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Abstract—The previously known works studying the
generalization ability of support vector machine classifica-
tion (SVMC) algorithm are usually based on the assumption of
independent and identically distributed samples. In this paper,
we go far beyond this classical framework by studying the
generalization ability of SVMC based on uniformly ergodic
Markov chain (u.e.M.c.) samples. We analyze the excess
misclassification error of SVMC based on u.e.M.c. samples, and
obtain the optimal learning rate of SVMC for u.e.M.c. samples.
We also introduce a new Markov sampling algorithm for SVMC
to generate u.e.M.c. samples from given dataset, and present the
numerical studies on the learning performance of SVMC based
on Markov sampling for benchmark datasets. The numerical
studies show that the SVMC based on Markov sampling not
only has better generalization ability as the number of training
samples are bigger, but also the classifiers based on Markov
sampling are sparsity when the size of dataset is bigger with
regard to the input dimension.

Index Terms—Generalization ability, learning rate, Markov
sampling, support vector machine classification (SVMC).

I. INTRODUCTION

SUPPORT vector machine (SVM) is one of the most widely
used machine learning algorithms for classification prob-

lems [1]–[3], in particular for classifying high-dimensional
data. Besides their good performance in practical applications,
they also enjoy a good theoretical justification in terms of
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both universal consistency [4]–[6] and learning rates [6]–[9],
if the training samples come from an independent and iden-
tically distributed (i.i.d.) process. However, independence is a
very restrictive concept [10]. First, it is often an assumption,
rather than a deduction on the basis of observations. Second,
it is an all or nothing property, in the sense that two ran-
dom variables are either independent or they are not—the
definition does not permit an intermediate notion of being
nearly independent. As a result, many of the proofs based
on the assumption that the underlying stochastic sequence is
i.i.d. are rather “fragile.” In addition, this i.i.d. assumption
can not be strictly justified in real-world problems, and many
machine learning applications such as market prediction, sys-
tem diagnosis, and speech recognition are inherently temporal
in nature, and consequently not i.i.d. processes [10], [11].
Therefore, relaxations of such i.i.d. assumption have been con-
sidered for quite a while in both machine learning and statistics
literatures. For example, Yu [12] considered the convergence
rates of empirical processes for stationary mixing sequences.
Vidyasagar [11] studied the notions of mixing and proved that
most of the desirable properties (e.g., PAC or UCEMUP) of
i.i.d. sequence are preserved when the underlying sequence is
mixing sequence. Mohri and Rostamizadeh [13] studied the
generalization bounds of stable learning algorithms for non-
i.i.d. processes. Smale and Zhou [14] established the learning
rates of online learning algorithm with Markov chain samples.
Steinwart et al. [10] proved that the SVM for both classifica-
tion and regression are consistent only if the data-generating
process satisfies a certain type of law of large numbers (e.g.,
WLLNE, SLLNE). Zou et al. [15] studied the generalization
bounds of empirical risk minimization (ERM) algorithm with
strongly mixing observations. Zhang and Tao [16] studied the
generalization bounds of ERM-based learning processes for
continuous time Markov chains.

There are many dependent sampling mechanisms (e.g.,
α-mixing, β-mixing and φ-mixing) studied in machine learn-
ing literatures [10]–[13]. In this paper, we focus only on
an analysis in the case when the input samples are Markov
chains, the reasons are as follows. First, in real-world prob-
lems, Markov chain samples appear so often and naturally
in applications, such as biological (DNA or protein) sequence
analysis, content-based web search, marking prediction, and so
on. Second, many empirical evidences [17] show that learn-
ing algorithms very often perform well with Markov chain
samples (e.g., biological sequence analysis, speech recogni-
tion). Why it is so, however, has been unknown (particularly,
it is unknown how well it performs in terms of learning rate
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and generalization). Inspired by the idea from [18], in this
paper, we first establish two new concentration inequalities
for uniformly ergodic Markov chain (u.e.M.c.), and then we
establish the optimal learning rate of support vector machine
classification (SVMC) for u.e.M.c. samples. In addition, learn-
ing from large data is very time-consuming, we usually sample
randomly a part of samples from the large dataset and learn
from these samples. Then a problem is posed: how to sam-
ple a part of samples from the large dataset such that SVMC
has better generalization ability? Inspired by the idea from
Markov chain Monto Carlo (MCMC) methods [19], we intro-
duce a new Markov sampling algorithm for SVMC to generate
u.e.M.c. samples from given dataset. The numerical studies of
real-world datasets show that the SVMC based on Markov
sampling not only have better learning performance, but also
the classifiers are sparsity as the size of data is bigger with
regard to the dimension of data.

