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In this paper, by generalizing the notion of restricted p-isometry constant ð0opr1Þ
defined by Chartrand and Staneva [1] to the setting of block-sparse signal recovery, we
establish a general restricted p-isometry property (p-RIP) condition for recovery of (nearly)
block-sparse signals via mixed l2/lp-minimization. Moreover, we derive a lower bound on
the necessary number of Gaussian measurements for the p-RIP condition to hold with high
probability, which shows clearly that fewer measurements with smaller p are needed for
exact recovery of block-sparse signals via mixed l2/lp-minimization than when p¼1.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

The problem of block-sparse signal recovery naturally
arises in a number of genetics, communications, image
processing and computer vision applications. Prominent
examples include DNAmicroarrays [2], equalization of sparse
communication channels [3], color imaging [4], motion
segmentation [5], and more. In such contexts, we often
require to recover an unknown signal xARN from an under-
determined system of linear equations y¼Φx, where yARM

are available measurements, and Φ is an M�N ðMoNÞ
measurement matrix. Unlike previous works in compressed
sensing [6,7], the unknown signal x is not only sparse but
also exhibits additional structure in the form that the
nonzero coefficients appear in some fixed blocks. We refer
ience Foundation of
54 and National 973
.

g),
. Xu).
to such signal as a block-sparse signal in this paper. Follow-
ing [8,9], we model a block-sparse signal xARN over
I ¼ fd1; d2;…; dmg as concatenation of x in m blocks of
length di, i.e.,

x¼ x1…xd1|fflfflfflffl{zfflfflfflffl}
x½1�

xd1 þ1…xd1 þd2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
x½2�

…xN�dm þ1…xN|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
x½m�

2
64

3
75
T

; ð1Þ

where x½i� denotes the ith block of x and N¼∑m
i ¼ 1di. In

this term, we say that x is a block k-sparse if x½i� has non-
zero Euclidean norm for at most k blocks. If di¼1 for all
iAf1;2;…;mg, the block-sparse signal degenerates to the
conventional sparse signal well studied in compressed sen-
sing. Denoting JxJ2;0 ¼∑m

i ¼ 1IðJx½i�J240Þ with an indicator
function Ið�Þ, a block k-sparse signal x thus can be defined as a
signal that satisfies JxJ2;0rk. It is known that under certain
conditions on measurement matrix Φ (i.e., [8]), there is a
unique block-sparse signal that obeys to the observation
y¼Φx and can be exactly recovered by solving the mixed
l2=l0 norm minimization:

min
x

JxJ2;0 subject to y¼Φx: ð2Þ
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If the measurement y is moderately flawed, the above
problem (2) turns to be the following noisy version:

min
x

JxJ2;0 subject to JΦx�yJ2rϵ; ð3Þ

where ϵ represents the noise level. Similar as the standard l0-
minimization problem, problem (2) is also NP-hard and
computationally intractable except for very small size. Moti-
vated by the study of compressed sensing, one then com-
monly uses the strategy to replace the l2=l0 norm with its
closest convex surrogate l2/l1 norm, then solve the mixed l2/l1
norm minimization problem:

min
x

JxJ2;1 subject to y¼Φx; ð4Þ

where JxJ2;1 ¼∑m
i ¼ 1 Jx½i�J2. (4) is a convex optimization

problem and can be recast as a second-order cone program,
thus can be solved very efficiently.

To investigate the theoretical performance of mixed
l2/l1-minimization, Eldar and Mishali [8] introduced the
notion of the block-restricted isometry constant (block-
RIC), δkjI , of a measurement matrix ΦARM�N , i.e., δkjI is the
smallest non-negative number such that

ð1�δkjI ÞJcJ22r JΦcJ22rð1þδkjI ÞJcJ22; ð5Þ
for all vectors cARN that are block k-sparse over I . In
terms of block-RIC, they established a sufficient condition,
i.e., the block-restricted isometry property (block-RIP)
condition for exact recovery of block-sparse signals. More
precisely, if the measurement matrix Φ satisfies δ2kjI offiffiffi
2

p
�1, then the mixed l2/l1 minimization method is

guaranteed to recover any block k-sparse signal exactly.
Furthermore, it is also proved that random matrices with
Gaussian entries satisfy the block-RIP with overwhelming
probability. Recently, Lin and Li [10] improved the suffi-
cient condition on δ2kjI from 0.414 to 0.4931, and estab-
lished condition δkjI o0:307 for exact recovery. There are
also a number of works based on non-RIP analysis to
characterize the theoretical performance of mixed l2/l1-
minimization. For example, Eldar et al. [9] provided the
exact and robust recovery conditions based on block
coherence; Huang and Zhang [11] developed a theory for
the mixed l2/l1 minimization method by using a concept
called strong group sparsity.

