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Abstract— In this paper, we present a novel spatial and spectral
fusion model (SASFM) that uses sparse matrix factorization to
fuse remote sensing imagery with different spatial and spectral
properties. By combining the spectral information from sensors
with low spatial resolution (LSaR) but high spectral resolution
(HSeR) (hereafter called HSeR sensors), with the spatial infor-
mation from sensors with high spatial resolution (HSaR) but
low spectral resolution (LSeR) (hereafter called HSaR sensors),
the SASFM can generate synthetic remote sensing data with
both HSaR and HSeR. Given two reasonable assumptions, the
proposed model can integrate the LSaR and HSaR data via two
stages. In the first stage, the model learns from the LSaR data a
spectral dictionary containing pure signatures, and in the second
stage, the desired HSaR and HSeR data are predicted using
the learned spectral dictionary and the known HSaR data. The
SASFM is tested with both simulated data and actual Landsat 7
Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate
Resolution Imaging Spectroradiometer (MODIS) acquisitions,
and it is also compared to other representative algorithms. The
experimental results demonstrate that the SASFM outperforms
other algorithms in generating fused imagery with both the
well-preserved spectral properties of MODIS and the spatial
properties of ETM+. Generated imagery with simultaneous
HSaR and HSeR opens new avenues for applications of MODIS
and ETM+.

Index Terms— High spatial resolution (HSaR), high spectral
resolution (HSeR), Landsat, matrix factorization, Moderate
Resolution Imaging Spectroradiometer (MODIS), sparse coding,
spatial and spectral fusion model (SASFM), spatial–spectral
fusion.

I. INTRODUCTION

DUE TO technical and budget constraints, in satellite
remote sensing systems, there is a tradeoff between

spatial resolution and spectral resolution. As a result, it is at
present uncircumventable to obtain a remote sensing scene that
covers a large area at both high spatial and high spectral reso-
lutions (HSaSeR). Medium resolution sensors like the Medium
Resolution Imaging Spectrometer (MERIS) and the Moderate
Resolution Imaging Spectroradiometer (MODIS) provide high
spectral resolution (HSeR) but low spatial resolution (LSaR)
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(varying from 250 to 1200 m (hereafter called HSeR sensors).
HSeR sensors were designed to detect and monitor changes
in the Earth’s surface on a frequent basis and they can also be
used to derive such measurements as the leaf area index [1],
aerosol optical depth [2], and so on. For example, MODIS’
ability to collect data over large covered areas, its short
revisit intervals (1 or 2 days), and its relatively wide spectral
coverage (36 spectral bands ranging in wavelength from 0.4
to 14.4 μm) make it a popular sensor for various remote
sensing applications. However, due to the LSaR of the MODIS
instrument (250 m to 1 km), it is not suitable for applications
that require high spatial details.

In contrast, high spatial resolution (HSaR) sensors like the
Landsat Enhanced Thematic Mapper Plus (ETM+), Advanced
Spaceborne Thermal Emission and Reflectance Radiometer,
and Système Pour l’Observation de la Terre High Resolution
Visible provide remote sensing data with spatial resolutions
ranging from 10 to 30 m, which allow us to monitor het-
erogeneous areas with a finer pixel footprint. For instance,
the Landsat instruments, as the longest satellite observation
systems, have proven extremely useful in monitoring land
cover/land use changes, monitoring ecosystem dynamics, and
retrieving biogeochemical parameters [3]. However, these sen-
sors have relatively lower spectral resolutions (LSeRs) and
cover a narrower spectral range. For example, Landsat covers
the spectrum in wavelengths from 0.45 to 2.35 μm, divided
into eight spectral bands.

One cost-effective solution to the HSaSeR tradeoff is to use
image fusion to combine the spatial information of the HSaR
data with the spectral information of the HSeR data. Tradi-
tionally, spatio-spectral image fusion focuses on the blending
of one HSaR panchromatic band with multispectral LSaR
bands, which is also called pan-sharpening [4], [5]. Numerous
methods have been developed for Pan-sharpening, including
the classic intensity–hue–saturation transformation [6], prin-
cipal component substitution [7], “à trous” wavelet trans-
form [8], the multiresolution analysis method [9], and so on.
These methods have achieved a reasonable level of success,
especially in enhancing the spatial resolution of multispectral
bands, but their applications are limited in the following two
aspects: 1) there must exist a panchromatic band to provide
high-frequency spatial information and 2) the wavelength of
the involved multispectral bands is usually located in the
visible and near-infrared (NIR) range of the electromagnetic
spectrum to match the corresponding panchromatic band.
Apparently, the coupling of two multispectral sensors, namely,
Landsat ETM+ (with eight spectral bands) and MODIS (with
36 spectral bands), as in our case, goes beyond the fusion
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of a panchromatic band with multispectral bands. MODIS
also contains many bands outside the spectral range that can
be covered by ETM+. Consequently, the traditional spatio-
spectral fusion methods, such as the pan-sharpening method,
are not suitable for the spatio-spectral fusion of Landsat
ETM+ and MODIS data.

Another category of spatio-spectral fusion methods is
based on spatial unmixing (SaU) [10]–[13]. For example,
Minghelli-Roman et al. [11], [12] have improved the spatial
resolution of the MERIS data by merging them with the
Landsat TM data. This fusion process consists of three steps:
1) unsupervised classification of the TM data; 2) determination
of class spectra in MERIS using the fractional abundances
of endmembers derived in step 1; and 3) substitution of
each classified pixel in MERIS with its spectral profile. This
unmixing-based algorithm performs well in regions with large
homogeneity. However, it may lead to a loss of local variability
for the same land cover type due to the implementation
across the whole image at once. To mitigate this drawback,
Zurita-Milla et al. [13] employed a sliding window on the
MERIS image that uses the neighborhood pixels to increase
the class variability among windows and tested it with a land
cover map for monitoring vegetation seasonal dynamics [14].
However, this approach lacks intraclass variability inside a
window and can obtain only the spectral signatures within the
TM spatial resolution. Additionally, the unmixing-based fusion
algorithms require a high accuracy of geometric coregistration
of the data; this is a strong but not unrealistic requirement for
modern coregistration techniques [12].

