing to make an ongoing effort to extend the I, (0<p<1)
norm minimization to the setting of block-sparse signal
recovery. Specifically, one can replace (4) with the following
mixed l,/1,(0 < p < 1) norm minimization problem:

rrg(inl\xllgwp subject to y = &X, 6)

where X2, = (XM, IIX[i]15)"/P. Some numerical experi-
ments [4,15] demonstrated that fewer measurements are
needed for exact recovery when 0 <p <1 than when p=1.
Moreover, exact recovery conditions based on block-RIP have
also been studied [15].

In this paper, we further investigate the exact recovery
for block-sparse signals via mixed L/l,-minimization. We

will introduce a block variant of the restricted p-isometry
constant defined by Chartrand and Staneva [1]. With this
notion, more generally, we will establish a p-RIP condition
for stable recovery of nearly block-sparse signals via the
following noisy model:

mxinuxugp subject to ldx—yll, <e, @)

and derive an error bound between the solution of (7) and
the unknown original signal x. It is obvious that when x is
exactly block-sparse and e=0 (where y=&x), we will
obtain the exact recovery condition. In particular, we will
determine how many rows of Gaussian random matrix are
sufficient for the p-RIP condition to be satisfied with high
probability.

2. Restricted p-isometry properties

We begin with introducing the notion of block restricted
p-isometry constant, which is a natural extension of restricted
p-isometry constant.

Definition 2.1. Given a measurement matrix & e RM<N
and 0 <p < 1. Let k be a positive integer. Then the block
restricted p-isometry constant (block p-RIC) & of order k
is defined to be the smallest positive number such that

(=8 lelh < Idel? < 1+l el 8)
for all c e RN that are block k-sparse over block index set Z.

For convenience, in the remainder of this paper, we
write & for the block p-RIC &; whenever the confusion is
not caused. With this new notion, we will establish a
restricted p-isometry (p-RIP) condition for stable recovery
of nearly block-sparse signals via mixed I,/l, minimization
(7). Hereafter, we denote the best block k-sparse approx-
imation by xy, i.e, the vector consisting of the k-largest
blocks over Z of x e RN in I, norm. More precisely, X, can
be defined as

X, = argminlx—vlly1
lhvllzo <k

Theorem 2.1. Let ®c RM*N be a measurement matrix,
x e RN be a nearly block k-sparse signal, and 0 <p < 1. Let
b>1, a=b*?"P rounded up so that ak is an integer (that
is, a = [b*®~Pk] /k). If ® satisfies

5ak+b5(a+1)k<b_1, 9
then a minimizer x* of problem (7) obeys

X —xll 2.p

3
X —x*II5 SQW

+C2€, (10)
for some constants C; and C,, which are given explicitly
below.

Proof. The following proof makes use of the ideas from
[1,13]. Set x* =x+h be a solution of problem (7), where x
is the original signal we need to recover. Throughout the
paper, xr will denote the vector equal to x on an block
index set T and zero elsewhere. Let Ty be the block index
set over the k blocks with largest [, norm of x. And we
decompose h into a series of vectors hy,, hr,, hr,, ...,hT],
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such that hzzjizohrl., and hy, is the restriction of h to
the set T;, Ty consists of k blocks and each T;(i > 1) consists
of ak blocks (except possibly Tj). Rearranging the block
indices such that llhy[1]ll; = Ilhy 2]l = - = Iy [ak] 1l =
Iy, [1]2 = by, [2]l2 > -, for any j> 1. Using Holder's
inequality, we obtain

" P2 sy \1-P2
Ilohlb < <-21 (\(<151h),-|1’)2/p> : (_z] 1> =M'"P2|phlb.
1= 1=

By ll@x—yll; < e and the triangle inequality, we have
ohlly = lldX—X*)l; < IOX—Y o+ | DX*—yl; < 2e.
Thus,
Iohlb <M' P2 liohlb < M'~P?(2e). 11
Since x* is a minimizer of problem (7), we have
I1Xry 15, + 1Xpclly , = IXI5 > Ix*I15 = Ix+hi}

