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Finding the sparset solution of an underdetermined system of linear equations y¼Ax has
attracted considerable attention in recent years. Among a large number of algorithms,
iterative thresholding algorithms are recognized as one of the most efficient and
important classes of algorithms. This is mainly due to their low computational complex-
ities, especially for large scale applications. The aim of this paper is to provide guarantees
on the global convergence of a wide class of iterative thresholding algorithms. Since the
thresholds of the considered algorithms are set adaptively at each iteration, we call them
adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as
long as A satisfies a certain coherence property, AIT algorithms can find the correct
support set within finite iterations, and then converge to the original sparse solution
exponentially fast once the correct support set has been identified. Meanwhile, we also
demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it
should be pointed out that most of the existing iterative thresholding algorithms such as
hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in
the class of AIT algorithms studied in this paper.

& 2013 Published by Elsevier B.V.
1. Introduction

Finding the sparsest solution of an underdetermined
system of linear equations is an important problem
emerged in many applications (especially, in compressed
sensing [1,2]). Generally, an underdetermined system of
linear equations can be described as

y¼ Ax; ð1:1Þ

where yARM and AARM�N (MoN) are known, x¼ ðx1;…;

xNÞT ARN is unknown. Thus, finding the sparsest solution
of the Eq. (1.1) can be mathematically modeled as the
Elsevier B.V.

n (Z. Xu).
following l0-minimization, that is

min
xARN

‖x‖0 s:t: y¼ Ax; ð1:2Þ

where ‖x‖0 denotes the number of the nonzero compo-
nents of x and is formally called the l0-norm. However, the
problem (1.2) is NP-hard and generally intractable for
computing.

Instead, there are mainly two classes of methods, that
is, the greedy and relaxed methods for approximately
solving the problem (1.2). The basic idea of the greedy
method is that a sparse solution is refined iteratively by
successively identifying one or more components that
yield the greatest improvement in quality [3]. There are
many commonly used greedy algorithms such as orthogo-
nal matching pursuit (OMP) [4,5], stagewise OMP (StOMP)
[6], regularized OMP (ROMP) [7], compressive sampling
matching pursuit (CoSaMP) [8] and subspace pursuit [9].
The greedy algorithms can be quite fast, especially in the
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ultra-sparse case, and also may be very efficient at
certain situations for example the dictionary contains a
continuum of elements [10]. However, the performance of
the greedy algorithms cannot be guaranteed when the
signal is not very sparse or the level of the observational
noise is relatively high.

The relaxed method converts the combinatorial l0-
minimization into a more tractable model via replacing
the l0-norm with a certain nonnegative and continuous
function Pð�Þ, that is

min
xARN

PðxÞ s:t: y¼ Ax: ð1:3Þ

One of the most important cases is the l1-minimization
(also known as Basis Pursuit (BP) [11]) with PðxÞ ¼ ‖x‖1,
where ‖x‖1 ¼∑N

i ¼ 1jxij is called the l1-norm. The l1-mini-
mization is a convex optimization problem and thus can be
efficiently solved. Because of this, the l1-minimization gets
its popularity and has been accepted as a very useful tool
for solution to sparsity problems. Nevertheless, it cannot
promote further sparsity when applied to compressed
sensing [12–16]. Moreover, many nonconvex functions
were proposed as relaxations of the l0-norm. Some typical
nonconvex examples are the lq-norm (0oqo1) [12–15],
smoothly clipped absolute deviation (SCAD) [17] and
minimax concave penalty (MCP) [18]. As compared with
the l1-minimization, the nonconvex relaxed models can
usually induce better sparsity, however, they are generally
more difficult to be solved.

There are mainly two kinds of algorithms to solve the
constrained optimization problem (1.3). The first one is the
iteratively reweighted algorithm. Two of the most impor-
tant iteratively reweighted algorithms are the reweighted
l1-minimization [16] and iteratively reweighted least
squares (IRLS) [19,20] algorithms. One of the main advan-
tages of this kind of algorithms is that they can be used to
solve a general model (1.3). However, the computational
complexities of these algorithms are usually relatively
high. The other one is commonly called the regularization
method, which transforms the constrained optimization
problem (1.3) into the following unconstrained optimiza-
tion problem via introducing a regularization parameter:

min
xARN

f‖Ax�y‖22þλPðxÞg; ð1:4Þ

where λ40 is a regularization parameter. There are many
algorithms for solving the regularization model (1.4). Parti-
cularly, for some special P(x) such as the l0-norm, lq-norms
(q¼ 1;2=3;1=2), SCAD and MCP, the regularization models
(1.4) can permit the thresholding representations and thus
yield the corresponding iterative thresholding algorithms
[15,21–23]. Intuitively, an iterative thresholding algorithm
can be seen as a procedure of Landweber iteration projected
by a certain thresholding operator. Compared to the
aforementioned algorithms including the greedy, BP and
iteratively reweighted algorithms, iterative thresholding
algorithms can be implemented fast and have almost the
least computational complexity for large scale problems [24–
26]. So far, most of the theoretical results of the iterative
thresholding algorithms were developed for the regulariza-
tion model (1.4) with fixed λ. However, it is in general
difficult to determine an appropriate regularization para-
meter λ, especially when P is nonconvex.