Sparsity-induced regularization is an effective technique for
the spectral unmixing of hyperspectral data [15]. It aims to find
in a spectral library an optimal combination of pure spectral
signatures that match each mixed pixel in a hyperspectral
image, such as the one captured by NASAs airborne visible
infrared imaging spectrometer and hyperion. The spectral
library is usually known in advance (e.g., spectra collected
on the ground by a field spectroradiometer or by airborne
spectrometers). Then, the measured spectrum can be sparsely
represented as a linear combination of the pure spectral
signatures in the library. The risk in using library endmembers
is that these spectra are rarely acquired by satellite instruments
(such as Landsat ETM+ and MODIS) under the same con-
ditions as the collection instruments. In this paper, we used
the sparsity regularization, but built the spectral library (also
called the spectral dictionary) directly from the satellite data
themselves to ensure consistency between the spectral library
and the data to be estimated.

In this paper, we developed a new spatial and spectral
fusion model (SASFM) based on sparse matrix factorization.
The model combines the spatial information from sensors
with HSaR, with the spectral information from sensors with
HSeR. We introduced a two-stage algorithm to combine these
two categories of remote sensing data. In the first stage, we
obtained an optimal set of atoms (i.e., the spectral dictionary)
from data with LSaR and HSeR (i.e., HSeR) to represent the
spectral signatures of various materials in the scene. Given
the simple observation that there are probably only a few land
surface materials contributing to each pixel in the LSaR image,

we cast this problem as a sparse matrix factorization problem.
In the second stage, by using the spectral dictionary developed
in the first stage, together with data with HSaR and LSeR (i.e.,
HSaR), we reconstructed the spectrum of each pixel to produce
a HSaSeR image via a sparse coding technique. Given the
assumptions of spectral sparsity and of a linear combination
relationship between the bands of an HSaR image and the
desired HSaSeR data, the proposed method can significantly
improve the spatial resolution of the HSeR data, while at the
same time, maintain accurate spectrum estimates.

The remainder of this paper is organized as follows.
Section II presents the theoretical basis of our model. Our
proposed method for the fusion of HSeR data and HSaR data is
presented in Section III. Section IV presents the experimental
results for both the simulated and the actual satellite data. We
conclude in Section V.

II. THEORETICAL BASIS

Given a signal matrix X ∈ RS×N , sparse matrix factoriza-
tion seeks to decompose it into a basis matrix D ∈ RS×M (also
called a dictionary) and a coefficient matrix � ∈ RM×N , so
that each column of X can be sparely represented by the linear
combinations of basis vectors in D [16]. This decomposition
process can be expressed in the following function:

min
D,�

‖�‖0, s.t. X = D� (1)

where ‖�‖0 stands for the number of nonzero elements
in �. Methods for solving the l0-norm constrained sparseness
problem [as formulated in (1)] include greedy algorithms,
such as basis pursuit [17] and orthogonal matching pursuit
(OMP) [18]. OMP is an iterative greedy algorithm that selects
at each step the column in the dictionary that is most cor-
related with the current residues. This column is then added
into the set of selected columns. This algorithm updates the
residues by projecting the observation onto the linear subspace
spanned by the columns that have already been selected. These
processes are repeated until the signal matrix is satisfactorily
decomposed.

However, the problem in (1) is NP hard [19], which indi-
cates that the problem is combinatorial and very complex
to solve. Fortunately, this problem can be approximated by
replacing the l0-norm with the l1-norm (sum of magnitudes)
in (1) when the coefficient vectors in � are sufficiently sparse
and the atoms in D are different [20]

min
D,�

‖�‖1, s.t. X = D�. (2)

As representation errors may exist in (2), this equation can be
expressed in the following relaxed form:

min
D,�

‖�‖1 , s.t. ‖X − D�‖2
2 ≤ ε (3)

where ‖‖2
2 denotes the l2-norm (sum of atom squares) and ε

is a small constant. Due to the good properties of l1-norm
minimization and its approximation to l0-norm in preserving
sparseness, many l1-norm-based sparse coding techniques
have been developed, such as Lasso, the gradient projec-
tion, homotopy, iterative shrinkage thresholding [21], and
so on.
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TABLE I

BANDWIDTH COMPARISON BETWEEN LANDSAT 7 ETM+ AND MODIS

ETM+
Band

Bandwidth
(μm)

MODIS
Band

Bandwidth
(μm)

MODIS
Band

Bandwidth
(μm)

MODIS
Band

Bandwidth
(μm)

MODIS
Band

Bandwidth
(μm)

MODIS
Band

Bandwidth
(μm)