= HXTU +hTQ ”g,p —+ HXTS +th Hlip

p p p p
> lxr, 15, — 1B, 18+ Ihye 15— x5, (12)

where Tg denotes the complement of Ty in {1, ..., N}. There-
fore,

Ihye 18, < Ihr, 15+ 21X 15 (13)

From the decomposition of h, for each i e T;(j > 2), it is easy to
see that

Iy, (1115 + -+ Ihy,_ [ak]li} _ Ihy,_, n’z’p

i1 P
I [ < - -
(14)
Then
Ihy 112 akllhy, 112
Iy [i]13 <—=122 by, 15 < ——5 22
TJ[] (ak)Z/p T2 (ak)Z/p
Ihr, 12
p j-1"2p
Iy, 115 SW.
So that
2-1 2-1
Ezuhrj 15 < (aky”/ jEZHhTF]Hg‘pS(ak)P/ Iy 12,
(15)

From the Definition 2.1, we have
| @hIp = | d(hy, +hr,)+o(hye —hr,) 15 > oy,
+hr) 15— 3 lla(hg)I?
j=2

>(1 _5(a+l)k)HhTo +hT1 “g_(1+5ak) Z ”hT,» ”12]-
j=2

Then, it is not hard to get
I @h1b > (1.4 1)) Iy, +hr, 15 —(1+8q)@ky >~ hpcllh,

>(1 75(a+1)k) I th +hT1 ”1’27
—(1+8g0(a@k)P’?~(Ihy, 15, +21%c 115 )
= (1 _5(a+1)k _(‘1 +5ak)/b) I hTo

+hr, 15 =2(1+684)(akyp/> 1 1% 15 0 (16)
where first inequality holds from (15), the second inequality
holds from (13) and the last inequality follows from

the fact that IIhy, 15, <k'~P2lhy, 15 < k' P21y, +hy, 15,

Therefore, if 54+ bSq . 1)x < b—1, by combining (11) and (16),
we obtain
21+ 60k~ M Ix—x 15,
b— b5(a+ Dk — 16
N bM! P2 (2¢yP
b— bg(a+1)k -1 *5ak.

Iy, +hr, 15 <
(17)

On the other hand,
Hh(TOUTl)C y =1l Z hTJ Iy, < E “th Iy
j=2 j=2

<(@'?='? ¥ iihy, g,
j>2

ji=

:(ak)l/z—”l’z [ VRIPYS (18)
j=1

Hence

p
e, 7 1B < (akyP/? ! (2 I, 2,p>

ji>1
< (ak)P/Z”jg1 Iy, 15 ) = (akp/>= 1 hpcllf,

where the second inequality follows from the fact that
(aq+--+ap)’ <af +--+ah holds for nonnegative constants
ai, ..., a,. Therefore, we get

My orye 15 < @P2Hihye 15,
2-1
< (aky? = (I, 15, +21x7¢113,,)

< a2~ Viihy, I15 4 2(akyP/? ! X 115,
1 p o kP! »
<y, +hy, 15427 —lixpc 15

_ 20 =3 k"
T b—bdarp—1-5u
2°M' PP
e
b_b5(11+1)k_1_5ak

p
1% 115,

(19)

where the third inequality is a result of the fact that

HhTngypskl‘p/z Ihg, 15, and the last inequality follows

from (17).
Since lIvil, <2"P~1jvil, for ve R?, it is not hard to see
that

Il < Iy, +he, o+ el
~ol/p-1 <21/p(1 +600) PR P X=X 15
B (b—bé&@g1k—1 — )P
2P pN/P-1/2,
(b—bsg1k—1 _5‘1’()1/17)
Lol <21/P(1 a1y PK2P
(b—bdas1k—1—84)"P
2MVP-1/2¢
(b—bsa 1 —1- 5ak)l/p>
2227 =510 190 P+ (14801 VPIIX =X Il
(b—bdg 1k —1 — )P K\/P-172
n 21PNP=112(1 4 p1/P), _ 1IIx—xk 2
(b—bsq1x—1 — )P K/P-172

X — X “2,11

+

+C2€.