Among the latest researches in standard compressed
sensing, many authors [12–14] have showed that lp-mini-
mization with 0opo1 allows exact recovery of conven-
tional sparse signals from much fewer linear measurements
than that by l1 minimization. Naturally, it would be interest-
ing to make an ongoing effort to extend the lp ð0opo1Þ
norm minimization to the setting of block-sparse signal
recovery. Specifically, one can replace (4) with the following
mixed l2=lpð0opr1Þ norm minimization problem:

min
x

JxJp2;p subject to y¼Φx; ð6Þ

where JxJ2;p ¼ ð∑m
i ¼ 1 Jx½i�Jp2Þ1=p. Some numerical experi-

ments [4,15] demonstrated that fewer measurements are
needed for exact recovery when 0opo1 than when p¼1.
Moreover, exact recovery conditions based on block-RIP have
also been studied [15].

In this paper, we further investigate the exact recovery
for block-sparse signals via mixed l2/lp-minimization. We
will introduce a block variant of the restricted p-isometry
constant defined by Chartrand and Staneva [1]. With this
notion, more generally, we will establish a p-RIP condition
for stable recovery of nearly block-sparse signals via the
following noisy model:

min
x

JxJp2;p subject to JΦx�yJ2rϵ; ð7Þ

and derive an error bound between the solution of (7) and
the unknown original signal x. It is obvious that when x is
exactly block-sparse and ϵ¼ 0 (where y¼Φx), we will
obtain the exact recovery condition. In particular, we will
determine how many rows of Gaussian random matrix are
sufficient for the p-RIP condition to be satisfied with high
probability.

2. Restricted p-isometry properties

We begin with introducing the notion of block restricted
p-isometry constant, which is a natural extension of restricted
p-isometry constant.

Definition 2.1. Given a measurement matrix ΦARM�N

and 0opr1. Let k be a positive integer. Then the block
restricted p-isometry constant (block p-RIC) δkjI of order k
is defined to be the smallest positive number such that

ð1�δkjI ÞJcJp2r JΦcJpprð1þδkjI ÞJcJp2 ð8Þ
for all cARN that are block k-sparse over block index set I .

For convenience, in the remainder of this paper, we
write δk for the block p-RIC δkjI whenever the confusion is
not caused. With this new notion, we will establish a
restricted p-isometry (p-RIP) condition for stable recovery
of nearly block-sparse signals via mixed l2/lp minimization
(7). Hereafter, we denote the best block k-sparse approx-
imation by xk, i.e, the vector consisting of the k-largest
blocks over I of xARN in l2 norm. More precisely, xk can
be defined as

xk ¼ arg min
Jv J 2;0 rk

Jx�vJ2;1

Theorem 2.1. Let ΦARM�N be a measurement matrix,
xARN be a nearly block k-sparse signal, and 0opr1. Let
b41, a¼ b2=ð2�pÞ, rounded up so that ak is an integer (that
is, a¼ ⌈b2=ð2�pÞk⌉=k). If Φ satisfies

δakþbδðaþ1Þkob�1; ð9Þ
then a minimizer xn of problem (7) obeys

Jx�xn J2rC1
Jx�xk J2;p
k1=p�1=2 þC2ϵ; ð10Þ

for some constants C1 and C2, which are given explicitly
below.