Alternatively, some adaptive strategies for setting the
regularization parameters were proposed for iterative
thresholding algorithms. One of the commonly used stra-
tegies is to set the regularization parameter adaptively
according to a specified sparsity level at each iteration.
Once the specified sparsity level is given, the number of
nonzero components of vector at each iteration is also
determined. In practice, the specified sparsity level is
desired to be a good estimation of the true sparsity level.
This strategy was first adopted to the iterative hard
thresholding algorithm (called hard algorithm for short)
in [27], and later the iterative soft [28] (called soft algo-
rithm for short) and half [15] (called half algorithm for
short) thresholding algorithms. The convergence of hard
algorithmwas justified when A satisfies a certain restricted
isometry property (RIP) [27]. Later, Maleki investigated the
convergence of both hard and soft algorithms in terms of
the coherence [28]. Both in the analysis of [27,28], the
specified sparsity levels of AIT algorithms are set to be the
true sparsity level of the original sparse solution, however,
which is commonly unknown in practice. Therefore, the
robustness of AIT algorithms to the specified sparsity levels
is very important in practice and worth of investigation.
Moreover, besides the hard and soft algorithms, there are
many other AIT algorithms such as half, SCAD, MCP
algorithms which are widely used in signal processing,
variable selection and feature extraction. However, as far
as we know, there are lack of the corresponding theore-
tical guarantees on the global convergence of these algo-
rithms for sparse solution to the underdetermined linear
equations. Thus, the theoretical performance of these AIT
algorithms should be further studied.
1.1. Main contribution

In this paper, we consider the global convergence of a
wide class of adaptively iterative thresholding (AIT) algo-
rithms for sparse solution to an underdetermined system
of linear equations. The associated thresholding functions
satisfy some basic assumptions including odevity, mono-
tonicity and boundedness. The main contribution of this
paper can be summarized as follows:
(1)
 Developing the global convergence of an abstract AIT
algorithm. In this paper, under certain assumptions, we
developed the global convergence of a wide class of
AIT algorithms, which include most of the existing
iterative thresholding algorithms emerged in the field
of sparse signal processing.
(2)
 Robustness to the algorithmic parameter. In practice, a
good algorithm is commonly desired to be robust to
the algorithmic parameters. Distinguished from most
of the existing results, the main theorem of this paper
(see Theorem 1) demonstrates that AIT algorithms are
indeed robust to the algorithmic parameter.
(3)
 Identifying the support set within finite iterations. As shown
by Theorem 1, AIT algorithms can identify the correct
support set within finite iterations. Furthermore, we give
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an estimation of the upper bound on the number of
iterations required for identifying the correct support set.
(4)
 Linear rate of asymptotic convergence.We show that the
rates of asymptotic convergence of AIT algorithms are
linear. More specifically, once the correct support set
has been identified, AIT algorithms converge to the
original sparse solution exponentially fast. It should be
pointed out that the linear rates of asymptotic con-
vergence of AIT algorithms are non-trivial since most
of the thresholding operators studied in this paper are
expansive. Thus, the classical theoretical results of the
Landweber iteration cannot be straightly applicable to
these algorithms.
(5)
 Support identified via a sequential recruitment process.
By the proof of Theorem 1, we can observe that the
supports are sequentially recruited into the support set
in the pre-defined descending order of the values (in
magnitude) of the components of the original sparse
solution. This property may be very useful for certain
applications such as a feature screening problem.
The remainder of this paper is organized as follows. In
Section 2, we introduce the adaptively iterative threshold-
ing (AIT) algorithms. In Section 3, we present the main
theoretical results of AIT algorithms. In Section 4, we give
the proof of the main theorem. In Section 5, we discuss
some related work. We conclude the paper in Section 6.

2. Adaptively iterative thresholding algorithms

In this section, we first give some notations used in this
paper, and then introduce the adaptively iterative thresh-
olding algorithms.

2.1. Notion and notation

For any xARN , xi represents its i-th component. Given a
positive integer koN, jx½k�j represents its k-th largest
component of x in magnitude. For any AARM�N , AiARM

denotes its i-th column, and AT represents its transposi-
tion. For any index set S, jSj denotes its cardinality and Sc

represents its complementary set. Moreover, we denote by
AS the submatrix of A with the columns restricted to S.

2.2. AIT algorithms

The adaptively iterative thresholding algorithm for
sparse solution to (1.1) can be generally expressed as the
following iterative form:

zðtþ1Þ ¼ xðtÞ �AT ðAxðtÞ �yÞ; ð2:1Þ

xðtþ1Þ ¼Hτðt þ 1Þ ðzðtþ1ÞÞ; ð2:2Þ
where

Hτðt þ 1Þ ðxÞ ¼ ðhτðt þ 1Þ ðx1Þ;…;hτðt þ 1Þ ðxNÞÞT ð2:3Þ
is a componentwise thresholding operator associated with
a thresholding function hτðt þ 1Þ , τðtþ1Þ is the threshold value
at (tþ1)-th iteration. More specifically, a thresholding
function hτ is commonly defined as
hτðuÞ ¼
f τðuÞ; juj4τ

0; otherwise

(
ð2:4Þ

where f τðuÞ is formally called the defining function for any
uAR. We give some basic assumptions of the defining
function as follows:
1.
 Odevity. f τ is an odd function.

2.
 Monotonicity. f τðuÞZ f τðvÞ for any uZvZ0.

3.
 Boundedness. There exists a constant 0rcr1 such that

u�cτr f τðuÞru for uZτ.
The odevity and monotonicity are two regular assump-
tions for the defining function, while the boundedness
confines hτ to be an appropriate thresholding function. It
can be noted that most of the commonly used threshold-
ing functions satisfy these assumptions. We list some
typical examples as follows.

