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Sparse Bayesian Hierarchical Prior Modeling
Based Cooperative Spectrum Sensing in
Wideband Cognitive Radio Networks

Feng Li and Zongben Xu

Abstract—This letter proposes a new method for cooperative
spectrum sensing by exploiting sparsity. The novel scheme uses the
theory of Bayesian hierarchical prior modeling in the framework
of sparse Bayesian learning. This model has sparsity-inducing
penalization terms leading to sparser solutions compared with
typically norm based ones. Based on the factor graph that
represents the signal model of the hierarchical prior models, the
variational message passing (VMP) algorithm is implemented to
estimate the power spectral density (PSD) map.

Index Terms—Bayesian hierarchical model, cognitive radio,
compressive sensing, cooperative spectrum sensing, sparse esti-
mation, variational message passing.

I. INTRODUCTION

C O-OPERATION among multiple cognitive radio (CR)
users can exploit spatial diversity to enhance spectrum

sensing performance [1]. However, long sensing delay and
high complexity weigh heavily against the implementation of
traditional spectrum sensing approaches in CR systems. Based
on compressed sensing (CS) theory, the problem can be relaxed
by exploiting the sparsity. In fact, the sparsity is twofold.
Firstly, the frequency band that is used by primary users always
occupies a tiny part of the system bandwidth resulting in the
sparsity in frequency domain. Secondly, the number of active
transmitters is always very small and the locations of them only
occupy a tiny fraction of the possible locations, therefore we
can exploit the sparsity in space domain [2].
The estimate of PSD does not need to be considerable ac-

curate since it is only used to distinguish the used frequency
bands from unused ones. Therefore, it is meaningful to study the
basis expansion model (BEM) based PSD estimator [3]. Then
the problem of PSD estimation is transformed to sparse signal
reconstruction with regard to the expansion coefficients.
The problem of sparse signal representations is often trans-

formed to the problem of the norm based algorithms [4].
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Sparse Bayesian learning (SBL) is also a useful approach [5].
In [5], a conditional prior based two-layer ( - ) structure is
constructed to calculate the unknowns. Recently, the layered
prior model and variational message passing (VMP) based ap-
proaches are used to do sparse channel estimation [6].
The contributions of this letter are as follows: Firstly, sparse

Bayesian hierarchical prior modeling based cooperative spec-
trum sensing is studied. Secondly, the estimation error of PSD
at each CR user is considered. Lastly, the closed form of the so-
lution is obtained via VMP.
Notation: Let be the vector of all ones and be

the Kronecker product. Let and be the real
and complex multivariate Gaussian probability density function
(PDF), respectively. Let be the
Gamma PDF and be the modified Bessel function of the
second kind with order . Finally, is the expec-
tation of function with respect to the density .

II. SYSTEM MODEL

A. Signal Model

We consider a system with CR users and candidate
sources. The position coordinate of the candidate sources is de-
noted as , . Let and denote the
channel impulse response (CIR) of th path at time and the
number of multipaths between the th source and the th re-
ceiver, respectively. The received signal with position coordi-
nate at time can be written as

(1)

where is the transmitted signal at time of the th source
and is the additive white Gaussian noise (AWGN).
Every received symbol is collected to form a frame. A con-

stant channel is assumed over the time interval of every frame.
It is assumed that the CIR is stationary and uncorrelated across
different blocks, across path lags, and across and in space
domain. Let be the frequency response of
with pathloss model
where is a given function of the distance between the trans-
mitter and the receiver.
We assume that is stationary, mutually uncorrelated.

The PSD of is written as . Let be the total system
bandwidth.We use to denote the number of non-overlapping
unit height rectangular bases of the basis expansionmodel
(BEM), i.e., , if and only if
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. Furthermore, can be written
as

(2)

where is the expansion coefficient indicating the transmitted
power of the transmitters.
Based on (1), the PSD of the received signal of the th CR

user can be written as

(3)

By inserting (2) into (3), we will get

(4)

where is the receiver variance of the th CR user,
and are vectors with

and
.