This paper is organized as follows. In Section II, we
introduce some notions and notations used in this paper. In
Section III, we present the main results on the learning rates
of SVMC with u.e.M.c. samples, and prove our main results.
In Section IV, we introduce a new Markov sampling algo-
rithm, and present the numerical studies on the generalization
performance of SVMC based on Markov sampling for bench-
mark datasets. In Section V, we give some useful discussions.
Finally, we conclude this paper in Section VI.

II. PRELIMINARIES

In this section, we introduce the definitions and notations
used throughout the paper.

A. SVMC Algorithm

Let (X , d) be a compact metric space and Y = {−1, 1}.
A binary classifier is a function f̂ : X → Y which labels
every point x ∈ X with some y ∈ Y . Let ψ be a probability
distribution on Z = X × Y and (X,Y) be the corresponding
random variable. The misclassification error for a classifier
f̂ : X → Y is defined to be the probability of the event
{ f̂ (X) �= Y}, that is, R( f̂ ) = Pr{ f̂ (X) �= Y}. The SVM
classifier [1] is constructed from samples and depends on a
reproducing kernel Hilbert space (RKHS) associated with a
Mercer kernel [21]. Let K : X × X → R be continuous,
symmetric, and positive semidefinite, i.e., for any finite set
of distinct points {xi}l

i=1 ⊂ X , the matrix (K(xi, xj))
l
i,j=1 is

positive semidefinite. Such a function is called a Mercer ker-
nel. The RKHS HK associated with the kernel K is defined
to be the closure of the linear span of the set of functions
{Kx = K(x, ·) : x ∈ X } with the inner product 〈·, ·〉HK = 〈·, ·〉K

satisfying 〈Kxi ,Kxj〉K = K(xi, xj)〈∑
i

αiKxi ,
∑

j

βjKxj

〉
K

=
∑
i,j

αiβjK
(
xi, xj

)
.

The reproducing property takes the form 〈Kx, f 〉K = f (x),
∀x ∈ X ,∀f ∈ HK [22].

Denote C(X ) as the space of continuous functions on
X with the norm || f ||∞ = supx∈X |f (x)|. Let κ =
supx∈X

√
K(x, x), then the above reproducing property tells us

that || f ||∞ ≤ κ|| f ||K, ∀f ∈ HK . For a function f : X → R,
the sign function is defined as sgn( f )(x) = 1 if f (x) ≥ 0 and
sgn( f )(x) = −1 if f (x) < 0. Then the SVM classifier associ-
ated with the Mercer kernel K is defined as sgn(fS), where fS is
a minimizer of the following optimization problem involving
a set of random sample S = {zi}m

i=1 ∈ Zm:

fS = arg minf ∈HK
1
2 || f ||2K + C

m

∑m
i=1 ξi (1)

s.t. yi f (xi) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ m

where C is a constant which depends on m: C = C(m) and
often limm→∞ C(m) = ∞ [6], [8].

We can rewrite algorithm (1) as a regularization scheme as
follows [22]. Define the loss function �(f , z) as

�( f , z) = (1 − f (x)y)+ =
{

0, f (x)y > 1
1 − f (x)y, f (x)y ≤ 1.

The corresponding generalization error is E( f ) =
E[�(f , z)]. If we define the empirical error as Em( f ) =
(1/m)

∑m
i=1 �(f , zi), then algorithm (1) can be written as

fS = arg min
f ∈HK

{
Em( f )+ λ|| f ||2K

}
. (2)

Here λ = 1/(2C) is the regularization parameter [22].
To measure the generalization ability of algorithm (2), we

should bound how sgn(fS) converges (with respect to the mis-
classification error) to the best classifier, the Bayes rule, as m
and, hence, C(m) tend to infinity. Recall the regression func-
tion of ψ , fψ(x) = ∫Y ydψ(y|x), x ∈ X . Then the Bayes rule
is given by the sign of the regression function fc = sgn(fψ).