Example 1. Hard thresholding function for L0 regulariza-
tion [23]

hτ;0ðuÞ ¼
u; juj4τ

0; otherwise

(
: ð2:5Þ

Example 2. Half thresholding function for L1=2 regulariza-
tion [15]

hτ;1=2 uð Þ ¼
2
3
u 1þ cos

2π
3

�2
3

arccos

ffiffiffi
2

p

2
τ

juj

� �3=2
 ! ! !

; juj4τ

0; otherwise

8>><
>>: :

ð2:6Þ

Example 3. 2/3-Thresholding function for L2=3 regulariza-
tion [22]

hτ;2=3 uð Þ ¼ sign uð Þ
ϕτ uð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2juj
ϕτðuÞ

�ϕτ ðuÞ2
s

2

0
BBBB@

1
CCCCA

3

; juj4τ

0; otherwise

8>>>>>>><
>>>>>>>:

;

ð2:7Þ

where sign(u) denotes the sign function of u henceforth,

ϕτ uð Þ ¼ 213=16

4
ffiffiffi
3

p τ3=16 cosh
θτðuÞ
3

� �� �1=2

with

θτ uð Þ ¼ arccosh
3
ffiffiffi
3

p
u2

27=4ð2τÞ9=8

 !
:

Example 4. Soft thresholding function for L1 regulariza-
tion [21]

hτ;1ðuÞ ¼
u�signðuÞτ; juj4τ

0; otherwise

(
: ð2:8Þ
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Fig. 1. Typical thresholding functions hτðuÞ with τ¼ 1.

Table 1
Boundedness parameters c for different thresholding functions.

f τ;n f τ;0 f τ;1=2 f τ;2=3 f τ;1 f τ;SCAD

c 0 1
3

1
2

1 1

1
3þc

1
3

3
10

2
7

1
4

1
4
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Example 5. SCAD-thresholding function for nonconvex
likelihood model (a42) [17]

hτ;SCAD uð Þ ¼

u; juj4aτ
ða�1Þu�signðuÞaτ

a�2
; 2τo jujraτ

u�signðuÞτ; τo jujr2τ
0; otherwise

8>>>>><
>>>>>:

: ð2:9Þ

The plots of these thresholding functions and their corre-
sponding boundedness parameters c are shown in Fig. 1
and Table 1, respectively.

It can be observed that the tuning strategies of the
threshold value τðtÞ are crucial for AIT algorithms. In this
paper, we consider a heuristic way for setting the thresh-
old value, i.e., the threshold value is set to the (kþ1)-th
largest coefficient of z in magnitude at each iteration,
where k is the unique algorithmic parameter and called
the specified sparsity level. Therefore, the adaptively
iterative thresholding algorithms can be formulated as
Algorithm 1.

Algorithm 1. Adaptively iterative thresholding algorithm.

Step 1. Normalize A such that ‖Aj‖2 ¼ 1 for j¼ 1;…;N;

Step 2. Choose a specified sparsity level k and begin with xð0Þ ¼ 0;

Step 3. Compute zðtþ1Þ ¼ xðtÞ þAT ðy�AxðtÞÞ;
Step 4. Set τðtþ1Þ ¼ jzðtþ1Þj½kþ1�;

Step 5. Update xðtþ1Þ ¼Hτðt þ 1Þ ðzðtþ1ÞÞ;
Step 6. Repeat steps 3–5 until the stop rule being satisfied;
It should be noticed that at (tþ1)-th iteration, the AIT
algorithm yields a sparse solution with k nonzero compo-

nents by setting τðtþ1Þ ¼ jzðtþ1Þj½kþ1� in step 4 of Algorithm 1.
To guarantee the performance of the AIT algorithm, the
specified sparsity level is very critical. Assume that the true
sparsity level of the original sparse solution is kn. On one
hand, when kZkn, the results will get better as k approach-
ing to kn. On the other hand, once kokn, the AIT algorithm
fails to find the original sparse solution. Thus, k should be
specified as an upper bound estimation of kn.

3. Convergence analysis of AIT algorithms

In this section, we provide the convergence analysis of
AIT algorithms for sparse solution to (1.1). For simplicity,
we assume that the normalization step has been done
before the analysis, that is, ‖Aj‖2 ¼ 1 for j¼ 1;…;N. We use
xn ¼ ðxn1;…; xnNÞT to denote the original sparse solution with
kn nonzero components. Without loss of generality, we
further assume that jxn1jZ jxn2jZ⋯Z jxn

kn
j40 and xnj ¼ 0 for

j4kn. Moreover, we denote by In and IðtÞ the support sets
of xn and xðtÞ, respectively. Furthermore, we denote
Ir ¼ f1;…; rg for 1rrrkn as the set formed by the first r
largest components of xn in magnitude. Thus, we have
In ¼ Ikn .

To investigate the convergence of AIT algorithms, we
introduce the coherence of a matrix A, which is defined as
follows [29]:

μðAÞ ¼max
ia j

j〈Ai;Aj〉j for i; jAf1;…;Ng:

The coherence measures the maximal correlation between
two different columns of A. For simplicity, we use μ instead
of μðAÞ henceforth if there is no confusion. In [29], it was
shown that if knr 1

2 1þ1=μ
� �

, then xn is the unique
sparsest solution of (1.1). Next, we define the dynamic
range of the original sparse solution as

Dr¼ miniA In jxni j
miniA In jxni j

;

which measures the diversity of the nonzero components
of xn. Moreover, we define two positive constants in the
following:

Tkn ¼ knþ kn�1
� �

logð1þ cÞkμ
1�ð3þcÞkμ

ð3þcÞ�ðc2þ4cþ3þ2=DrÞkμ
� logð1þ cÞkμ Dr ð3:1Þ

and

Tn

kn ¼ knþ kn�1
� �

logð1þ cÞknμ
1�ð3þcÞknμ

ð3þcÞ�ðc2þ4cþ3þ2=DrÞknμ

� logð1þ cÞknμ Dr: ð3:2Þ

With these notations, we present the main result as
follows.