Proof. The following proof makes use of the ideas from
[1,13]. Set xn ¼ xþh be a solution of problem (7), where x
is the original signal we need to recover. Throughout the
paper, xT will denote the vector equal to x on an block
index set T and zero elsewhere. Let T0 be the block index
set over the k blocks with largest l2 norm of x. And we
decompose h into a series of vectors hT0 , hT1 , hT2 ;…;hTJ ,
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such that h¼∑J
i ¼ 0hTi , and hTi is the restriction of h to

the set Ti, T0 consists of k blocks and each TiðiZ1Þ consists
of ak blocks (except possibly TJ). Rearranging the block
indices such that JhTj ½1�J2Z JhTj ½2�J2Z⋯Z JhTj ½ak�J2Z
JhTjþ 1 ½1�J2Z JhTjþ 1 ½2�J2Z⋯, for any jZ1. Using Hol̈der's
inequality, we obtain

JΦhJppr ∑
M

i ¼ 1
jðΦhÞijp
� �2=p !p=2

� ∑
M

i ¼ 1
1

 !1�p=2

¼M1�p=2 JΦhJp2:

By JΦx�yJ2rϵ and the triangle inequality, we have

JΦhJ2 ¼ JΦðx�xnÞJ2r JΦx�yJ2þ JΦxn�yJ2r2ϵ:

Thus,

JΦhJpprM1�p=2 JΦhJp2rM1�p=2ð2ϵÞp: ð11Þ
Since xn is a minimizer of problem (7), we have

JxT0 J
p
2;pþ JxTC

0
Jp2;p ¼ JxJp2;pZ Jxn Jp2;p ¼ JxþhJp2;p

¼ JxT0 þhT0 J
p
2;pþ JxTC

0
þhTC

0
Jp2;p

Z JxT0 J
p
2;p� JhT0 J

p
2;pþ JhTC

0
Jp2;p� JxTC

0
Jp2;p; ð12Þ

where T0
C
denotes the complement of T0 in f1;…;Ng. There-

fore,

JhTC
0
Jp2;pr JhT0 J

p
2;pþ2JxTC

0
Jp2;p: ð13Þ

From the decomposition of h, for each iATjðjZ2Þ, it is easy to
see that

JhTj
i½ �Jp2r

JhTj� 1 ½1�Jp2þ⋯þ JhTj� 1 ½ak�Jp2
ak

¼
JhTj� 1 J

p
2;p

ak
:

ð14Þ
Then

JhTj
i½ �J22r

JhTj� 1 J
2
2;p

ðakÞ2=p
; JhTj

J22r
akJhTj� 1 J

2
2;p

ðakÞ2=p
;

JhTj J
p
2r

JhTj� 1 J
p
2;p

ðakÞ1�p=2 :

So that

∑
jZ2

JhTj
Jp2r ðakÞp=2�1 ∑

jZ2
JhTj� 1 J

p
2;pr ðakÞp=2�1 JhTC

0
Jp2;p:

ð15Þ
From the Definition 2.1, we have

JΦhJpp ¼ JΦðhT0 þhT1 ÞþΦðhTC
0
�hT1 ÞJppZ JΦðhT0

þhT1 ÞJpp� ∑
jZ2

JΦðhTj ÞJpp

Zð1�δðaþ1ÞkÞJhT0 þhT1 J
p
2�ð1þδakÞ ∑

jZ2
JhTj

Jp2:

Then, it is not hard to get

JΦhJppZð1�δðaþ1ÞkÞJhT0 þhT1 J
p
2�ð1þδakÞðakÞp=2�1 JhTC

0
Jp2;p

Zð1�δðaþ1ÞkÞJhT0 þhT1 J
p
2

�ð1þδakÞðakÞp=2�1ðJhT0 J
p
2;pþ2JxTC

0
Jp2;pÞ

Zð1�δðaþ1Þk�ð1þδakÞ=bÞJhT0

þhT1 J
p
2�2ð1þδakÞðakÞp=2�1 JxTC

0
Jp2;p; ð16Þ

where first inequality holds from (15), the second inequality
holds from (13) and the last inequality follows from
the fact that JhT0 J