Various methods can be applied to obtain the estimate of
written as [7]. We do not consider the process

in detail in this letter. Instead, for simplicity, we assume that
has the form of

(5)

where is the additive white Gaussian noise with vari-
ance . In the rest of the paper, we will introduce an esti-
mator of based on at each CR user at frequencies

. Based on (4) and (5), we have
, where and are

vectors obtained by stacking and , respectively.
Also, is the matrix with rows . It is assumed that the
sensing information obtained by all of the CR users is available
at the central unit, and then the signal model at the central unit
can be written as

(6)

where and are vectors obtained by stacking
and , respectively. The matrix is

obtained by stacking the ’s. Also, ,
, is a white Gaussian random

vector with mean and covariance matrix , ,
diag and .

The main task of spectrum sensing is to estimate the sparse
vector through (6), and byproduct, the positions of the trans-
mitting radios. This letter uses the virtual gridmodel proposed in
[8]. The transmitting radios are assumed to be located at known
candidate coordinates based on the virtual grid model.

III. LAYERED HIERARCHICAL PRIOR MODEL
FOR SPARSE ESTIMATION

The SBL theory aims at solving the sparse maximum a pos-
terior (MAP) estimate problem with respect to :

(7)

The prior is modeled based on a hierarchical structure
including a conditional prior and a hyperprior .
The prior parameter is called the sparsity parameter which
is inversely proportional to the width of the PDF. Using this
prior, the weight of each element of is controlled by .
The larger is, the closer approaches zero. Then the esti-
mation will be sparse. The advantage of this hierarchical struc-
ture is twofold. Firstly, by carefully designing the formulation
of the prior PDFs, we can construct inference algorithms that
can obtain enhanced sparsity solutions and analytical expres-
sions. Secondly, the - hierarchical structure can be extended
to three-layer ( - ) by viewing as random vector. Therefore,
the third layer has more degree of freedom to control the spar-
sity of the solutions of the inference approaches.
We consider both the - and - hierarchical models. The

two models have different sparsity-inducing properties. At first,
we will demonstrate the probabilistic model of the SBL algo-
rithms for model (6).

A. Two-Layer Hierarchical Prior Model

For the - hierarchical model, the joint PDF of signal
model (6) can be written as

(8)

Based on (8), the likelihood function is Gaussian with
and

for real and complex value systems, re-
spectively. With regard to , we assume that the elements of it
are independent identically distributed (i.i.d) with each
being selected as a Gamma prior with

and then . Obvi-

ously, let and be zero resulting in a non-informative prior.
We assume that the elements of are i.i.d Gaussian random
variables with and
for real and complex value, respectively. The conditional

prior is selected to be the product

of Gaussian PDFs with where
and for real and complex value, respectively.We

assume that where .

The prior of can be computed as

(9)

where

(10)

When and for complex value, using the identity
we will get .

While for real value with and ,
. Obviously, Lasso cost function is obtained in

this situation. Furthermore, it is found that as decreases to zero,
we will obtain a sparser solution [6].
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B. Three-Layer Hierarchical Prior Model

The - model can be extended to the - model di-
rectly by introducing the regularization parameter into the

inference framework. It is assumed that

where . Let
and . Then can be computed as

with

(11)

where is the confluent hypergeometric function [9].

IV. VARIATIONAL MESSAGE PASSING
BASED SPARSE ESTIMATE

Define as the set of unknown parame-
ters. Let be the joint PDF of (8) with the factor graph
as shown in Fig. 1. In fact, in (7) can be written as

by regarding , , and
as nuisance parameters and “integrating them out”. The core of
the theory of variational inference is to find a simple distribu-
tion that is very close to . Furthermore, is
always assumed to have simplified form and can be factorized
as . Kullback - Leibler (KL)
divergence is used as a measure of the dissimilarity between two
probability distributions. In order to obtain the that most
resembles , we need to solve the problem of minimize
the KL divergence between them. VMP is a useful tool to deal
with this problem. The points of the VMP theory are shown as
follows [10]. The functions are computed iter-
atively and updated as the product of incoming messages from
the neighbour factor nodes to the variable node , i.e.,

(12)

where denotes the set composed by the factor nodes that
neighbour the variable node . Also, is the mes-
sage from the factor node to the variable node with

(13)
where is the set of the neighbouring variable nodes of the
factor node . Since the - model can be viewed as the -
model with where is the Dirac delta func-
tion and is a fixed number, we will compute the messages for
the - VMP algorithms. We refer to the proposed VMP based
algorithms using the - and - prior models as VMP-
and VMP- respectively.