Theorem 1. Suppose that 0oμo1=ð3þcÞkn and
knrko1=ð3þcÞμ. Then there exists a positive integer
tnrTkn such that when tZtn, it holds

In � IðtÞ; ð3:3Þ

ng 97 (2014) 152–161 155
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and

‖xðtÞ �xn‖1r 3þc
2

min
iA In

xni ρt� tn þ1
������ ð3:4Þ

with ρ¼ ð1þcÞkμo1=2.

In Theorem 1, we justify the global convergence of AIT
algorithms. It shows that as long as A satisfies a certain
coherence property and the specified sparsity level k is
chosen in an appropriate range, AIT algorithms can find
the correct support set within finite iterations. Further-
more, once the correct support set has been identified, AIT
algorithms converge to the original sparse solution
exponentially fast.

As shown by Theorem 1 and (3.1), the upper bound on
the number of iterations required for identifying the
correct support set is mainly determined by several para-
meters, i.e., kn, Dr and k. On one hand, according to (3.1),
Tkn is monotonic increasing with respective to both kn and
Dr. In other words, if the original sparse solution has more
nonzero components and its dynamic range is larger, then
more iterations are commonly required to identify the
correct support set. These coincide with the common
senses. As we all know, it is generally more difficult to
find a denser solution. Also, if the dynamic range of the
original solution is larger, more efforts are usually required
to detect the smallest nonzero component. On the other
hand, we can easily verify that Tkn is monotonically
increasing with respect to k. Therefore, if the specified
sparsity level k is estimated more precisely, then the
number of iterations required for finding the correct
support set may get fewer. Moreover, according to (3.4),
it can be seen that AIT algorithms converge faster with
smaller ρ when k is closer to kn. Thus, in practice, k is
desired to be estimated more precisely in terms of com-
putational efficiency and convergence speed.

As analysed previously, a tighter upper bound estimation
of the true sparsity level is more desired for the AIT algorithm
in the perspectives of both theory and practice. However, the
upper bound is commonly unknown in practice. In applica-
tions, we may conduct an empirical study or based on some
known priors to yield a reasonable upper bound. Moreover,
there are several efficient ways inspired by some theoretical
analysis. In [30], it suggested that an upper bound can be
estimated by the undersampling-sparsity tradeoff, or “phase-
transition curve”. However, it is generally very time-
consuming to obtain the “phase-transition curve”. According
to [31], it was shown that the coherence satisfies μA

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN�MÞ=MðN�1Þ

p
;1�. The lower bound is known as the

Welch bound [32]. Particularly, when NbM, the lower bound
is approximately μZ1=

ffiffiffiffiffi
M

p
. Together with Theorem 1, we can

suggest Oð
ffiffiffiffiffi
M

p
Þ as a reasonable upper bound estimation of kn.

In the following, we give a corollary to show the special
case with k¼ kn.
Corollary 1. Suppose that 0oμo1=ð3þcÞkn and k¼ kn.
Then there exists a positive integer t̂

nrTn

kn such that when
tZ t̂

n
, it holds

In ¼ IðtÞ ð3:5Þ
and

‖xðtÞ �xn‖1r 3þc
2

min
iA In

xni ρ̂t� t̂
n

þ1
������ ð3:6Þ

with ρ̂ ¼ ð1þcÞknμo1=2.

From Corollary 1, when k¼ kn, the AIT algorithm can
recover the support set of xn exactly within finite itera-
tions. According to (3.2), it can be observed that if knμ is
not sufficient close to 1=ð3þcÞ and the dynamic range of
the original sparse solution is not too large, then the log
term about knμ and Dr in the second and third terms of
(3.2) respectively is relatively small constants. In this case,
the number of iterations required for the AIT algorithm is
about several times of kn. For an instance, assume that
kn ¼ 9, μ¼ 1

40 and Dr¼10, according to (3.2), the number of
iterations required for hard, soft and half algorithms are 20,
42 and 25, which are about 2, 5 and 3 times of kn,
respectively. Motivated by this observation, we can suggest
an efficient halting rule for AIT algorithms through setting
the number of maximum iterations according to the true
sparsity level.

It can be observed from Corollary 1 that the bounded-
ness parameter c plays an important role in the guarantees
of the convergence of AIT algorithms. The restriction of the
matrix A gets stricter as c increases. As shown in Table 1,
among these AIT algorithms, hard algorithm permits the
weakest requirement of A with μo1=3kn, while soft
algorithm requires the strictest restriction of A with
μo1=4kn. It should be noticed that the restriction on μ is
relatively loose and can be attained in practice. In fact, it
was shown that the coherence μ is in the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N=M

p
for the random matrix where entries of A are

independently and identically Gaussian distributed [33].
This implies that kn ¼OðMξ1 Þ might suffice for the AIT
algorithmwhen log N¼OðMξ2 Þ for some positive constants
ξ1 and ξ2 satisfying 2ξ1þξ2o1.

Remark 1. As shown by the proof of Theorem 1 in Section
4, it is interested that the procedure of identifying the
correct support set is a sequential recruitment process.
That is, the supports are sequentially recruited in a
descending order of the values of their coefficients with
the larger one being identified not later than the smaller
one. This procedure may be very useful to certain applica-
tions such as feature screening problem in statistics.