1 0.45–0.52 1 0.62–0.67 9 0.44–0.45 17 0.89–0.92 25 4.48–4.54 33 13.1–13.4

2 0.52–0.60 2 0.84–0.87 10 0.48–0.49 18 0.93–0.94 26 1.36–1.39 34 13.4–13.7

3 0.63–0.69 3 0.46–0.48 11 0.52–0.53 19 0.91–0.96 27 6.53–6.89 35 13.7–14.1

4 0.76–0.90 4 0.54–0.56 12 0.54–0.55 20 3.66–3.84 28 7.17–7.47 36 14.1–14.3

5 1.55–1.75 5 1.23–1.25 13 0.66–0.67 21 3.92–3.98 29 8.40–8.70

6 10.4–12.5 6 1.62–1.65 14 0.67–0.68 22 3.92–3.98 30 9.58–9.88

7 2.09–2.35 7 2.10–2.15 15 0.74–0.75 23 4.02–4.08 31 10.7–11.2

8 0.52–0.90 8 0.41–0.42 16 0.86–0.87 24 4.43–4.49 32 11.7–12.2

To identify the dictionary D from the training samples X ,
several dictionary learning algorithms have been developed.
These algorithms can be divided into three categories [20]:
1) probabilistic learning methods; 2) parametric learning meth-
ods; and 3) clustering- or vector-quantization-based methods.
Probabilistic learning methods build on the assumptions of
both distributions of representation errors (usually Gaussian
distribution) and representation coefficients (usually Laplacian
distribution). For example, the maximum likelihood dictionary
learning method [22], falling under this category, maximizes
the likelihood that an image matrix X will have efficient and
sparse representations in a redundant dictionary D by itera-
tively updating the sparse coefficients and dictionary atoms.
The parametric dictionary learning methods mainly deal with
the applications that do not necessitate the general forms of
dictionary atoms by building the dictionary from a set of
parametric functions. For example, one can enforce specific
desired dictionary properties during the learning process such
as dictionary coherence, shift invariance, or multiscale char-
acteristics of the atoms [19].

In contrast, the clustering- or vector-quantization-based
methods optimize a dictionary on a set of image patches by
first grouping patterns such that their distance to a given atom
is minimal, and then updating the atom such that the overall
distance in the group of patterns is minimal [20]. This process
assumes that each image patch can be represented by a single
atom in the dictionary, and this reduces the learning procedure
to a K-means clustering. A generalization of this method for
dictionary learning is the K-singular value decomposition
(K-SVD) algorithm [23], which represents each patch by using
multiple atoms with different weights. In this algorithm, the
coefficient matrix and basis matrix are updated alternatively.
Suppose that the coefficient matrix � = [α1, α2, . . . , αN ] has
been updated through an OMP algorithm. Then, the update
of dictionary D, with the kth atom dk as an example, is as
follows.

1) Define the groups of signal vectors that use this atom,
ωk = {

i
∣∣1 ≤ i ≤ N, αT

k (i) �= 0
}
, where αT

k is the kth
row of �.

2) Compute the overall representation error matrix Ek by

Ek = X −
∑

j �=k

d jα
j
T . (4)

3) Obtain E R
k by choosing only the columns corresponding

to ωk .

4) Apply SVD decomposition to E R
k

E R
k = U�V T . (5)

5) Update the dictionary column dk to be the first column
of U.

We adopted this K-SVD algorithm for dictionary learning in
our method owing to its simplicity and efficiency during the
training process. Accordingly, we adopted the OMP algorithm
to solve the sparse coefficients in the image estimation proce-
dure. The MATLAB toolbox for these algorithms can be found
in [24].

III. PROPOSED METHODOLOGY

Given the spatial and spectral properties of MODIS and
Landsat as introduced in Section I, it is apparent that these
two kinds of sensors are complementary. We therefore take
the fusion of MODIS and Landsat as an example to illustrate
the spatial and spectral fusion process of our algorithm. The
spectral comparison between MODIS and Landsat is shown
in Table I. It is clear that several bands of Landsat and
MODIS (labeled with the same color) correspond with each
other. However, some of the MODIS bands that are not
within the Landsat bandwidth can play very important roles in
many applications, for example, in monitoring air and marine
environments. They could be even more useful if their spatial
resolution could be largely improved, especially for those
bands that currently have 1-km spatial resolution. For example,
bands 8–11 can be used to calculate chlorophyll parameters;
band 16 is informative about aerosols; and bands 20–23 are
useful for monitoring temperature changes on land or ocean
surfaces. To extend the applications of MODIS data, we
propose to integrate the high spectral information of MODIS
and the high spatial information of Landsat to produce data
with both HSaR and HSeR.

For a given study area, we assume that MODIS data
and Landsat data could be acquired on closer dates. After
radiometric calibration, atmospheric correction, and geometric
rectification, the surface reflectances of these two sensors are
comparable and correlated with each other on their corre-
sponding bands. However, due to the differences in sensor
systems, systematic biases may still exist. The main purpose
of our algorithm is to make use of the correlation by training
a spectral dictionary from the known MODIS data and then
predicting the HSaSeR image from the spectral dictionary
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and the Landsat data, while at the same time, minimizing
the system biases. As the Terra platform crosses the equator
at around 10:30 AM local solar time, roughly 30 min later
than Landsat 7, and their orbital parameters, viewing angles
(near-nadir), and solar geometries are close to each other,
the imaging environments of MODIS and Landsat ETM+
can usually be assumed to be similar. However, the imaging
conditions could vary at any time and there are differences
between the spectral response functions (SRFs) of MODIS
and ETM+, resulting in a difference in the spectral signatures
of these two sensors. We alleviate this problem by match-
ing the histogram of ETM+ data to that of MODIS data
in the preprocessing step. Histogram matching is a relative
detector calibration technique to balance the responses of
different detectors. It is commonly used to normalize two
images acquired at similar local illumination over the same
location, but by different sensors, atmospheric conditions,
or global illumination. By changing only the contrast of
reflectance, the histogram matching operation barely affects
the spatial information of ETM+ data and keeps the spectral
information of MODIS data. Because the SRF of MODIS
is relatively continuous and narrow compared with that of
ETM+, we can approximate the spectral signatures of Landsat
ETM+ with a linear combination of pure spectral signa-
tures of MODIS. This indicates that the spectral dictionary
derived from MODIS data can be used to represent the
Landsat data by integrating over the corresponding spectral
range.