(20)

This arrives to the conclusion of Theorem 2.1. ©
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Remark 2.1. Though we have only considered I, bounded
noise in Theorem 2.1, the conclusion, however, can be
applied directly to Gaussian noise.

Corollary 21. Let ®c RM*N be a measurement matrix,
xeRN be a block k-sparse signal with y=ax, and 0 <
p<1.Llet b>1, a=b*?"P rounded up so that ak is an
integer (that is, a = [b*?~Pk] /k). If @ satisfies

5ak+b5(a+l)k <b-1,

then the unique minimizer of problem (6) is exactly x.

Remark 2.2. Note that if we define & in the slightly
stronger version as the smallest number such that

(1-spleclb <1/oldell <1+8)lclb @1

holds for all block k-sparse signals x € RN and ¢ > 0, then
with the similar argument used in [1], we have the exact
recovery condition as

S5k +b, 1 <b—1. (22)

3. Gaussian random matrices

In this section, we will determine how many random
Gaussian measurements are needed for (22) to be satisfied
with high probability. In the sequel, we denote by & an
M x N matrix with i.i.d Gaussian random entries, specifi-
cally, @~ N(0,0%). As in [1], for a given p, let uy:=P2"/?
Ir'(p+1/2)//x.

Lemma 3.1 (Chartrand and Staneva [1, Lemma 3.3]). Let
0<p<1and ¢ be an M x L submatrix of &. Suppose & > 0.
Choose », = > 0 such that n+P/1—1P <. Then

(1=8)Muyliclh < ligellh < (1+5)Mpu, lcllh (23)

holds uniformly for ceR" with probability exceeding
1-2(142/70) e ™M/205 where

(5)) "
¢y =(31/40)/4 [1.13+ /p | 22 . 24)
Y NG

The above Lemma 3.1 will be very useful for our proof
of the following Theorem 3.1.

Theorem 3.1. Let ® be an Mx N (M < N) matrix whose
entries are i.i.d random variable distributed normally with
mean zero and variance 2. Then there exist constants C3(p)
and Cy4(p) such that whenever 0 <p <1 and M > C3(p)kd +
pC4(p)k In(m/k), the following is true with probability
exceeding 1—2e~"PM: for any block k-sparse signal x e RN
over T={dy=d,dy=d,...,dy =d} with N=md for some
integer m, X is the unique solution of problem (6), where
A(p) is a positive constant.

Proof. The proof is similar to the procedure of proof of
Theorem 1.1 in [16]. We will make use of the stronger
version (21) with ¢ = Mu,. Theorem 2.1 states that under a
stronger condition &(;  ;, <(b—1)/(b+1), there exists
unique solution of (6). To this end, let L=(a+1)kd=
([b¥?~P14+1)kd, b>1. Choose n=r(b—1)/(b+1) for

re(0,1)and ? = (1-r)(b—1)/2b < 1 to satisfy

n+P b—-1
1= =Stk =poT

From Lemma 3.1, an upper bound for the probability
that an M x L submatrix of & fails to satisfy (21) is
2(1+2/0)te="M/2p5  As discussed in [8], a block-sparse
signal can be treated as the vector that lies in a structured
union of subspaces. Specifically, for a block k-sparse signal
xe RN over Z={d, =d,...,d, =d} with N=md, there are