p
2;prk1�p=2 JhT0 J

p
2rk1�p=2 JhT0 þhT1 J

p
2.
Therefore, if δakþbδðaþ1Þkob�1, by combining (11) and (16),
we obtain

JhT0 þhT1 J
p
2r

2ð1þδakÞkp=2�1 Jx�xk J
p
2;p

b�bδðaþ1Þk�1�δak

þ bM1�p=2ð2ϵÞp
b�bδðaþ1Þk�1�δak

: ð17Þ

On the other hand,

JhðT0 [T1ÞC J2 ¼ J ∑
jZ2

hTj J2r ∑
jZ2

JhTj J2

r ðakÞ1=2�1=p ∑
jZ2

JhTj� 1 J2;p

¼ ðakÞ1=2�1=p ∑
jZ1

JhTj J2;p: ð18Þ

Hence

JhðT0 [T1ÞC J
p
2r ðakÞp=2�1 ∑

jZ1
JhTj

J2;p

 !p

r ðakÞp=2�1 ∑
jZ1

JhTj
Jp2;p ¼ ðakÞp=2�1 JhTC

0
Jp2;p;

where the second inequality follows from the fact that
ða1þ⋯þanÞprap1þ⋯þapn holds for nonnegative constants
a1;…; an. Therefore, we get

JhðT0 [T1ÞC J
p
2r ðakÞp=2�1 JhTC

0
Jp2;p

r ðakÞp=2�1 JhT0 J
p
2;pþ2JxTC

0
Jp2;p

� �
rap=2�1 JhT0 J

p
2þ2ðakÞp=2�1 JxTC

0
Jp2;p

r1
b
JhT0 þhT1 J

p
2þ2

kp=2�1

b
JxTC

0
Jp2;p

r 2ð1�δðaþ1ÞkÞkp=2�1

b�bδðaþ1Þk�1�δak
JxTC

0
Jp2;p

þ 2pM1�p=2ϵp

b�bδðaþ1Þk�1�δak
; ð19Þ

where the third inequality is a result of the fact that
JhT0 J

p
2;prk1�p=2 JhT0 J

p
2, and the last inequality follows

from (17).
Since JvJpr21=p�1 JvJ1 for vAR2, it is not hard to see

that

JhJ2r JhT0 þhT1 J2þ JhðT0 [T1ÞC J2

r21=p�1 21=pð1þδakÞ1=pk1=2�1=p Jx�xk J2;p
ðb�bδðaþ1Þk�1�δakÞ1=p

 

þ 2b1=pM1=p�1=2ϵ

ðb�bδðaþ1Þk�1�δakÞ1=p

!

þ21=p�1 21=pð1�δðaþ1ÞkÞ1=pk1=2�1=p

ðb�bδðaþ1Þk�1�δakÞ1=p
Jx�xk J2;p

 

þ 2M1=p�1=2ϵ

ðb�bδðaþ1Þk�1�δakÞ1=p

!

r22=p�1½ð1�δðaþ1ÞkÞ1=pþð1þδakÞ1=p�
ðb�bδðaþ1Þk�1�δakÞ1=p

Jx�xk J2;p
k1=p�1=2

þ 21=pM1=p�1=2ð1þb1=pÞϵ
ðb�bδðaþ1Þk�1�δakÞ1=p

¼ C1
Jx�xk J2;p
k1=p�1=2 þC2ϵ:

ð20Þ
This arrives to the conclusion of Theorem 2.1. □
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Remark 2.1. Though we have only considered l2 bounded
noise in Theorem 2.1, the conclusion, however, can be
applied directly to Gaussian noise.

Corollary 2.1. Let ΦARM�N be a measurement matrix,
xARN be a block k-sparse signal with y¼Φx, and 0o
pr1. Let b41, a¼ b2=ð2�pÞ, rounded up so that ak is an
integer (that is, a¼ ⌈b2=ð2�pÞk⌉=k). If Φ satisfies

δakþbδðaþ1Þkob�1;

then the unique minimizer of problem (6) is exactly x.

Remark 2.2. Note that if we define δk
c
in the slightly

stronger version as the smallest number such that

ð1�δckÞJcJp2rð1=cÞJΦcJppr ð1þδckÞJcJp2 ð21Þ

holds for all block k-sparse signals xARN and c40, then
with the similar argument used in [1], we have the exact
recovery condition as

δcakþbδcðaþ1Þkob�1: ð22Þ

3. Gaussian random matrices

In this section, we will determine how many random
Gaussian measurements are needed for (22) to be satisfied
with high probability. In the sequel, we denote by Φ an
M�N matrix with i.i.d Gaussian random entries, specifi-
cally, Φ�N ð0; s2Þ. As in [1], for a given p, let μp≔sp2p=2

Γðpþ1=2Þ= ffiffiffi
π

p
.

