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TABLE I
TEN REAL-WORLD DATASETS

TABLE II
MISCLASSIFICATION RATES (%) FOR 500 TRAINING SAMPLES

datasets. The information of these datasets are summarized in
Table I and all these datasets are 2-classes real-world datasets.

For random sampling, we decompose the experiment into
two steps. First, m training samples Drand were generated
randomly from the given dataset Dtr, and then we obtain a
classifier by SVMC with these samples Drand. Then we test it
on the given test set. Second, after the experiment had been
repeated 50 times, the misclassification rates were presented
in Table II. For Markov sampling, we first generate m train-
ing samples Dmar from Dtr by Algorithm 1. Then we obtain
a classifier by SVMC with these samples Dmar, and test it
on the same test set. After the experiment had been repeated
50 times, the misclassification rates were presented in Table II,
where “MR (i.i.d.),” “MR (Markov)” denote the misclassifi-
cation rates of SVMC based on random sampling, Markov
sampling, respectively.

To simplify the experimental process, we take N1 = m in
Algorithm 1 for all of these experiments. In the next section,
we will present some discussions on the experimental results
based on N1 < m. The parameter λ of SVMC is chosen by
the method of fivefold cross-validation.

From Table II, we can find that for 500 training samples,
the standard deviations and means of average misclassification
rates of SVMC based on Markov sampling are smaller than
that of random sampling except Isolet and Gisette. To show
the learning performance of SVMC based on Markov sam-
pling, we present the average misclassification rates of SVMC
based on Markov sampling (Markov) and random sampling
(i.i.d.) for different training sizes and four datasets in Figs. 1–4.
These average misclassification rates are based on 50 times
experimental results.

Fig. 1. Average misclassification rates for Shuttle and m = 500, 1000, 2000,
4000, 8000.

Fig. 2. Average misclassification rates for Letter and m = 500, 1000, 2000,
4000, 5000.

Fig. 3. Average misclassification rates for Isolet and m = 500, 1000, 1500,
2000, 4000.

Fig. 4. Average misclassification rates for Gisette and m = 500, 2000, 4000,
5000, 5500.

To have a better understanding of learning performance of
SVMC based on Markov sampling, we also present the follow-
ing figures to show the 50 times experimental misclassification
rates of SVMC based on Markov sampling.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: GENERALIZATION ABILITY OF SVM CLASSIFICATION BASED ON MARKOV SAMPLING 9

Fig. 5. Fifty times misclassification rates for Shuttle and m = 2000.

Fig. 6. Fifty times misclassification rates for Letter and m = 2000.

Fig. 7. Fifty times misclassification rates for Isolet and m = 2000.

Fig. 8. Fifty times misclassification rates for Gisette and m = 5500.

Figs. 1–8 show that for Shuttle, Letter, Isolet, and Gisette, as
the size of training samples is bigger, the experimental results
of SVMC based on Markov sampling are better than that of
random sampling. For other datasets, since the experimental
results are similar, we do not present all of them here.

Fig. 9. Fifty times misclassification rates for Splice, Gaussian kernel, and
m = 1000.

Fig. 10. Average misclassification rates for Waveform, m = 1200, Shuttle,
m = 1200, Isolet, m = 1600, and N1 = 1150.

V. DISCUSSION

In this section, we present some discussions on the learning
performance of SVMC based on Markov sampling.

A. Nonlinear Prediction Models

For nonlinear prediction models, we consider the case of
Gaussian kernel SVMC with Markov sampling. We present the
following figure to show the learning performance of Gaussian
kernel SVMC with Markov sampling for Splice. The param-
eters λ and σ of Gaussian kernel SVMC are chosen by the
method of fivefold cross-validation.

By Fig. 9, we can find that for Splice and 1000 training
samples, all the 50 times misclassification rates of Gaussian
kernel SVMC based on Markov sampling are better than that
of random sampling. Different from the case of linear predic-
tion models, the experiments of Gaussian kernel SVMC are
very time-consuming, in particular for the dataset with high
input dimension [38], [39].

B. Preliminary Learning Model Based on Smaller Samples

For the case of N1 < m, we present the following figure
(see Fig. 10) to show the learning performance of SVMC with
Markov sampling for Waveform, Shuttle, and Isolet.

C. Sparsity of SVM Classifier

For SVMC, the optimal separating function f (x) reduces to
a linear combination of kernels on the training samples

f (x) =
∑

i

kiyiK(xi, x)+ b. (17)
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TABLE III
AVERAGE NUMBERS OF SUPPORT VECTOR

In (17), the vectors xi that correspond to the nonzero coef-
ficients ki are called to be support vector [1]. If the numbers
of support vector are smaller, then the express (17) is said to
be “more sparse.” In Table III, we present the average num-
bers of support vector of SVM classifier based on Markov
sampling and random sampling for 50 experimental results,
respectively. Here “Abalone-1800” denotes that the number of
support vector is based on Abalone and 1800 training sam-
ples, “SVs(i.i.d.)” and “SVs(Markov)” denote the numbers of
support vector for random sampling and Markov sampling,
respectively.

By Table III, we can find that as the size of dataset is bigger
with regard to the input dimension of data (e.g., Shuttle, Splice,
Abalone, Magic, Letter, Waveform, and Isolet), the classifiers
based on Markov sampling are more sparse than the classifier
based on random sampling.

D. Explanation of Learning Performance

We interpret the learning performance of SVMC based on
Markov sampling as follows. First, in the process of Markov
sampling, the candidate sample z∗ is accepted with different
probabilities. While for random sampling, all the candidate
samples are accepted with probability 1. Second, by these tran-
sition probabilities defined in Step 5 of Algorithm 1, we can
find that the samples that have the same or similar property
with respect to the loss function �(f , z) will be accepted with
another probability P′, which implies that the Markov chain
samples are different or representative compared to random
sampling. For these reasons, as the size of training sam-
ples is large, after many times transitions, the samples that
closer (or closest) to the interface of two classes data will
be sampled and be accepted with high probabilities. By the
theory of statistical learning theory, the samples that closest
to the interface of two classes data are the support vectors,
which are the most “important” samples for classification
problem [22]. Therefore, the learning performance of SVMC
based on Markov sampling is better than that of random sam-
pling, and the classifier based on Markov sampling is more
sparse compared to random sampling as the size of training
samples is bigger.

VI. CONCLUSION

To study the generalization performance of SVMC based
on u.e.M.c. samples, inspired by the idea from [18], in this

paper, we first establish two new concentration inequalities
for u.e.M.c. samples, then we analyze the excess misclassifi-
cation error of SVMC with u.e.M.c. samples, and obtain the
optimal learning rate for SVMC with u.e.M.c. samples. These
results extend the classical results of SVMC based on i.i.d.
samples to the case of u.e.M.c. samples. In addition, in this
paper, we also introduced a new Markov sampling algorithm
to generate u.e.M.c. samples from given dataset. The numer-
ical studies show that as the number of training samples is
large, the learning performance of SVMC based on Markov
sampling is better than that of random sampling, and the SVM
classifier based on Markov sampling is more sparse compared
to that of random sampling as the size of training samples is
bigger with regard to the dimension of data. To our knowledge,
these studies here are the first works on this paper.

Along the line of the present work, several open problems
deserves further research. For example, studying the gener-
alization performance of online learning based on Markov
sampling and studying the Markov sampling algorithm for
regression problems with nonlinear prediction models. All
these problems are under our current investigation.
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