Differ from the previously known works on the generaliza-
tion ability of SVMC in [5] and [8], in this paper, our aim is
to bound the generalization ability of SVMC algorithm (2) for
u.e.M.c. sample S.

B. u.e.M.cs

Suppose (Z,S) is a measurable space, a Markov chain is
a sequence of random variables {Zt}t≥1 together with a set of
transition probability measures Prn(A|zi), A ∈ S, zi ∈ Z . It is
assumed that

Prn (A|zi) := Pr
{
Zn+i ∈ A|Zj, j < i,Zi = zi

}
.

Thus, Prn(A|zi) denotes the probability that the state zn+i

will belong to the set A after n time steps, starting from the
initial state zi at time i. The fact that the transition probabil-
ity does not depend on the values of Zj prior to time i is the
Markov property, that is Prn(A|zi) = Pr{Zn+i ∈ A|Zi = zi}.
This is expressed in words as “given the present state, the
future and past states are independent.” Given two proba-
bilities ν1, ν2 on the measure space (Z,S), we define the
total variation distance between the two measures ν1, ν2 as
||ν1 − ν2||TV = supA∈S |ν1(A) − ν2(A)|. Thus, we have the
following definition of u.e.M.c. [11].

Definition 1: A Markov chain {Zt}t≥1 is said to be uni-
formly ergodic if for some 0 < γ0 < ∞ and 0 < ρ0 < 1

||Prk(·|z)− π(·)||TV ≤ γ0ρ
k
0,∀k ≥ 1, k ∈ N

where π(·) is the stationary distribution of {Zt}t≥ 1.
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Meyn and Tweedie [23] proved that the k-step transition
probability measures Prk(·|·) of u.e.M.c. satisfy the following
Doeblin condition [24].

Proposition 1 (Doeblin Condition): Let {Zt}t≥1 be a
Markov chain with transition probability measure Prk(·|·),
and let μ be some nonnegative measure with nonzero mass
μ0. If there is some integer t such that for all z in Z , and all
measurable sets A, Prt(A|z) ≤ μ(A), then for any integer k
and for any z, z′ in Z∥∥∥Prk(·|z)− Prk (·|z′)∥∥∥

TV
≤ 2βk/t

1 (3)

where β1 = 1 − μ0.

III. ESTIMATING LEARNING RATES

To bound the generalization ability of SVMC algorithm
(2), we should estimate the excess misclassification error
R(sgn(fS))− R(fc). Since the minimization (2) is taken over
the discrete quantity Em( f ), we have to regulate the capac-
ity of the function set. Here the capacity is measured by the
covering number [25], [26].

Definition 2: For a subset F of a metric space and ε > 0,
the covering number N (F , ε) of the function set F is the
minimal n ∈ N such that there exist n disks in F with radius
ε covering F .

For R > 0, let BR = {f ∈ HK : || f ||K ≤ R}. It is a subset of
C(X) and the covering number is well defined [26]. We denote
the covering number of B1 as N (ε) = N (B1, ε), ε > 0.

Definition 3 [8]: The RKHS is said to have polynomial
complexity exponent s > 0 if there is some Cs > 0 such that
lnN (ε) ≤ Cs(1/ε)s, ∀ε > 0.

Remark 1: The covering number N (ε) has been exten-
sively studied, please see [27]–[29]. It was shown in [28] that
Definition 3 holds if K is C2n/s on a subset X of R

n. In par-
ticular, for a C∞ kernel (such as Gaussians), Definition 3 is
valid for any s > 0 [28].

Zhang [4] established the relation between excess misclas-
sification error and excess generalization error E( f ) − E(fψ)
for convex loss, that is

R(sgn( f ))− R(fc) ≤ E( f )− E(fψ), f : X → R. (4)

For the excess generalization error E( f ) − E(fψ), we have
the following error decomposition [8].

Proposition 2: Let fS be defined as (2) and fλ =
arg minf ∈HK

{E( f )+ λ|| f ||2K
}
. Then we have

E(fS)− E(fψ) ≤ E(fS)− E(fψ)+ λ||fS||2K
≤ {E(fS)− Em(fS)+ Em(fλ)− E(fλ)} + D(λ) (5)

where D(λ) = E(fλ)− E(fψ)+ λ||fλ||2K .
In Proposition 2, we decompose the excess generalization

error into two parts. The first term on the right-hand side of
(5) is called the sample error, which can be written as{

Eζ1 − 1

m

m∑
i=1

ζ1(zi)

}
+
{

1

m

m∑
i=1

ζ2(zi)− Eζ2

}
(6)

where ζ1 = �(fS, z) − �(fψ, z), ζ2 = �(fλ, z) − �(fψ, z). The
second term D(λ) is called the regularization error, which

is dependent on the choice of function space. The regular-
ization error has been well understood in learning theory
(see [8], [30]).