Lemma 3.1 (Chartrand and Staneva [1, Lemma 3.3]). Let
0opr1 and ϕ be an M� L submatrix of Φ. Suppose δ40.
Choose η, τ40 such that ηþτp=1�τprδ. Then

ð1�δÞMμp JcJ
p
2r JϕcJppr ð1þδÞMμp JcJ

p
2 ð23Þ

holds uniformly for cARL with probability exceeding
1�2ð1þ2=τÞLe� η2M=2pc2p , where

cp ¼ ð31=40Þ1=4 1:13þ ffiffiffi
p

p Γ pþ1
2

� �
ffiffiffi
π

p
0
@

1
A

�1=p2
64

3
75: ð24Þ

The above Lemma 3.1 will be very useful for our proof
of the following Theorem 3.1.

Theorem 3.1. Let Φ be an M�N (MoN) matrix whose
entries are i.i.d random variable distributed normally with
mean zero and variance s2. Then there exist constants C3ðpÞ
and C4ðpÞ such that whenever 0opr1 and MZC3ðpÞkdþ
pC4ðpÞk lnðm=kÞ, the following is true with probability
exceeding 1�2e�βðpÞM: for any block k-sparse signal xARN

over I ¼ fd1 ¼ d; d2 ¼ d;…; dm ¼ dg with N¼md for some
integer m, x is the unique solution of problem (6), where
βðpÞ is a positive constant.

Proof. The proof is similar to the procedure of proof of
Theorem 1.1 in [16]. We will make use of the stronger
version (21) with c¼Mμp. Theorem 2.1 states that under a
stronger condition δcðaþ1Þkoðb�1Þ=ðbþ1Þ, there exists
unique solution of (6). To this end, let L¼ ðaþ1Þkd¼
ð⌈b2=ð2�pÞ⌉þ1Þkd, b41. Choose η¼ rðb�1Þ=ðbþ1Þ for
rAð0;1Þ and τp ¼ ð1�rÞðb�1Þ=2bo1 to satisfy

ηþτp

1�τp
rδcðaþ1Þkr

b�1
bþ1

:

From Lemma 3.1, an upper bound for the probability
that an M � L submatrix of Φ fails to satisfy (21) is
2ð1þ2=τÞLe� η2M=2pc2p . As discussed in [8], a block-sparse
signal can be treated as the vector that lies in a structured
union of subspaces. Specifically, for a block k-sparse signal
xARN over I ¼ fd1 ¼ d;…; dm ¼ dg with N¼md, there are
N=d
k

� �
subspaces in the union. Thus, the union bound tells

us that Φ fails to satisfy (21) with probability

r
m

ð⌈b2=ð2�pÞ⌉þ1Þk

 !
2 1þ2

τ

� 	L

e�η2M=2pc2p ;

where cp is given in (24). Since u
v

� �
rðeu=vÞv always holds

for integers u4v40 and τo1, it is not hard to see that

m

ð⌈b2=ð2�pÞ⌉þ1Þk

 !
2 1þ2

τ

� 	L

e�η2M=2pc2p

r2
em

⌈b2=ð2�pÞ⌉kþk

 !ð⌈b2=ð2� pÞ⌉kþkÞ
3
τ

� 	L

e� η2M=2pc2p :

It is sufficient to show that the right hand side of above
quantity can be bounded by 2e�η2M=4pc2p . For this it suffices
that

MZ
4pc2p
η2

k ⌈b2=ð2�pÞ⌉þ1
� �

ln
em

⌈b2=ð2�pÞ⌉kþk

 !"