Fig. 1. Factor graph of signal model of - prior model.

1) : Let . Updating
involves computing the product of messages and

with

diag (14)

(15)

where and
diag .

Multiplying (14) and (15) yields Gaussian PDF with co-
variance and mean shown in (16) and (17) where

.

(16)

(17)

2) : We need to compute and
to update with

(18)

(19)

By multiplying (18) and (19), we will obtain

(20)

which can be viewed as the product of generalized inverse
Gaussian (GIG) PDFs with order . Based on the properties
of GIG distribution [11], we have

(21)

Using (21), in (16) can be computed directly.
3) : In order to update , and
need to be computed with

(22)
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being viewed as the product of Gamma PDFs. In (21), we have

(23)

4) : The update of is the product of messages
and with

(24)

where and is the th element of
. By assuming that , we will have

where for
and for . In (16) and (17),

.
5) : Let . The update of is

the product of messages and where

diag (25)

Based on (25), follows Gaussian distribution with covari-
ance and mean . Define
and diag , and we will
have and .

V. SIMULATION RESULTS

In the simulation, CR users make cooperative esti-
mation of the PSD in both frequency and space domain. There
are 3 sources with unknown positions on a grid of
candidate locations. The CR users scan frequencies
from 20 to 80 MHz. Also, rectangles are used to be
frequency bases. The pathloss model obeys the inverse polyno-
mial law with , where ,

m and .
Fig. 2 shows the transmit PSDs of the first 20000 frames of

the three sources. The solid line, dashed line and dashdotted
line indicate the PSD of the low-frequency, mid-frequency and
high-frequency, respectively. Each of them corresponds to the
PSD of a CR user which is spanned by six base. For the fol-
lowing 20000 frames the mid-frequency source shuts off. For
the last 20000 frames both of the mid-frequency and high-fre-
quency sources shut off, and only the low-frequency remains.
In fact, the vector has elements of which only
18, 12 and 6 are non-zero for the first, the second and the last
20000 frames, respectively. At the initial step, and

are set to be the inverse of the variance of
and the inverse of , respectively. Also, and are set
to be 0 leading to a non-informative prior for . After that, the
PDFs of , , , and are computed itera-
tively until convergence is achieved. For the VMP- model,
computation of is not necessary and each element of it is
set to be . For both VMP- and VMP- , and

. A 10-taps Rayleigh fading channel model is
adopted. The power delay profile is exponentially decreasing
with a delay constant of four taps. In Fig. 3, the variance of the
additive white Gaussian noise at each CR user is 0 dB, dB,

dB and dB, respectively. The parameter is set to be

Fig. 2. Transmit PSDs of the three sources.

Fig. 3. Performance comparison of MSE of the algorithms.

0 and 3/2 for both VMP- and . Let be the the vari-
ance of the PSD estimation error. Also, each CR user has the
same value of in the simulation. The curves demonstrates
the normalized MSE performance versus . When is very
high, the large estimation error of PSD decreases system per-
formance seriously. The performance of the algorithms is very
poor and is similar to each other. When is very small, the
estimation error of PSD can practically be neglected, and the
performance of the algorithms is almost the same. Furthermore,
when the performance of the algorithms is better than

for both VMP- and VMP- algorithms. For the
same , VMP- outperforms VMP- . In fact, is
equivalent to norm parameter constraint. In the simulation,
when dB, VMP- converges in about 50-60 itera-
tions for both and . While VMP- converges
in about 80-100 iterations. The performance of the second-order
cone programming (SOCP) based algorithm of [12] and batch
D-Lasso algorithm of [3] is also shown.

VI. CONCLUSION

This letter studies the problem of cooperative spectrum
sensing in wideband cognitive radio networks. The sparsity of
the PSD in both frequency and space domains is exploited. The
PSD estimation error at each CR user and different variance
of the noise at each receiver are considered. Both - and
- sparse Bayesian hierarchical prior model based on BEM
is constructed. VMP theory is used to solve the problem of
sparse estimation and the closed form solution of the iterative
estimator is obtained. We find that the proposed VMP- ap-
proach with outperforms the others in terms of MSE and
sparsity. The VMP based Bayesian hierarchical model turned
out to be an effective approach to solve the sparse estimation
problem in CR networks.
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