N,ﬁd2 subspaces in the union. Thus, the union bound tells
us that @ fails to satisfy (21) with probability

m AR 2M/2pc?
< <(fb2/(2_p)]+1)k>2<1+1> e~ P,

where ¢, is given in (24). Since (%) < (eu/v)” always holds
for integers u >v >0 and 7z < 1, it is not hard to see that

m 2\' e
<([b2/(2p)]+1)k>2<] +;> e " d

(b2 =Pk+ k) L
o 3t
[b¥C=Pktk T

It is sufficient to show that the right hand side of above
quantity can be bounded by 2e~"M/4% _ For this it suffices
that

M> 4517_2‘-% {k([bz/(zp)] +1> In (m)
+I<d<[b2/(2’p’] +1) In (%)

:‘”;_gﬁ{k(wzwn +#1)(1+1n ()

—In([p?/?~P +1)) +I<d([b2/‘2”’)] 4 1)(1n 3-In T)]

4ci(b+1y _ 2b
—__r 2/2-p)
=17 kd( b 1+1)<p 1n3+1n(]_r)(b_]))
Apb+1 o p
LI 1
T k(1% 7P+1)

x(in %H —In([p*CP1+1)).

With the same arguments as in [1,16], we choose r=0.849
and b=5. Then we obtain

M= (35.1+13.7p)c} (157?71 +1)kd
+p12.5¢ (15727 +1)
m _ 2/2-p)
x[kln k+k(1 ln([S 1+1))]
> C3(p)kd+pC,(p)k ln% 25)

measurements are sufficient to yield the p-RIP condition
(21) with probability exceeding

1 _ze_nzM/zlpc; -1 _26—0.7049M/pcf, >1 _ze—ﬂ(p)M’

where f(p)=1/2pck. ©
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Remark 3.1. It is easy to check that for a given p e (0, 1],
C3(p) and Cy4(p) are finite constants, and the second term of
(25) has the dominant impact on the number of measure-
ments in an asymptotic sense. When p—0, the second
term of (25) vanishes, (25) thus turns to be M > Cs3(0)kd.
And when p=1, (25) turns to be M > Cs(1)kd+
C4(Dk In(m/k), which implies fewer measurements are
required with smaller p for exact recovery via mixed L/l,
minimization than when p=1. Meanwhile, when p=1,
(25) has the same order with the result of proposition 4
in [8].

Remark 3.2. Note that when p—0, ¢, < 1.13(31/40)"/4 ~
1.062. Thus, Theorem 3.1 gives an estimate of C3(0) <
237.5, while numerical experiments (see Section 4) sug-
gest that C3(0) should be less than 3.5. As discussed in [1],
there are several ways to obtain sharp constants. We leave
it to the interested readers.

Remark 3.3. Though we have only considered the case in
which dy = .- =d,; =d, the proof of Theorem 3.1 can be
adapted to the case in which d; are not equal. In this case,
we need to consider the worst case scenario correspond-
ing to the maximal block length in Z. Thus, Theorem 3.1
holds for d = max(d;).

4. Numerical experiments

In this section, we conduct several numerical experi-
ments to demonstrate the validation of our presented
theoretical results. More precisely, the main purpose of
this section is two-fold: first, to check how many random
Gaussian measurements are needed for mixed L/l,-mini-
mization to recover a (nearly) block-sparse signal in both
noiseless and noisy cases; second, to empirically investi-
gate the solution of (7) in the presence of noise, and how it
depends on p. We adopt the iteratively reweighted least
squares (IRLS) approach to solve the nonconvex optimiza-
tion problem (7). The IRLS methodology has been widely
used for recovering sparse signals and low-rank matrices
[15,17,18]. We begin with x©® = arg minlly—&x i3, and set
7o = 1. Then let x+1 be the solution of

mxin%\ly—qul\%+%\\W“)xII%, (26)

where 1 > 0 is a regularization parameter, and the weight-
ing matrix W® is defined as W" = diag(p'/?(y? + IIx®©
[i]12)P/4=1/2) for i-th block. It is easy to obtain that the
solution of (26) can be given explicitly as

XD = W) @W) " Hi@W) T ran~ Hew ) Hy.