4. Proof of Theorem 1

We denote iðtÞ½kþ1� ¼ arg miniA f1;2;…;Ngfi : jzðtÞi j ¼ jzðtÞj½kþ1�g
and then let ΛðtÞ

½kþ1� ¼ IðtÞ [ fiðtÞ½kþ1�g. To prove Theorem 1, we
need the following lemmas. First, we give a lemma to
bound the gap between the components of xðtÞ and zðtÞ at t-
th iteration, which is served as the basis of the other
lemmas.

Lemma 1. At any t-th iteration (tZ1), there exists an
iðtÞ0 AΛðtÞ

½kþ1�\I
n, such that
(i)
 for any iA IðtÞ,

jzðtÞi �xðtÞi jrcjzðtÞ
iðtÞ0
�xn

iðtÞ0
j; ð4:1Þ
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where c is the boundedness parameter of the associated
thresholding function;
(ii)
 for any i=2 IðtÞ,
jzðtÞi �xðtÞi jr jzðtÞ

iðtÞ0
�xn

iðtÞ0
j: ð4:2Þ
Here, it should be mentioned that xn
iðtÞ0

¼ 0 and we keep
it in (4.1) and (4.2) only for better formats.

Proof. (i) For iA IðtÞ, by the definition of the thresholding
function Hτ and the boundedness assumption of f τ , it holds

jzðtÞi �xðtÞi j ¼ jzðtÞi � f τðtÞ ðzðtÞi ÞjrcτðtÞ ¼ cjzðtÞj½kþ1�: ð4:3Þ

Since iðtÞ½kþ1� =2 IðtÞ, then the cardinality of ΛðtÞ
½kþ1� is kþ1.

Moreover, by jInj ¼ knokþ1, then there exists an index

iðtÞ0 such that iðtÞ0 AΛðtÞ
½kþ1�\I

n. Thus, (4.3) becomes

jzðtÞi �xðtÞi jrcjzðtÞj½kþ1�rcjzðtÞ
iðtÞ0
j ¼ cjzðtÞ

iðtÞ0
�xn

iðtÞ0
j: ð4:4Þ

(ii) Similarly, for any i=2 IðtÞ, it holds

jzðtÞi �xðtÞi j ¼ jzðtÞi jr jzðtÞj½kþ1�r jzðtÞ
iðtÞ0
�xn

iðtÞ0
j: ð4:5Þ

Thus, we end the proof of this lemma. □

In the next, we give a lemma to show that the largest
component (in magnitude) of xn will be detected at the
first iteration.

Lemma 2. Suppose that 0oμo1=ð2kn�1Þ and
knrko 1

2 1þ1=μ
� �

. Then at the first iteration, it holds
(i)
 f1g � Ið1Þ;

(ii)
 for any jA Ið1Þ, jxð1Þj �xnj jr ðð1þcÞð3þcÞ=2Þkμjxn1j.
xn1j:
Proof. First, we show that f1g � Ið1Þ. On one hand, we
observe that

jzð1Þ1 j ¼ xn1þ ∑
iA In\f1g

〈A1;Ai〉xni

�����
�����Z jxn1j�μ ∑

kn

i ¼ 2
jxni jZ jxn1j�ðk�1Þμj

On the other hand, for any i=2 In, it holds

jzð1Þi j ¼ ∑
kn

j ¼ 1
〈Ai;Aj〉x

n

j

�����
�����rknμjxn1jrkμjxn1j:

Since ko 1
2 1þ1=μ
� �

, then kμjxn1jo jxn1j�ðk�1Þμjxn1j, which
implies that

jzð1Þ1 j4max
i=2 In

jzð1Þi j:

Thus, f1g � Ið1Þ.
Next, we give the error bound. For any jA Ið1Þ, we observe

that

jxð1Þj �xnj jr jxð1Þj �zð1Þj jþjzð1Þj �xnj jrcjxn
ið1Þ0

�zð1Þ
ið1Þ0

jþjzð1Þj �xnj j;
ð4:6Þ
where the second inequality holds for Lemma 1. Further-
more, for any i, it holds

jzð1Þi �xni j ¼ ∑
jA In\fig

〈Ai;Aj〉xnj

�����
�����rknμjxn1jrkμjxn1j: ð4:7Þ

Combining (4.6) with (4.7), for any jA Ið1Þ, it holds

xð1Þj �xnj
��� ���r 1þcð Þkμjxni jr

ð1þcÞð3þcÞ
2

kμjxn1j:
Thus, we end the proof of this lemma. □

Lemma 3. Suppose that 0oμo1=ð3þcÞkn and knrko1=
ð3þcÞμ. Moreover, assume that at m-th iteration, Ir � IðmÞ