þkd ⌈b2=ð2�pÞ⌉þ1
� �

ln
3
τ

� 	#

¼ 4pc2p
η2

k ⌈b2=ð2�pÞ⌉þ1
� �

1þ ln
m
k

� ��h
� lnð⌈b2=ð2�pÞ⌉þ1Þ

�
þkd ⌈b2=ð2�pÞ⌉þ1

� �
ln 3� ln τð Þ

i
¼ 4c2pðbþ1Þ2

r2ðb�1Þ2
kd ⌈b2=ð2�pÞ⌉þ1
� �

p ln 3þ ln
2b

ð1�rÞðb�1Þ

� 	

þ4pc2pðbþ1Þ2

r2ðb�1Þ2
k ⌈b2=ð2�pÞ⌉þ1
� �

� ln
m
k
þ1� ln ⌈b2=ð2�pÞ⌉þ1

� �� �
:

With the same arguments as in [1,16], we choose r¼0.849
and b¼5. Then we obtain

MZ 35:1þ13:7pð Þc2p ⌈52=ð2�pÞ⌉þ1
� �

kd

þp12:5c2p ⌈52=ð2�pÞ⌉þ1
� �

� k ln
m
k
þk 1� ln ⌈52=ð2�pÞ⌉þ1

� �� �h i
ZC3 pð ÞkdþpC4 pð Þk ln

m
k

ð25Þ

measurements are sufficient to yield the p-RIP condition
(21) with probability exceeding

1�2e� η2M=4pc2p ¼ 1�2e�0:7049M=pc2p Z1�2e�βðpÞM ;

where βðpÞ ¼ 1=2pc2p . □
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Remark 3.1. It is easy to check that for a given pA ð0;1�,
C3ðpÞ and C4ðpÞ are finite constants, and the second term of
(25) has the dominant impact on the number of measure-
ments in an asymptotic sense. When p-0, the second
term of (25) vanishes, (25) thus turns to be MZ C3ð0Þkd.
And when p¼1, (25) turns to be MZC3ð1Þkdþ
C4ð1Þk lnðm=kÞ, which implies fewer measurements are
required with smaller p for exact recovery via mixed l2/lp
minimization than when p¼1. Meanwhile, when p¼1,
(25) has the same order with the result of proposition 4
in [8].

Remark 3.2. Note that when p-0, cpr1:13ð31=40Þ1=4 �
1:062. Thus, Theorem 3.1 gives an estimate of C3ð0Þr
237:5, while numerical experiments (see Section 4) sug-
gest that C3ð0Þ should be less than 3.5. As discussed in [1],
there are several ways to obtain sharp constants. We leave
it to the interested readers.

Remark 3.3. Though we have only considered the case in
which d1 ¼⋯¼ dm ¼ d, the proof of Theorem 3.1 can be
adapted to the case in which di are not equal. In this case,
we need to consider the worst case scenario correspond-
ing to the maximal block length in I . Thus, Theorem 3.1
holds for d¼maxðdiÞ.

4. Numerical experiments

In this section, we conduct several numerical experi-
ments to demonstrate the validation of our presented
theoretical results. More precisely, the main purpose of
this section is two-fold: first, to check how many random
Gaussian measurements are needed for mixed l2/lp-mini-
mization to recover a (nearly) block-sparse signal in both
noiseless and noisy cases; second, to empirically investi-
gate the solution of (7) in the presence of noise, and how it
depends on p. We adopt the iteratively reweighted least
squares (IRLS) approach to solve the nonconvex optimiza-
tion problem (7). The IRLS methodology has been widely
used for recovering sparse signals and low-rank matrices
[15,17,18]. We begin with xð0Þ ¼ arg minJy�ΦxJ22, and set
γ0 ¼ 1. Then let xðtþ1Þ be the solution of

min
x

1
2λ

Jy�ΦxJ22þ
1
2
JW ðtÞxJ22; ð26Þ

where λ40 is a regularization parameter, and the weight-
ing matrix W ðtÞ is defined as W ðtÞ

i ¼ diagðp1=2ðγ2t þ JxðtÞ

½i�J22Þp=4�1=2Þ for i-th block. It is easy to obtain that the
solution of (26) can be given explicitly as

xðtþ1Þ ¼ ðW ðtÞÞ�1ðΦðW ðtÞÞ�1ÞT ðΦðW ðtÞÞ�1þλIÞ�1ðΦðW ðtÞÞ�1ÞTy:

The value of γ is decreased according to the rule γtþ1 ¼
0:99γt and this iteration is continued until γ becomes very
small, i.e, γr10�8.