The value of y is decreased according to the rule y, ;=
0.99y, and this iteration is continued until y becomes very
small, i.e, y <1078,

In our experiments, the measurement matrix & was
generated by creating an M x N matrix with ii.d draws
from a standard Gaussian distribution. For a generated
(nearly) block-sparse signal x, the measurements y were
observed from the noisy model y = #x+ 0z, where z was
Gaussian white noise which can be generated by MATLAB
command randn(M,1). In order to verify the validity of our
presented theoretical results, we consider several different

values of p for the mixed /I, method. In each experiment,
we report the average results over 100 independent
random trails.

4.1. The exactly block-sparse case

We first consider the case that the signal x is exactly
block-sparse. In this set of experiments, the signals with
length N=192 were generated by choosing k blocks uni-
formly at random, and then choosing the nonzero values
from a standard Gaussian distribution for these k blocks.
For IRLS, we set 1=10"° in noiseless case (¢=0), and
manually adjusted 2 in noisy case (¢ > 0).

In Fig. 1(a)-(c), exact recovery frequency is plotted
versus measurement level M for three different block
sizes: d=2, d=4, d=8. In this test, the number of nonzero
blocks k was fixed to 8, and the measurements y were
observed without noise (¢ = 0). The recovery was regarded
exact if Ix*—xl,/lIxl, < 10~ One can easily see that
reducing p below 1 clearly reduces the number of mea-
surements required for exact recovery, which is expected
by Theorem 3.1. However, it is also shown that there is
almost no improvement when p < 0.5. We emphasize that
the phenomenon do not counter our theoretical results
that smaller p should need fewer measurements for exact
recovery. As noted in [1,18], a smaller p makes the
minimizing functional more nonconvex and thus more
measurements may be needed for the IRLS algorithm to
converge to the global solution. It is also easy to see
that when p < 0.5, the sample size M/kd needed for exact
recovery is always less than 3.5 and decreases as d
increases. This suggests that the constant C5(0) should be
less than 3.5.

Fig. 2(a)-(c) depict exact recovery frequency versus the
block sparsity k for three different block sizes: d=2, d=4,
d=8. Similar to the above test, the signals were perfectly
measured. The number of measurements M was fixed
to 130. It is evident that reducing p below 1 recovers more
sparse signals, which is expected. It is also observed that,
p=0.5 performed similar with p=0.2,0.01.

We now present some simulation results related to
Theorem 2.1. Several curves of theoretical recovery error
Ix—x*Il, versus different values of p=0.01,0.1,0.2, ...,
0.9,1 are shown in Fig. 3. In this test, ¢ varied among
{0.01,0.03,0.1}. It is shown that, for relatively small noise
(6=0.01,0.03), except p=0.01, the error changes little,
and p<1 performed a little bit better than p=1; for
relatively large noise (¢ =0.1), various different values of
p provided worse recovery performance than p=1, and the
error is least for p=0.5 in Fig. 3(a) and p=0.9 in Fig. 3(b).
Recall that [19], for a given noise level o, the error
|ly—®x||3 can be bounded by term o?(M+z+/2 M) with
high probability, where z>1 is a constant. Thus, for
demonstrating the behavior of the constants in (10), we

can set e =0V M+7+v2 M. Let z=2 used in [19], one can
easily calculate ¢=0.140, 0.420, 1.399 for block 16-sparse
signals (Fig. 3(a)) and ¢=0.123, 0.369, 1.229 for block 6-
sparse signals (Fig. 3(b)), varying the noise level ¢=0.01,
0.03, 0.1. Therefore, one can further obtain that the con-
stant G, in (10) appears to be less than 2 in most cases.
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Fig. 1. Exact recovery performance of mixed L/l,-minimization, varying the number of measurements for (a) d=2, (b) d=4 and (c) d=8. The signals have
k=8 nonzero blocks.
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measurements M was fixed to 130.