(0orrkn) and for any jA IðmÞ, it holds jxðmÞ
j �

xnj jrðð1þcÞð3þcÞ=2Þkμjxnr j. Then at (mþs)-th iteration
(sZ1), it holds
(i)
 for any j,

zðmþ sÞ
j �xnj
��� ���r ð3þcÞ

2
kμðð1þcÞkμÞsjxnr j

þkμjxnrþ1j½1þð1þcÞkμþ⋯þðð1þcÞkμÞs�1�;
(ii)
 for any iA Iðmþ sÞ,

xðmþ sÞ
i �xni

��� ���r ð3þcÞ
2

ðð1þcÞkμÞsþ1jxnr j
þkμjxnrþ1j½ð1þcÞkμþ⋯þðð1þcÞkμÞs�;
(iii)
 Ir � Iðmþ sÞ.
Proof. We prove this lemma by induction. First, when
s¼1, for any iA Iðmþ1Þ, it holds

jxðmþ1Þ
i �xni jr jxðmþ1Þ

i �zðmþ1Þ
i jþjzðmþ1Þ

i �xni j:
By Lemma 1, there exists an iðmþ1Þ

0 AΛðmþ1Þ
½kþ1� \I

n such that

jxðmþ1Þ
i �zðmþ1Þ

i jrcjzðmþ1Þ
iðmþ 1Þ
0

�xn
iðmþ 1Þ
0

j;
then it holds

jxðmþ1Þ
i �xni jrcjzðmþ1Þ

iðmþ 1Þ
0

�xn
iðmþ 1Þ
0

jþjzðmþ1Þ
i �xni j: ð4:8Þ

Moreover, for any j, it holds

zðmþ1Þ
j �xnj
��� ���¼ ∑

iA IðmÞ [ In\fjg
〈Aj;Ai〉ðxni �xðmÞ

i Þ
�����

�����
¼ ∑

iA IðmÞ\fjg
〈Aj;Ai〉ðxni �xðmÞ

i Þþ ∑
iA In\ðIðmÞ [ fjgÞ

〈Aj;Ai〉x
n

i

�����
�����

rkμ
ð1þcÞð3þcÞ

2
kμ xnr
�� ��� �

þ kn�r
� �

μ xnrþ1j
��

r ð3þcÞ
2

kμ 1þcð Þkμ xnr jÞþkμ xnrþ1 :j
����� ð4:9Þ

Combining (4.8) with (4.9), for any iA Iðmþ1Þ, it holds

xðmþ1Þ
i �xni

��� ���r 1þcð Þ ð3þcÞ
2

kμ 1þcð Þkμjxnr jÞþkμjxnrþ1j
!  

¼ ð3þcÞ
2

ðð1þcÞkμÞ2 xnr þ 1þcð Þkμ xnrþ1 :j
������ ð4:10Þ

Then we need to prove that Ir � Iðmþ1Þ. According to (4.9),
for any j, it holds

zðmþ1Þ
j �xnj
��� ���r 1þ ð3þcÞð1þcÞ

2
kμ

� �
kμjxnr j:
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Since ko1=ð3þcÞμ, it holds

1þ ð3þcÞð1þcÞ
2

kμ
� �

kμo 1
2
:

Then, for any j, it holds

zðmþ1Þ
j �xnj
��� ���o1

2 jxnr j: ð4:11Þ

According to (4.11), we observe that, for any iA Ir ,

zðmþ1Þ
i

��� ���Z jxni j�jzðmþ1Þ
i �xni jZ jxnr j�1

2 jxnr j41
2 jxnr j: ð4:12Þ

While for i=2 In,

zðmþ1Þ
i

��� ���¼ jzðmþ1Þ
i �xni jo1

2 jxnr j: ð4:13Þ

With (4.12) and (4.13), it follows that Ir � Iðmþ1Þ. Therefore,
the conclusion holds for s¼1. □

Second, assume that the conclusion holds for s (sZ1),
then we need to check if it holds for sþ1. The proof is
similar to the case s¼1 and we omit it here.

Lemma 4. Suppose that 0oμo1=ð3þcÞkn and knrko1=
ð3þcÞμ. Moreover, assume that at m-th iteration, Ir � IðmÞ

(rokn) and for any jA IðmÞ, jxðmÞ
j �xnj jrðð1þcÞð3þcÞ=

2Þkμjxnr j. Then it holds
(i)
 the index frþ1g will be detected after at most lr itera-
tions with

lr ¼ logð1þ cÞkμ
1�ð3þcÞkμ

ð3þcÞð1�ð1þcÞkμÞjxnr j=jxnrþ1j�2kμ

$ %
;

where the function ⌊u⌋ denotes the smallest integer not
less than u for any uAR.
(ii)
 for any jA Iðmþ lr þ1Þ,

xðmþ lr þ1Þ
j �xnj

��� ���o ð1þcÞð3þcÞ
2

kμjxnrþ1j:
Proof. We first show that the index frþ1gwill be detected
after at most lr iterations, and then give the error bound.
According to Lemma 3, at ðmþ lrÞ�th iteration, for any j, it
holds

zðmþ lr Þ
j �xnj
��� ���r ð3þcÞ

2
ðð1þcÞkμÞlr jxnr j

þkμ xnrþ1 1þ⋯þðð1þcÞkμÞlr �1
� 	������

o ð3þcÞ
2

ðð1þcÞkμÞlr jxnr jþkμjxnrþ1j
1�ðð1þcÞkμÞlr
1�ð1þcÞkμ

¼ jxnrþ1j
ð3þcÞ

2
ðð1þcÞkμÞlr jxnr j

jxnrþ1j
þkμ

1�ðð1þcÞkμÞlr
1�ð1þcÞkμ

 !

r jxnrþ1j
ð3þcÞ

2
ðð1þcÞkμÞlr jxnr j

jxnrþ1j
þkμ

1�ðð1þcÞkμÞlr
1�ð1þcÞkμ

 !
:

Since

lrZ logð1þ cÞkμ
1�ð3þcÞkμ

ð3þcÞð1�ð1þcÞkμÞjxnr j=jxnrþ1j�2kμ
;

then

ð3þcÞ
2

ðð1þcÞkμÞlr jxnr j
jxnrþ1j

þkμ
1�ð1þckμÞlr
1�ð1þckμÞ r 1

2
:

Thus, for any j, it holds

zðmþ lr Þ
j �xnj
��� ���o1

2 jxnrþ1j: ð4:14Þ

By (4.14), on one hand

zðmþ lr Þ
rþ1

��� ���Z jxnrþ1j�jzðmþ lr Þ
rþ1 �xnrþ1j41

2 jxnrþ1j; ð4:15Þ

and on the other hand, for any j=2 In,

zðmþ lr Þ
j

��� ���¼ jzðmþ lr Þ
j �xnj jo1

2 jxnrþ1j: ð4:16Þ

With (4.15) and (4.16), it shows that frþ1g will be detected
at ðmþ lrÞ�th iteration, that is, frþ1g � Iðmþ lr Þ.
Next, we give the upper bound of the error. For any

iA Iðmþ lr þ1Þ, it holds

jxðmþ lr þ1Þ
i �xni j ¼ ∑

jA Iðmþ lr Þ\fig
〈Ai;Aj〉ðxnj �xðmþ lr Þ

j Þ
�����
þ ∑

jA In\ðIðmþ lr Þ [ figÞ
〈Ai;Aj〉β

n

j

�����
rμ ∑

jA Iðmþ lr Þ\fig
jxnj �xðmþ lr Þ

j jþðkn�r�1Þμjxnrþ1j:

ð4:17Þ
Moreover, for any jA Iðmþ lr Þ, it holds

jxnj �xðmþ lr Þ
j jr jxnj �zðmþ lr Þ

j jþjzðmþ lr Þ
j �xðmþ lr Þ

j j: ð4:18Þ

According to Lemma 1 and (4.14), then (4.18) becomes

xnj �xðmþ lr Þ
j

��� ���o 1
2
jxnrþ1jþcjzðmþ lr Þ

iðmþ lr Þ
0

�xn
iðmþ lr Þ
0

jo 1þc
2

jxnrþ1j:

ð4:19Þ
Combining (4.17) and (4.19), for any iA Iðmþ lr þ1Þ, it holds

xðmþ lr þ1Þ
i �xni

��� ���r ð1þcÞ
2

kμjxnrþ1jþ kn�r�1
� �

μjxnrþ1j

¼ 1þc
2

þ kn�r�1
k

� �
kμ xnrþ1j
��

r ð1þcÞð3þcÞ
2

kμ xnrþ1 :j
��

Therefore, for any iA Iðmþ lr þ1Þ, it holds

xðmþ lr þ1Þ
i �xni

��� ���r ð1þcÞð3þcÞ
2

kμjxnrþ1j:

Thus, we end the proof of Lemma 4. □

Proof of Theorem 1. With these lemmas, we prove
Theorem 1 inductively. For i¼1, by Lemma 2, the largest
component (in magnitude) will be detected at the first
iteration, that is, I1 ¼ f1g � Ið1Þ. By Lemma 3, once the first
largest index is identified, it remains in the support set
forever. Furthermore, by Lemma 4, the second largest
component will be identified after at most l1 iterations, i.
e., I2 � IðtÞ when tZ1þ l1. In order to obtain the required
error bound for the inductive procedure, one more itera-
tion should be implemented. When this procedure is
repeated for r times with 0orrkn�1, it holds Irþ1 � IðtÞ

when tZrþ∑r�1
i ¼ 1li. Furthermore, by Lemma 3, once all
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the correct indices are detected, they remain in the
support set and the error estimation of the iteration can
be obtained. Therefore, there exists an integer constant
tnrknþ∑kn �1

i ¼ 1 li such that when tZtn, it holds In � IðtÞ and
the error estimation of the iteration can be achieved.
Moreover, by the definition of li in Lemma 4 and the fact
that jxni j=jxniþ1jrDr, it holds

lir logð1þ cÞkμ
1�ð3þcÞkμ

ð3þcÞð1�ð1þcÞkμÞjxni j=jxniþ1j�2kμ

r logð1þ cÞkμ
1�ð3þcÞkμ

ð3þcÞ�ðc2þ4cþ3þ2=DrÞkμ

� logð1þ cÞkμ
jxni j
jxniþ1j

ð4:20Þ

for i¼ 1;…; kn�1. Therefore,

knþ ∑
kn �1

i ¼ 1
lirknþ kn�1

� �
logð1þ cÞkμ

� 1�ð3þcÞkμ
ð3þcÞ�ðc2þ4cþ3þ2=DrÞkμ � logð1þ cÞkμ

jxn1j
jxn

kn
j ¼ Tkn : &

Thus, we obtain the proof of Theorem 1.

5. Related work

In this section, we first discuss some related work of
AIT algorithms, and then give some comparisons with
other typical algorithms including BP, OMP, CoSaMP in
terms of the sufficient condition for convergence and
computational complexity.

(i) On related work of AIT algorithms. In [28], Maleki
provided some similar results for two special AIT algorithms,
i.e., the hard and soft algorithms with k¼ kn. The sufficient
conditions for convergence are μo1=3:1kn and μo1=4:1kn

for hard and soft algorithms, respectively. As shown by
Corollary 1, our conditions for both algorithms are slightly
weaker than Maleki's conditions. Moreover, from Theorem 1,
we show the robustness of AIT algorithms to the specified
sparsity levels, which is very important in practice. Except
the hard and soft algorithms, as far as we know, there are no
similar results on the global convergence of other AIT
algorithms such as half, SCAD and MCP algorithms for sparse
solution to the underdetermined linear equations.