In our experiments, the measurement matrix Φ was
generated by creating an M�N matrix with i.i.d draws
from a standard Gaussian distribution. For a generated
(nearly) block-sparse signal x, the measurements y were
observed from the noisy model y¼Φxþsz, where z was
Gaussian white noise which can be generated by MATLAB
command randn(M,1). In order to verify the validity of our
presented theoretical results, we consider several different
values of p for the mixed l2/lp method. In each experiment,
we report the average results over 100 independent
random trails.

4.1. The exactly block-sparse case

We first consider the case that the signal x is exactly
block-sparse. In this set of experiments, the signals with
length N¼192 were generated by choosing k blocks uni-
formly at random, and then choosing the nonzero values
from a standard Gaussian distribution for these k blocks.
For IRLS, we set λ¼ 10�6 in noiseless case (s¼ 0), and
manually adjusted λ in noisy case (s40).

In Fig. 1(a)–(c), exact recovery frequency is plotted
versus measurement level M for three different block
sizes: d¼2, d¼4, d¼8. In this test, the number of nonzero
blocks k was fixed to 8, and the measurements y were
observed without noise (s¼ 0). The recovery was regarded
exact if Jxn�xJ2=JxJ2r10�4. One can easily see that
reducing p below 1 clearly reduces the number of mea-
surements required for exact recovery, which is expected
by Theorem 3.1. However, it is also shown that there is
almost no improvement when pr0:5. We emphasize that
the phenomenon do not counter our theoretical results
that smaller p should need fewer measurements for exact
recovery. As noted in [1,18], a smaller p makes the
minimizing functional more nonconvex and thus more
measurements may be needed for the IRLS algorithm to
converge to the global solution. It is also easy to see
that when pr0:5, the sample size M=kd needed for exact
recovery is always less than 3.5 and decreases as d
increases. This suggests that the constant C3ð0Þ should be
less than 3.5.

Fig. 2(a)–(c) depict exact recovery frequency versus the
block sparsity k for three different block sizes: d¼2, d¼4,
d¼8. Similar to the above test, the signals were perfectly
measured. The number of measurements M was fixed
to 130. It is evident that reducing p below 1 recovers more
sparse signals, which is expected. It is also observed that,
p¼0.5 performed similar with p¼ 0:2;0:01.

We now present some simulation results related to
Theorem 2.1. Several curves of theoretical recovery error
Jx�xn J2 versus different values of p¼ 0:01;0:1;0:2;…;

0:9;1 are shown in Fig. 3. In this test, s varied among
f0:01;0:03;0:1g. It is shown that, for relatively small noise
(s¼ 0:01;0:03), except p¼0.01, the error changes little,
and po1 performed a little bit better than p¼1; for
relatively large noise (s¼ 0:1), various different values of
p provided worse recovery performance than p¼1, and the
error is least for p¼0.5 in Fig. 3(a) and p¼0.9 in Fig. 3(b).
Recall that [19], for a given noise level s, the error
jjy�Φxjj22 can be bounded by term s2ðMþτ

ffiffiffiffiffiffiffiffiffi
2M

p
Þ with

high probability, where τ41 is a constant. Thus, for
demonstrating the behavior of the constants in (10), we

can set ϵ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþτ

ffiffiffiffiffiffiffiffiffi
2 M

pp
. Let τ¼ 2 used in [19], one can

easily calculate ϵ¼0.140, 0.420, 1.399 for block 16-sparse
signals (Fig. 3(a)) and ϵ¼0.123, 0.369, 1.229 for block 6-
sparse signals (Fig. 3(b)), varying the noise level s¼0.01,
0.03, 0.1. Therefore, one can further obtain that the con-
stant C2 in (10) appears to be less than 2 in most cases.
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Fig. 2. Exact recovery performance of mixed l2/lp-minimization, varying the number of block sparsity for (a) d¼2, (b) d¼4 and (c) d¼8. The number of
measurements M was fixed to 130.
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Fig. 1. Exact recovery performance of mixed l2/lp-minimization, varying the number of measurements for (a) d¼2, (b) d¼4 and (c) d¼8. The signals have
k¼8 nonzero blocks.
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These illustrate that the constant C2 is well behaved for a
wide range of p values, and the mixed l2/lp minimization
method guarantees a stable recovery of block-sparse
signals in the presence of noise.