For convenience of description, we will refer to the MODIS
data as images with HSeR and the Landsat data as images with
HSaR. We define the input HSeR image as X lh ∈ Rw×h×S ,
the input HSaR image as Xhl ∈ RW×H×s , and the desired
HSaSeR image as Xhh ∈ RW×H×S . The subscripts of X ,
l, and h, stand for “low” and “high,” respectively, and their
order denotes the spatial and spectral properties, respectively.
W (or w), H , (or h) and S (or s) denote the image width, the
image height, and the number of bands, respectively (w < W ,
h < H , and s < S). We made two reasonable assumptions
in this paper according to the following two aspects. On
the one hand, reconstructing Xhh from X lh and Xhl is a
highly underconstrained problem without further assumptions,
because the total number of observations from the input data
is much smaller than that of our desired measurements, that is,
whS + W H s � W H S. On the other hand, modeling the rela-
tionship between the desired variable and the given variables
needs proper assumptions. For the following two assumptions,
the first one aims to bring up the sparsity constraint for both
spectral dictionary and representation coefficients; and the
second one aims to link the desired HSaSeR image matrix
with the given HSeR and HSaR image matrices.

A. Assumptions

1) Assumption 1: The mixed pixels can be expressed in the
form of linear combinations of a small number of pure spectral
signatures in the trained dictionary.

Mixed pixels are common on a HSeR image due to its LSaR.
To unmix mixed pixels, a linear mixing model and a nonlinear

mixing model have been proposed [25]. The linear mixing
model assumes the minimal secondary reflections or multiple
scattering effects in the data collection procedure, thus the
measured spectra can be expressed as a linear combination of
the spectral signatures of the materials present in the mixed
pixel. In contrast, nonlinear unmixing generally requires prior
knowledge of the object geometry and the physical proper-
ties of the observed objects [25]. Due to its computational
tractability and its flexibility for different applications [25],
we used a linear mixing model in this paper. As the number
of endmembers participating in a mixed pixel is usually very
small compared with the total number of material categories
in an image, a mixed pixel can be expressed by a linear
combination of pure spectral signatures from the dictionary
with a sparse fractional abundance vector. If we assume that
the number of distinct materials in the scene is M and denote
the measured spectrum of a pixel by x ∈ RS , the spectral
library as D ∈ RS×M , and the fractional abundance vector as
α ∈ RM , then the linear model can be written as follows:

x = Dα + n (6)

where n is an S × 1 vector containing the errors affecting the
measurements at each spectral band.

2) Assumption 2: The mappings from the desired HSaSeR
image to the input HSaR image and HSeR image are both
linear, which means that the pixel vectors of both HSaR and
HSeR images can be obtained by the linear combinations of
the pixel vectors in the HSaSeR image.

If the pixels in an HSaSeR image are considered pure pixels,
then the pixels in an HSeR image can be obtained via a
linear mixing model as in Assumption 1. If we concatenate
all pixel vectors into a matrix, the mapping from the desired
HSaSeR image to the HSeR image can be linearly obtained.
On the other hand, the digital number of remote sensing data
is determined by the total radiation rate of each band, which
can be obtained by means of integrating the solar spectrum
function L(λ) and the SRF f (λ) of sensors over the band
spectral range �

DN =
∫

�
L (λ) f (λ) dλ + ε (7)

where λ is the wavelength and ε is the noise caused by
the dark signal. For the same scene imaged by different
sensors, L(λ) is the same, whereas f (λ) is dependent on
the sensors. Therefore, the surface reflectance discrepancy
between sensors is determined by their SRFs. Considering that
the band spectrum of HSeR is narrow and relatively continuous
and the band spectrum of HSaR is wide, we approximated
the SRF of HSaR with the weighted sum of the SRFs of
HSeR. For example, the SRF of the eighth band (i.e., the
panchromatic band) in Landsat 7 ETM+ can be approximated
by the weighted sum of the SRFs of bands 1–2 and 11–17. The
spectral response curves (SRCs) of these bands are shown in
Fig. 1, where the values of the x-axis represent the normalized
reflectances and the values of the y-axis the wavelengths in
micrometers. Other bands of ETM+, except for bands 5 and 7,
which have corresponding bands in MODIS (bands 6 and 7,
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Fig. 1. Comparison of SRCs between the panchromatic band of Landsat
and the bands 1–2 and 11–17 of MODIS. (a) SRCs of Landsat. (b) SRCs of
MODIS.

respectively), can be approximated by two or three related
bands in MODIS that can be found in Table I.

As the SRF of the HSaSeR image is consistent with that of
the HSeR, the DN value of one band in the HSaR image can
be approximated as the weighted sum of DN values of those
HSaSeR bands whose spectra are overlapped with this HSaR
band. For a location (i , j ) in the HSaR image, if we put the
pixels of all the bands into a spectral vector xhl ∈ Rs and
denote its counterpart spectral vector in the HSaSeR image as
xhh ∈ RS , then xhl can be linearly approximated by xhh by
introducing a mapping matrix 	 ∈ Rs×S formula as follows:

xhl = 	xhh. (8)

As the mapping matrix 	 in (8) is valid for other spec-
tral vectors, (8) can also be expressed in the matrix form:
Xhl = 	Xhh, where each column of Xhl and Xhh stands for
a pixel vector.