Besides the coherence property, another important
property called the restricted isometry property (RIP) is
commonly used to characterize the performance of an
algorithm for sparse solution to (1.1). The s-order
restricted isometry constant (RIC), δs of A is defined as
the smallest constant 0oδo1 such that

ð1�δÞ‖x‖22r‖Ax‖22r ð1þδÞ‖x‖22; 8‖x‖0rs: ð5:1Þ
In [34], it was demonstrated that if A has unit-norm
columns and coherence μ, then A has the ðs; δsÞ�RIP with

δsrðs�1Þμ: ð5:2Þ
In terms of RIP, Blumensath and Davies justified the perfor-
mance of the hard algorithm when applied to the signal
recovery problem [27]. It was shown that if A satisfies a
certain RIP with δ3kn o 1

8
ffiffi
2

p
�1

, then the global convergence of
the hard algorithm can be guaranteed. Later, this condition
was significantly improved to by Foucart [35], i.e., δ3kn o 1
2.

Together with (5.2), we can easily deduce a coherence based
sufficient condition of convergence, that is, μo1=2ð3kn�1Þ.
As compared with the existing RIP based conditions, it is hard
to claim if our conditions are better. Instead, we can give some
useful remarks on these conditions. On one hand, the
sufficient conditions based on coherence can be in general
verified much easier than those based on RIP. On the other
hand, the RIP based conditions can be generalized and
improved usually easier than those based on coherence.

(ii) On comparison with other algorithms. For better
comparison, we list the state-of-the-art results on sufficient
conditions of some typical algorithms including BP, OMP,
CoSaMP, hard, soft, half and other AIT algorithms in Table 2.

From Table 2, in the perspective of coherence, the
sufficient conditions of AIT algorithms are slightly stricter
than those of BP and OMP algorithms. However, AIT
algorithms are generally faster than both algorithms with
lower computational complexities, especially for large
scale applications. As analyzed in Section 3, the number
of iterations required for the convergence of the AIT
algorithm is empirically of the same order of the original
sparsity level kn, that is, OðknÞ. At each iteration of the AIT
algorithm, only some simple matrix–vector multiplications
and a projection on the vector need to be done, and thus
the computational complexity per iteration is OðMNÞ.
Therefore, the total computational complexity of the AIT
algorithm is OðknMNÞ. While the total computational
complexities of BP and OMP algorithms are generally
OðM2NÞ andmaxfOðknMNÞ;OððknÞ2ðknþ1Þ2=4Þg, respectively.
It should be pointed out that the computational complex-
ity of OMP algorithm is related to the commonly used
halting rule of OMP algorithm, that is, the number of
maximal iterations is set to be the true sparsity level kn.

As another important greedy algorithm, CoSaMP algo-
rithm identifies multicomponents (commonly 2kn) at each
iteration. From Table 2, the RIP based sufficient condition of
CoSaMP is δ4kn o0:384 and a deduced coherence based
sufficient condition is μo0:384=ð4kn�1Þ. In the perspective
of coherence, our conditions for AIT algorithms are better
than CoSaMP, though this comparison is not very reasonable.
At each iteration of CoSaMP algorithm, some simple matrix–
vector multiplications and a least squares problem should be
considered. Thus, the computational complexity per iteration
of CoSaMP algorithm is generally maxfOðMNÞ;Oðð3knÞ3Þg,
which is higher than those of AIT algorithms, especially
when kn is very large. However, the number of iterations
required for CoSaMP algorithm is commonly fewer than
those of AIT algorithms, since the speed of convergence of
CoSaMP algorithm is exponential while that of AIT algo-
rithms is asymptotically exponential, that is, AIT algorithms
converge exponentially fast after certain iterations. There-
fore, as claimed in the Introduction, when applied to very
sparse case, both OMP and CoSaMP algorithms may be more
efficient than AIT algorithms. While AIT algorithms may be
better when applied to more general cases.

6. Conclusion

In this paper, we provide the convergence analysis
of a wide class of adaptively iterative thresholding (AIT)



Table 2
Sufficient conditions for different algorithms.

Algorithm BP OMP CoSaMP Hard Soft Half Other AIT

μ 1
2kn�1

[28]
1

2kn�1
[32]

0:384
4kn�1

a 1
3kn

1
4kn

3
10kn

1
ð3þcÞkn

ðs; δsÞ ð2kn ;0:465Þ [31] knþ1; 1

3
ffiffiffiffi
kn

p
� �

[33] ð4kn;0:384Þ[34] ð3kn;0:5Þ [34] – – –

‘–’ represents no related theoretical result as far as we know.
a A coherence based sufficient condition for CoSaMP derived directly by the fact that δ4kn o0:384 and δsrðs�1Þμ
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algorithms for sparse solution to an underdetermined system
of linear equations y¼Ax. We prove that as long as A satisfies
a certain coherence property and the specified sparsity level is
set in an appropriate range, AIT algorithms can identify the
correct support set within finite steps. Furthermore, we
demonstrate that the asymptotic convergence rates of AIT
algorithms are linear, that is, once the correct support set has
been identified, AIT algorithms converge to the original sparse
solution exponentially fast. It is interested that the procedure
of finding the correct support set is a sequential recruitment
process, i.e., the supports are sequentially recruited into the
support set in the descending order of the magnitudes of their
coefficients. This property may be very useful to certain
applications such as the feature screening problem. It should
be noted that most of the commonly used iterative thresh-
olding algorithms (say, hard, soft, half and SCAD algorithms)
are included in the class of iterative thresholding algorithms
studied in this paper. Besides the hard and soft algorithms, we
provide some fundamental guarantees on the performance of
the other AIT algorithms for sparse solution to underdeter-
mined linear equations.
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