Definition 4: We say the function fψ can be approximated
by HK with exponent 0 < β ≤ 1 if there exists a constant Cβ
such that for any λ > 0, D(λ) ≤ Cβλβ.

In this paper, we assume that there is a constant B such that
|fψ | ≤ B (see [9], [30]).

A. Main Results

Our main results are stated as follows.
Theorem 1: Let {zi}m

i=1 be a u.e.M.c. sample, and R ≥ B.
Then for any 0 < δ < 1, the inequality

E(fS)− E(fψ)+ 2λ||fS||2K ≤ 3D(λ)+ 2R · ε(m, δ)
+ 112 ln(2/δ)||�0||2

(√
D(λ)/λ+ B

)
m

holds true with probability at least 1 − δ, where ε(m, δ) ≤
max{m1,m2}, ||�0|| = √

2/(1 − β
1/2t
1 )

m1 = 112(κ + 1) ln(2/δ)||�0||2
m

m2 =
[

112Cs(κ + 1)||�0||2
m

] 1
1+s

β1 and t are defined as that in Proposition 1.
For all λ > 0, by the definition of fS, we have

λ||fS||2K ≤ Em(fS)+ λ||fS||2K ≤ Em(0)+ 0 ≤ 1.

It follows that ||fS||K ≤ 1/
√
λ for almost all S ∈ Zm. Thus,

by Theorem 1, we have
Corollary 1: Let {zi}m

i=1 be a u.e.M.c. sample. Then for any
0 < δ < 1 and 0 < λ ≤ 1/B2, the inequality

R(sgn( f ))− R(fc) ≤ 2√
λ

(
112Cs(κ + 1)||�0||2

m

) 1
1+s

+ 112 ln(2/δ)||�0||2
(√

D(λ)/λ+ B
)

m
+ 3D(λ)

is valid with probability at least 1 − δ provided that m ≥
112(κ + 1)||�0||2 ln(2/δ)

(
ln(2/δ)/Cs

)1/s.
The learning rate in weak form can be obtained from

Corollary 1. We improve the error estimate stated in
Corollary 1 by using the iteration technique, which was intro-
duced in [31] and improved in [9] and [32]. Our main result
can be stated as the following theorem.

Theorem 2: Let {zi}m
i=1 be a u.e.M.c. sample. Taking

λ = (1/m)ϑ . For any ε > 0 and 0 < δ < 1, there exists a
constant Ĉ independent of m such that

R(sgn(fS))− R(fc) ≤ Ĉ

(
1

m

)θ
holds true with probability at least 1 − δ provided m ≥
112(κ + 1)||�0||2 ln(1/δ)

(
ln(1/δ)/Cs

)1/s, where

ϑ = min

{
2

β + 1
,

2

(1 + β)(1 + s)

}

θ = min

{
2β

β + 1
,

2β

(1 + β)(1 + s)
− ε

}
.
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Remark 2: To have a better understanding of the signif-
icance and value of the established result in Theorem 2,
we compare Theorem 2 with the previously known results.

1) By Theorem 2, we can find that for β = 1, θ > (1/2) (up
to a ε). In particular, when β = 1, s → 0, θ is arbitrarily
close to 1. This implies that the learning rate in Theorem 2
is arbitrarily close m−1. Compared the learning rate in
Theorem 2 with that of i.i.d. samples in [8], [32], and [33],
we can find that this learning rate is same as that obtained
in [8], [32], and [33] for i.i.d. setting.

2) For non-i.i.d. setting, Steinwart and Christmann [7]
established the fast learning rate [7, eq. (2)] of least
squares SVM algorithm for exponentially strongly
mixing. The rate in [7] is same as that known in the i.i.d.
case (see [8], [32], [33]). Xu and Chen [35] obtained
the same learning rate as that in [7] for least square
regularized regression with exponentially strongly mix-
ing sequence. These rates are optimal for exponentially
strongly mixing sequence under the framework of sta-
tistical learning theory. Different from [7] and [35],
in this paper, we consider different non-i.i.d. setting,
u.e.M.c., and established the same learning rate as that
in [7] and [35], which implies that the learning rate
obtained in this paper is optimal for Markov chain set-
ting under the framework of statistical learning theory.
To our knowledge, the result obtained in Theorem 2 is
the first work in this paper.