B. Model Formulation

According to Assumption 1, the desired HSaSeR image can
be decomposed as Xhh = D�, where the i th column of Xhh ∈
RS×W H , D ∈ RS×M , and � ∈ RM×W H denote the i th spectral

vector, the pure spectral signature of the i th material in the
scene, and the sparse fractional abundance of the i th spectral
vector in respect of all spectral signatures in the dictionary D,
respectively. In the pixel vector form, the i th spectral vector
of Xhh in location (i, j ) can be represented as

xhh (i, j) = Dαhh (9)

where αhh ∈ RM is the fractional abundance vector for pixel
vector xhh(i, j) in respect of the spectral dictionary D. In line
with the linear mapping process from the HSaSeR image to
HSeR image in Assumption 2, the pixel vector xlh(i, j) ∈ RS

of X lh can be obtained by spatial aggregation within a local
window

xlh (i, j) =
∑

(r,c)∈Wi, j

θrcxhh (r, c) (10)

where Wi, j is an appropriate window of the HSaSeR image
(r, c) denotes the pixel location in this window, and θrc are
the weighting coefficients in the window. By combining (9)
and (10), xlh(i, j) can be denoted as

xlh (i, j) = D
∑

r,c∈Wi, j

θrcαhh (r, c) = Dϕ (i, j) (11)

where ϕ(i, j) ∈ RM is the summation of all fractional
coefficients in window Wi, j . Since αhh in each location is
very sparse with respect to dictionary D, the spatial aggregated
coefficient ϕ(i, j) is also sparse with respect to dictionary D.
If we concatenate (9) for all pixels (i, j ), the matrix equation
can be derived

X lh = D� (12)

where X lh = [xlh(1, 1), . . . , xlh(w, h)] ∈ RS×wh and � =
[ϕ(1, 1), . . . , ϕ(w, h)] ∈ RM×wh .

The spectral dictionary and the fractional abundance matri-
ces are initially unknown in (12). However, for scenes that
obey our above assumptions, we know that the M columns of
D stand for the pure spectral signatures of M categories of
materials in the scene, and that fractional abundance vectors
are sparse. Hence, the two matrices can be solved by using
the sparse matrix factorization method discussed in Section II.
Although there are many possible decompositions of (10),
under fairly mild conditions of the sparsest coefficients, such
decompositions are unique [26]. We learn the dictionary D by
using the K-SVD algorithm to solve the following objective
function:

min
D,�

{
‖X lh − D�‖2

2

}
s.t. ∀i, ‖ϕi‖0 ≤ M0 (13)

where � = [ϕ1, ϕ2, . . . , ϕwh] and M0 is a fixed and predeter-
mined parameter.

Once the spectral dictionary D is obtained from (13), we
can reconstruct the HSaSeR image Xhh by using the sparsity
as a guide. Assuming that D has been correctly estimated,
each pixel vector of the target image should admit a sparse
representation in terms of the columns of D : xhh = Dα.
By combining (8), that is, xhl = 	xhh, we seek the sparsest
coefficients α that satisfy the measurement equation xhl =
	xhh = 	Dα

α̂ = arg min
α

‖α‖0, s.t. ‖xhl − 	Dα‖2
2 ≤ ε (14)
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where ε is a small constant, denoting the accepted error
tolerance during the estimation process. After solving this
sparse coding problem by means of the OMP algorithm, we
can then use the estimated fractional coefficients α̂ to form
our estimate of xhh

xhh = Dα̂. (15)

As the image Xhl is known, all pixel vectors of Xhh can be
predicted in the same process.

C. Estimation of the Mapping Matrix 	

From (14), we know that the mapping matrix 	 from the
HSaSeR image to the HSaR image plays an important role
in predicting our desired image. One straightforward way to
estimate it is through a linear regression between the SRFs of
the HSaR and HSeR sensors. However, given the system biases
that occur during the data capture procedures, we predict the
mapping matrix directly from the known data themselves to
obtain a more accurate and robust estimation.

From (8), we can see that this mapping process is executed
on two datasets with the same spatial extent and different
spectral extent, whereas the two known images, Xhl ∈ Rs×W H

and X lh ∈ RS×wh , are different both in spatial extent and
spectral extent. Thus, we downsample the image Xhl in the
spatial extent to render it the same spatial extent as X lh. If we
denote the downsampled version of Xhl as X ll ∈ Rs×wh , then
X lh and X ll can be connected by the mapping matrix 	 with
the following method:

X ll = 	X lh (16)

where 	 ∈ Rs×S . Consequently, the mapping matrix 	 can
be obtained (X lh has full row rank)

	 = X ll X
+
lh = X ll X

T
lh

(
X lh X T

lh

)−1
. (17)

D. Algorithm

Based on the above assumptions and the estimation
model, we illustrate the overall algorithm of the SASFM in
Algorithm 1. The algorithm consists of two stages, that is,
deriving the spectral dictionary from the HSeR image in the
first stage and estimating the HSaSeR image by representing
the HSaR image using the spectral dictionary in the second
stage. From this procedure, we can observe that the extrac-
tion of spectral information from the HSeR image and the
extraction of spatial information from the HSaR image are
implemented separately. Thus, there is no high requirement
on geometric registration between the input images. However,
the estimation of mapping matrix 	 requires the geometric
coregistration between the input HSaR and HSeR images
because they are used simultaneously in (16). If we estimate
the mapping matrix 	 through a linear regression between the
SRFs of the HSaR and HSeR sensors, there would be no need
to establish a direct relationship between the input HSaR and
HSeR images. This indicates a relaxation of the requirement of
an excellent geometric coregistration between the input HSaR
and HSeR images.