4.2. The nearly block-sparse case

As noted in [20], the signals whose l2 norm of blocks
have a power-law decay rate are nearly block-sparse
signals. Thus, in this case, we generated x whose l2 norm
of blocks decay like i�α where iAf1;…;mg and α41, and
then observed the noisy measurements y from the model
described before. In this set of experiments, the signal
length N was fixed to 192.

Fig. 4 shows the recovery performance of mixed l2/lp
minimization in terms of signal to noise ratio (SNR). For a
recovered signal xn, the SNR is calculated as SNR¼ 20 log10
ðJxJ2=Jx�xn J2Þ. For simplicity, we only consider one
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Fig. 4. Robust recovery performance of mixed l2/lp-minimization in terms of SNR, varying the number of measurements for different nearly block-sparse
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Fig. 3. Theoretical recovery error versus p for the solution of mixed l2/lp-minimization (7) for different exactly block-sparse signals: (a) d¼2, k¼16 and
(b) d¼4, k¼6. The number of measurements M was fixed to 160 and 120 respectively.
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noise level: s¼ 0:01. For IRLS, the parameter λ¼ 0:002 was
used. We plotted SNR for nearly block 3-sparse signals
(α¼ 3:5) in Fig. 3(a)–(c) and for nearly block 6-sparse
signals (α¼ 2:5) in Fig. 3(d)–(f), varying the number of
measurements. It is easy to see from Fig. 3 that, except
p¼0.01, the mixed l2/lp method improves the recovery
performance as p decreases. This suggests that, on the one
hand, for small values of s, decreasing p improves
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Fig. 5. Theoretical recovery error versus p for the solution of mixed l2/lp-minimization (7) for different nearly block-sparse signals: (a) α¼ 2:5, d¼2 and
(b) α¼3.5, d¼4. The number of measurements M was fixed to 60 in both situations.
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robustness to noise, which is also shown in Fig. 3; on the
other hand, in noisy case, the IRLS algorithm may usually
find bad local minimizer when p is very small. It is also
clear that fewer measurements with smaller p are needed
for robust recovery than when p¼1, which is consistent
with our theoretical results. In addition, as in the exact
recovery case, the sample size M=kd needed for robust
recovery of nearly block-sparse signals is less than 3.5
when pr0:5.

Fig. 5 shows some sample curves of theoretical recov-
ery error jjx�xnjj2 versus p for nearly block-sparse signals.
It is shown that there is little difference between the each
curve in Fig. 5 and the corresponding curve in Fig. 3.
Similarly, we obtained ϵ¼0.091, 0.272, 0.905, varying the
noise level s¼0.01, 0.03, 0.1 in both situations. One can
also check the approximation error – the first term on the
right side of (10). As a reference, the average best k-block
approximation error equals to 0.106 for nearly block
6-sparse signals (α¼2.5), and 0.071 for nearly block
3-sparse signals (α¼3.5) respectively. Therefore, one can
obtain from Fig. 5 that the constants in (10) seem to be
quite low, and the theoretical recovery error is dominated
by the observation error in relatively strong noisy case
(s¼ 0:1). To sum up, as expected, there is a wide range of p
values for which the constants in (10) are well behaved,
and mixed l2/lp-minimization achieves a robust recovery.

5. Conclusion

In this paper, we studied the problem of recovering an
unknown nearly block k-sparse signal x from a given set of
noisy linear measurements. By extending the notion of
restricted p-isometry constant defined in [1] to the setting
of block-sparse signal recovery, we established a p-RIP
condition for robust recovery of nearly block-sparse sig-
nals via mixed l2/lp-minimization in the presence of noise.
In particular, we obtained a p-RIP condition for exact
recovery and determined how many random Gaussian
measurements are needed for the p-RIP condition to be
satisfied with high probability. Finally, a series of numer-
ical experiments have been carried out to prove the
validation of the theoretical derivations.
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