B. Main Tools

To prove the main results, our main tools are the follow-
ing four lemmas. Lemmas 1 and 2 are due to Samson [18].
Inspired by the idea from [18], we establish two new concen-
tration inequalities in Lemmas 3 and 4.

To measure the dependence between random variables
Z1, . . . ,Zm, Marton [20] introduced the triangular matrix
� = (γ

j
i )1≤i,j≤m. Namely, let (Z1, . . . ,Zm) be a sample of

real-valued random variables defined on the probability space
Z . We assume that the random variables Z1, . . . ,Zm are taken
out of a sequence {Zt}t∈Z which is not independent. For i ≥ j,
γ

j
i = 0 if i > j and γ j

i = 1 if i = j. For 1 ≤ i < j ≤ m,
let Zj

i represent the random variables (Zi, . . . ,Zj), and let
L(Zn

j |Zi−1
1 = zi−1

1 ,Zi = zi) denote the law of Zm
j conditionally

to Zi−1
1 = zi−1

1 and Zi = zi. For every 1 ≤ i < j ≤ m and for
z1, . . . , zi, z′

i in Z , let

aj

(
zi−1

1 , zi, z′
i

)
= ||L

(
Zn

j |Zi−1
1 = zi−1

1 ,Zi = z′
i

)
− L

(
Zn

j |Zi−1
1 = zi−1

1 ,Zi = zi

)
||TV .

Then for 1 ≤ i < j ≤ m, γ j
i is defined as(

γ
j
i

)2 = sup
zi,z′i∈Z

sup
zi−1
1 ∈Z i−1

aj

(
zi−1

1 , zi, z′
i

)
.

In particular, if Z1, . . . ,Zm is a Markov chain, by the
Markov property, the coefficient (γ j

i )
2 take a simpler form.

That is, for 1 ≤ i < j ≤ m(
γ

j
i

)2 = sup
zi,z′i∈Z

||L
(

Zj|Zi = zi

)
− L

(
Zj|Zi = z′

i

)
||TV .

Let P denote the law of the sample (Z1, . . . ,Zm) on Zm.
For two measures of probability Q and R on Zm, let M(Q,R)
denote the set of all probability measures on Zm × Zm with
marginals Q and R. Let ||�|| be the usual operator norm of
the matrix � with respect to the Euclidean topology [18]. For
every function g on Zm, the entropy functional is defined as

EntP
(

g2
)

=
∫

g2 log g2dP −
∫

g2dP log
∫

g2dP.

By ||�|| and the entropy functional, Samson [18] established
the bound of d2(Q,R)

d2(Q,R) = inf
�∈M(Q,R)

(∫ n∑
i=1

Pr2(Zi �= z′
i)|Z′

i = z′
i)

) 1
2

.

Lemma 1 (Theorem 1 in [18]): For every probability mea-
sure Q on Zm with Radon–Nikodym derivative dQ/dP with
respect to the measure P

d2(Q,P) = d2(P,Q) ≤ ||�||
√

2EntP

(
dQ

dP

)
.

By Proposition 1, Samson [18] established the bound of
||�|| for u.e.M.c. samples, please see inequality (2.5).

Lemma 2: For u.e.M.c. sample Z1, . . . ,Zm, we have ||�|| ≤√
2/(1 − β

1/2t
1 ), where β1 and t are defined as that in

Proposition 1.
Lemma 3: Let F be a countable class of bounded measur-

able functions, and Z1, . . . ,Zm be a u.e.M.c. sample. Assume
that 0 ≤ g(z) ≤ C for any g ∈ F and for any z ∈ Z . Then for
any ε > 0 (||�0|| = √

2/(1 − β
1/2t
1 ))

Pr

{∣∣∣∣∣ 1

m

m∑
i=1

g(zi)− E(g)

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

{ −mε2

56C||�0||2E(g)

}
.