Algorithm 1 Overall Spatio-Spectral Fusion Algorithm
Input:
. HSaR but low spectral resolution image Xhl.
. LSaR but HSeR image X lh.
Deriving the spectral dictionary D:
. Derive the spectral dictionary from X lh via K-SVD by solving
(13).
Estimating the mapping matrix �:
. Derive it by downsampling Xhl and solving (16) and (17).
Sparse coding:
. Compute the sparse fractional abundances of Xhl with

respect to spectral dictionary D through the sparse
coding technique of OMP as in (14).

Reconstruction:
. Reconstruct the HSaSeR image from the sparse frac-

tional abundances of Xhl and the spectral dictionary D
as in (15).

Output
. High spatial and HSeR image Xhh.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

To test the performance of our proposed method, we applied
it to both the simulated data and actual remote sensing data
from Hong Kong, and compared it with several other spatial
and spectral fusion methods, including the component substi-
tution method (CSM) [27], local principal component analysis
(L-PCA) [28], and the well-known SaU method developed by
Zurita-Milla et al. [13]. In our algorithm, we set the noise level
ε as 1.0e–5, and the number of atoms M was tuned based on
the experimental data. All the experiments were conducted on
the MATLAB R2010a platform on a personal computer with a
2.10-GHz CPU and a 2.00-GB RAM. For the simulated data,
the HSaSeR image was already given and the input HSaR
and HSeR images were aggregated from the given HSaSeR
image. We could thus evaluate the fusion results by comparing
them with the given HSaSeR image based on the following
four commonly used quality metrics. The first one is relative
average spectral error (RASE) [29], which characterizes the
average performance of a method on all hyperspectral bands
as follows:

RASE = 100

μ

√√
√
√ 1

S

S∑

i=1

RMSE (Xi )
2 (18)

where μ is the mean value of the S spectral bands (Xi ) of
the original multispectral image. The rule for this index is, the
lower the value, the better the method. The second metric is the
peak signal noise ratio (PSNR) [30], which is commonly used
for measuring the restoration degree of images, with a higher
value indicating a better performance of the algorithm. To
measure the spatial details of the estimated image, we utilized
the third metric, universal image quality index (UIQI) [31],
which is defined as

UIQI = 4σX X̂μXμX̂(
σ 2

X + σ 2
X̂

) (
μ2

X + μ2
X̂

) (19)



HUANG et al.: SPATIAL AND SPECTRAL IMAGE FUSION USING SPARSE MATRIX FACTORIZATION 1699

Fig. 2. Input images: simulated RGB image (512 × 512 pixels) and some
scenes of the hyperspectral image (16 × 16 pixels).

where σX X̂ is the covariance of the original image X and
the estimated image X̂ ; μX and σX are the mean and variance
of X , respectively; μX̂ and σX̂ are the mean and variance of X̂ ,
respectively. The dynamic range of UIQI is [−1 1], with larger
value indicating a better estimation of the image. The fourth
metric for the simulated data is spectral information divergence
(SID) [32] that measures the spectral similarity between each
actual pixel vector x and its corresponding estimated pixel
vector x̂

SID
(
x, x̂

) =
S∑

s=1

xs log

(
xs

x̂s

)
+

S∑

s=1

x̂s log

(
x̂s

xs

)
(20)

where x and x̂ are normalized vectors and S is the number
of bands of image X . The rule for SID is, the lower the
value, the better the method. For the actual remote sensing
images (i.e., Landsat ETM+ and MODIS in our case), if we
used the original MODIS image (with a spatial resolution of
250 m–1 km) as the ground truth and generated the input
HSaR and HSeR images by aggregating ETM+ and MODIS,
respectively, as in pan-sharpening for result validation, it
would be uncircumventable to extract the endmembers or rep-
resentation atoms and to compare the superiority of algorithms
in improving the spatial resolution. We thus evaluated the
fusion results of actual remote sensing images by using the
spatial correlation coefficient (CC) with the input HSaR image
and the spectral correlation coefficient with the input HSeR
image. It should be noted that the average metric values of all
the bands were used to compare the proposed algorithm with
other algorithms.

A. Experiments With Simulated Data

Our experiments used the spectral image database described
in [33], which provides the reflectance of the materials in the
scene from 400 to 700 nm, at 10-nm intervals (31 bands in
total). Each band of this dataset is stored in 16-bit grayscale
png format, with an image size of 512 × 512 pixels.

To generate a hyperspectral dataset with LSaR, we down-
sampled the 31 bands with a scale factor of 32 (i.e.,
16 × 16 pixels). At the same time, the RGB data with HSaR
and LSeR were simulated by the three bands, 650–660 nm,
520–530 nm, and 440–450 nm, which are the closest of the
31 bands to the RGB spectrum. Some images from these two
simulated dataset are shown in Fig. 2.

To implement our proposed method on the simulated
dataset, we fine-tuned the number of atoms M to 20 and

Reconstructed

-1

-0.5

0

0.5

1

Error images

Actual

400nm 460nm 530nm 600nm 670nm

Fig. 3. Reconstructed results and error images.

TABLE II

EVALUATION RESULT BASED ON SOME QUALITY METRICS

RASE PSNR UIQI SID
Ideal Value 0 +∞ 1 0

CSM 67.36 20.34 0.6666 0.126
L-PCA 11.26 35.31 0.9921 0.232

SaU 27.47 28.13 0.9672 5.994
SASFM 10.95 36.12 0.9926 0.073

generated the following mapping matrix:

F =

⎡

⎢
⎢
⎣

· · ·
· · ·
· · ·

5
︷︸︸︷

0
0
1

· · ·
· · ·
· · ·

13
︷︸︸︷

0
1
0

· · ·
· · ·
· · ·

27
︷︸︸︷

1
0
0

· · ·
· · ·
· · ·

⎤

⎥
⎥
⎦

3×31

.