Fig. 2. Exact recovery performance of mixed I»/l,-minimization, varying the number of block sparsity for (a) d=2, (b) d=4 and (c) d=8. The number of

These illustrate that the constant C, is well behaved for a
wide range of p values, and the mixed /], minimization

method guarantees a stable recovery of block-sparse
signals in the presence of noise.

4.2. The nearly block-sparse case

As noted in [20], the signals whose [, norm of blocks
have a power-law decay rate are nearly block-sparse

signals. Thus, in this case, we generated x whose [, norm
of blocks decay like i~* where ie {1,...,m} and a > 1, and
then observed the noisy measurements y from the model
described before. In this set of experiments, the signal
length N was fixed to 192.

Fig. 4 shows the recovery performance of mixed L/,
minimization in terms of signal to noise ratio (SNR). For a
recovered signal x*, the SNR is calculated as SNR = 20 log;,
(Ixll,/lIIx—x*Il,). For simplicity, we only consider one
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Fig. 4. Robust recovery performance of mixed L/l,-minimization in terms of SNR, varying the number of measurements for different nearly block-sparse
signals: (a) a=3.5, d=2; (b) a=3.5,d=4; (c) a=3.5,d=8; (d) a=2.5,d=2; () a=2.5,d=4; and (f) «=2.5, d=8.

noise level: ¢ = 0.01. For IRLS, the parameter 2 = 0.002 was
used. We plotted SNR for nearly block 3-sparse signals
(e=3.5) in Fig. 3(a)-(c) and for nearly block 6-sparse
signals (a¢=2.5) in Fig. 3(d)-(f), varying the number of

measurements. It is easy to see from Fig. 3 that, except
p=0.01, the mixed I,/l, method improves the recovery
performance as p decreases. This suggests that, on the one
hand, for small values of o, decreasing p improves
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robustness to noise, which is also shown in Fig. 3; on the
other hand, in noisy case, the IRLS algorithm may usually
find bad local minimizer when p is very small. It is also
clear that fewer measurements with smaller p are needed
for robust recovery than when p=1, which is consistent
with our theoretical results. In addition, as in the exact
recovery case, the sample size M/kd needed for robust
recovery of nearly block-sparse signals is less than 3.5
when p <0.5.

Fig. 5 shows some sample curves of theoretical recov-
ery error |[X—X*||, versus p for nearly block-sparse signals.
It is shown that there is little difference between the each
curve in Fig. 5 and the corresponding curve in Fig. 3.
Similarly, we obtained ¢=0.091, 0.272, 0.905, varying the
noise level ¢=0.01, 0.03, 0.1 in both situations. One can
also check the approximation error - the first term on the
right side of (10). As a reference, the average best k-block
approximation error equals to 0.106 for nearly block
6-sparse signals (a@=2.5), and 0.071 for nearly block
3-sparse signals (a=3.5) respectively. Therefore, one can
obtain from Fig. 5 that the constants in (10) seem to be
quite low, and the theoretical recovery error is dominated
by the observation error in relatively strong noisy case
(6 =0.1). To sum up, as expected, there is a wide range of p
values for which the constants in (10) are well behaved,
and mixed L,/l,-minimization achieves a robust recovery.

5. Conclusion

In this paper, we studied the problem of recovering an
unknown nearly block k-sparse signal x from a given set of
noisy linear measurements. By extending the notion of
restricted p-isometry constant defined in [1] to the setting
of block-sparse signal recovery, we established a p-RIP
condition for robust recovery of nearly block-sparse sig-
nals via mixed I»/l,-minimization in the presence of noise.

In particular, we obtained a p-RIP condition for exact
recovery and determined how many random Gaussian
measurements are needed for the p-RIP condition to be
satisfied with high probability. Finally, a series of numer-
ical experiments have been carried out to prove the
validation of the theoretical derivations.
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