Five of the reconstructed images generated by our method
and the corresponding error images are shown in Fig. 3.
Comparing the reconstructed images with the actual images,
there seems to be almost no difference. From the error images,
we can find that the reconstruction error is small. Additionally,
it is easy to see that the errors are larger around specular
pixels that change rapidly with respect to the image resolution.
We also compared our algorithm with other representative
algorithms (i.e., CSM, L-PCA, and SaU) using the quality
metrics (i.e., RASE, PSNR, UIQI, and SID) (Table II). For
the SaU method, the window size and the number of classes
were fine-tuned to be 15 and 20, respectively. The comparison
results show that our method is the best on all indices.

B. Experiments With Actual Satellite Data

In this section, we apply our proposed algorithm to the
fusion of Terra/Aqua MODIS and Landsat 7 ETM+ datathat
were acquired on November 17–24, 2001 (composite image)
and November 20, 2001, respectively. Due to the short interval,
they were considered to have the similar acquisition time.
We employed the composite image of the MOD09A1 product
(MODIS surface reflectance 8-day L3 global 500 m) and
Level 1 product. After converting the Level 1 product to
reflectance values by using the MODTRAN5 model, these two
products were registered together geometrically. The Landsat
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(c)

(d)

(a)

(b)

Fig. 4. Left: original ETM+ composite image with bands 3-2-1 as red-green-
blue. Right: two areas of interest. (a)–(d) Four representative pixels used in
Fig. 8.

ETM+ image was radiometrically and atmospherically cor-
rected using the MODIS 6S approach. Then, the MODIS
data were geometrically registered to the Landsat ETM+
data with the coregistration error of three pixels and the
histogram of ETM+ data was matched to that of the MODIS
data. The study region covers an area of 15 × 15 km in
Hong Kong. The Landsat scene with bands 3-2-1 as red-green-
blue composite is shown in Fig. 4 that illustrates our two study
areas.

The MODIS provides 36 bands covering the spectrum of
visible, NIR, 352086318SWIR, MWIR, and TIR with a spatial
resolution of 250 m (1–2 bands), 500 m (3–7 bands), and 1 km
(the other 29 bands). The Landsat ETM+ sensor provides six
multispectral bands, one panchromatic band, and one thermal
infrared band with spatial resolutions of 30, 15, and 60 m,
respectively. To generate data with the spatial resolution of
Landsat and the spectral resolution of MODIS, we fused these
two datasets using the proposed method and compared it with
other representative methods. For processing convenience, all
MODIS bands were upsampled to be 240 m, using bicubic
interpolation; similarly, the panchromatic and thermal Landsat
bands were preprocessed to be 30 m.

For our method, the mapping matrix was computed accord-
ing to the downsampling strategy introduced in Section III-C,
and the number of atoms M was set as 30. For the SaU method,
the window size and the number of classes were fine-tuned to
be 25 and 30, respectively. For our method, we first analyzed
the spectral dictionary extracted from the MODIS image.
Consider the first area of interest in Fig. 4 as an example. The
spectral profiles of 30 normalized dictionary atoms are shown
in Fig. 5(a) with the order from left to right and then from
top to bottom. From Fig. 5(a) we can observe that the spectral
shapes of the atoms from bands 1–15 show a larger variance
compared with bands 16–36. To demonstrate the linear combi-
nation procedure of dictionary atoms during the fusion process,
we take one vegetation pixel in the fused image [see Fig. 5(b)
with NIR-red-green as the R-G-B composite] as an example.
With the corresponding input Landsat pixel in (14), the sparse

Fig. 5. Illustration of (a) spectral dictionary extracted from the MODIS image
(the x-axis represents the spectral wavelength with units of micrometers)
and (b) linear combination procedure of dictionary atoms during the fusion
process.

(c)

(d)

(a)

(b)

Fig. 6. Inputs and fused results of the two areas. (a) and (c) Input images
including Landsat ETM+ (3 out of 8 bands) and MODIS (4 out of 36 bands).
(b) and (d) Fused results. The composite image is bands 2-1-4 as R-G-B.

coefficients with respect to the above spectral dictionary can
be derived by the OMP algorithm. Then, dictionary atoms 1, 6,
7, and 23 are derived with appropriate coefficients to represent
the corresponding Landsat pixel after spectral downsampling
via mapping matrix 	 [see (14)]. Consequently, the fused
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(a)

(b)

Fig. 7. Comparison of fusion results on the two areas of interest. (a) AOI_1. (b) AOI_2. From left to right, the composite images are: the MODIS image
and the fusion results of CSM, L-PCA, SaU, and our method.

TABLE III

COMPARISON OF SPATIAL CCs AND SPECTRAL CCs ON AOI_1 AND AOI_2, RESPECTIVELY (BOLD NUMBERS INDICATE THE BEST RESULTS)

AOI Method
Spatial CC Spectral CC

B2 B1 B4 B1 B5 B10 B21 Mean (36 bands)

AOI_1

CSM 0.6750 0.4684 0.4452 0.8271 0.6055 0.7123 0.5234 0.7283

LPCA 0.3044 0.3738 0.3249 0.1179 0.2138 0.2003 0.1011 0.2204

SaU 0.4586 0.4893 0.5935 0.6649 0.6755 0.6551 0.3360 0.4325

SASFM 0.9163 0.8731 0.9768 0.7288 0.6926 0.5911 0.3521 0.4529

AOI_2

CSM 0.8804 0.0701 0.3041 0.8183 0.7311 0.6223 0.8731 0.7652

LPCA 0.3821 0.5820 0.5792 0.6697 0.4329 0.1031 0.3227 0.4531

SaU 0.1791 0.1485 0.2714 0.7196 0.8148 0.5179 0.7124 0.6231

SASFM 0.8956 0.7994 0.9724 0.7208 0.8227 0.4814 0.6932 0.6345

pixel can be predicted by linearly combining these four atoms
with their coefficients, which are shown in the right part of
Fig. 5(b), via (15). From Fig. 5(b), we can find that the atoms
possessing the major spectral properties of the fused pixels
are assigned larger coefficients automatically by the OMP
algorithm, for example, atoms 1 and 23.

Using the proposed method, the reconstructed bands 1, 5,
10, and 21 are shown in Fig. 6 for the two areas of interest.
Due to space limitations, only the representative bands are
shown here. Band 21 is outside of ETM+’s spectral coverage.
From the comparison of the input Landsat composite image
(the first one in row one and row three) with the fused
composite image (the first one in row two and row four), we
can see that there is almost no difference in either the spatial
or the spectral properties. From the comparison between the
input MODIS bands and the fused bands, we can conclude
that the spatial resolution is greatly improved with almost no
spectral distortion.

The fusion results from our method, CSM, L-PCA, and SaU
are shown in Fig. 7. It can be found that our method is the
best in preserving spatial details. This is mainly because the
spatial features of HSaR data are better preserved by sparsely

representing the spectral signatures with respect to the learned
spectral dictionary. To quantitatively evaluate the fusion result,
the spatial CCs and the spectral CCs were computed for the
fusion result of both methods. Since the spectral information
of the fused image is derived from the MODIS image, the
spectral band profiles of the fused image are consistent with
those of the MODIS image. The spatial CCs were calculated
between the fusion result and the input ETM+ image on their
corresponding bands and the spectral CCs were calculated
between the fused bands and the resampled MODIS bands.
The spatial CCs between bands 2, 1, and 4 of the fusion
result and bands 4, 3, and 2 of the ETM+ image (see Fig. 7)
and the spectral CCs between all the bands of the fusion
result and the resampled MODIS image (see Fig. 6) were
calculated. The comparison of the spatial and spectral CCs
is shown in Table III on both areas of interest (AOI_1 and
AOI_2 as shown in Fig. 4). For spectral CCs, bands 1, 5,
10, and 21 serve as examples, and the mean values of all
the 36 bands are listed for comparisons. It can be found
that our method outperforms other algorithms on preserving
spatial details over all the bands. However, it is weaker than
CSM in preserving spectral information because the CSM



1702 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 3, MARCH 2014

400 570 740
0

2000

4000

6000

8000

10000

Wavelength (nm)

Re
fle

ct
an

ce
 v

al
ue

400 570 740
0

2000

4000

6000

8000

10000

Wavelength (nm)

Re
fle

ct
an

ce
 v

al
ueMODIS

CSM

LPCA

SaU

SASFM

400 570 740
0

2000

4000

6000

8000

10000

Wavelength (nm)

Re
fle

ct
an

ce
 v

al
ue

400 570 740
0

2000

4000

6000

8000

10000

Wavelength (nm)

Re
fle

ct
an

ce
 v

al
ue

(d)(c)(b)(a)

Fig. 8. Comparison of spectral profiles generated using different methods. From left to right, (a) (d) show the spectral profiles of pixels (a) (d) in Fig. 4,
respectively.

method replaces the high frequency part of the MODIS data
directly by that of the ETM+ data in the PCA transform
space. It should be noted that the performed preprocessing
operations might have negatively affected the unmixing data
fusion results of the SaU method. To further evaluate the
performance of our method, we chose four representative
endmembers in the Landsat ETM+ image [see the four points
represented by red dots in Fig. 4(a)–(d)], and then plotted
spectral profiles for the four points between the fused bands
and the input MODIS bands; these are shown in Fig. 8.
Clearly, the spectral profile of our method is closer to that of
MODIS.

V. CONCLUSION

We developed an efficient SASFM based on the sparse
matrix factorization theory. This model is applicable to
the fusion of two categories of remote sensing data: one
category has LSaR, wide spectrum coverage, and HSeR,
and the other category has HSaR, narrow spectrum cov-
erage, and LSeR. Our model generates synthetic images
with the spectral resolution of the first category data and
the spatial resolution of the second category data. Under
two reasonable assumptions, the SASFM learns the spec-
tral dictionary by representing the given LSaR data sparsely
with respect to the dictionary, and then predicts the desired
HSaSeR data by establishing a linear representation rela-
tionship with the given HSaR data. Comparisons with other
methods using both simulated data and actual Landsat/MODIS
data validated the effectiveness and superiority of this
method.

Although the SASFM was used to fuse Landsat 7
ETM+ and MODIS data, it can be applied to other remote
sensing instruments with complementary spatial and spectral
resolutions, such as MERIS and Landsat data. Our method
still has room for improvement. One issue in the spectral
dictionary learning process of our method is that the spectrum
of the HSaR data may not be completely covered by that of
the HSeR data. This may cause spectral distortion in the fused
HSaSeR data. Certainly, when the spectrum of the given HSeR
data has a high level of overlap with that of the given HSaR
data, this problem can be alleviated. Another issue with our
sparse matrix factorization method is that the computational
complexity is relatively high compared with that of other

nonlearning based methods. Future improvements in the
speed of dictionary learning and sparse coding algorithms
and the use of parallel computing are expected to solve
this problem. In addition, the preprocessing of medium
spatial resolution imagery (see [34]) is of importance to
the fusion accuracy. Thus, an analysis of the preprocessing
effects on the fusion results may be our another future
work.
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