Proof: Let ξ = (z1, . . . , zm) and ζ = (z′
1, . . . , z′

m). For any
g ∈ F , we define f (ξ) =∑m

i=1 g(zi), f (ζ ) =∑m
i=1 g(z′

i). Then
we have

f (ξ)− f (ζ ) =
m∑

i=1

(
g(zi)− g

(
z′

i

))

≤
m∑

i=1

g(zi)1zi �=z′i +
m∑

i=1

g
(
z′

i

)
1zi �=z′i . (7)

Let Q be a probability measure on Zm with density h with
respect to P. For every measure � on Zm×Zm with marginals
Q and P, that is, � ∈ M(Q,P). Therefore, by inequality (7),
we have

I :=
∫

f (ξ)dQ −
∫

f (ζ )dP

=
∫ ∫

(f (ξ)− f (ζ ))d�(ξ, ζ )

≤
∫ ∫ m∑

i=1

g(zi)1zi �=z′i d�(ξ, ζ )

+
∫ ∫ m∑

i=1

g(z′
i)1zi �=z′i d�(ξ, ζ ).
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Integrating with respect to the variable ξ and using the
Cauchy–Schwarz inequality, we have

I ≤
(∫ m∑

i=1

g2(z′
i)dQ

) 1
2

×
(∫ m∑

i=1

Pr2(Zi �= z′
i|Z′

i = z′
i)dQ

) 1
2

+
(∫ m∑

i=1

g2(zi)dP

) 1
2

×
(∫ m∑

i=1

Pr2(Z′
i �= zi|Zi = zi)dP

) 1
2

. (8)

Let V1 =∑m
i=1 g2(zi), V2 =∑m

i=1 g2(z′
i). By Lemma 1, we

have(∫ m∑
i=1

Pr2(Zi �= z′
i|Z′

i = z′
i)dQ

) 1
2

≤ ||�||
√

2EntP

(
dQ

dP

)
(∫ m∑

i=1

Pr2(Z′
i �= zi|Zi = zi)dP

) 1
2

≤ ||�||
√

2EntP

(
dQ

dP

)
.

By inequality (8), we have

I ≤
√

2||�||2EQ(V1)EntP

(
dQ

dP

)

+
√

2||�||2EP(V2)EntP

(
dQ

dP

)
. (9)

We then use the following variational equality:√
2||�||2EQ(V1)EntP

(
dQ

dP

)

= inf
τ>0

(
τ ||�||2EQ(V1)

2
+ 1

τ
EntP

(
dQ

dP

))
.

Thus, we have that for any τ > 0

I ≤ τ ||�||2
2

(
EQ(V1)+ EP(V2)

)+ 2

τ
EntP(h).

It follows that:∫ [
τ

2
(f − EP( f ))− τ 2||�||2

4
(V1 + EP(V2))

]
hdP

≤ EntP(h). (10)

Taking h = el/(EP(el)), where l = (τ/2)(f − EP( f )) −
(τ 2||�||2/4)(V1 + EP(V2)), we have that for any τ > 0∫

exp

[
τ

2
(f − EP( f ))− τ 2||�||2

4
(V1 + EP(V2))

]
dP ≤ 1.

It follows that:∫
exp

[
τ(f − EP( f ))

2
− τ 2||�||2V1

4

]
dP

≤ exp

{
τ 2||�||2E(V2)

4

}
.

By Cauchy–Schwarz inequality, we have∫
exp
[τ

4
(f − EP( f ))

]
dP

≤ exp

{
τ 2||�||2E(V1)

8

}(∫
exp

(
τ 2||�||2V2

4

)
dP

) 1
2

.

Since V1 ≤ Cf , by the above inequality, we have∫
exp

(
τ 2||�||2

4
V2

)
dP ≤ exp

{
3τ 2||�||2CE( f )

4

}
.

It follows that:∫
exp
[τ

4
(f − EP( f ))

]
dP ≤ exp

{
7τ 2||�||2CE( f )

8

}
.

By Markov’s inequality, we have that for any ε > 0

Pr{ f − E( f ) ≥ ε} = Pr{e τ4 (f −E( f )) ≥ e
τ
4 ε}

≤ exp

{
7τ 2||�||2CE( f )

8
− τ

4
ε

}
.

Taking τ = (ε/(7C||�||2E( f ))), we have that for any ε > 0

Pr{f − E( f ) ≥ ε} ≤ exp

{ −ε2

56C||�||2E( f )

}
. (11)

By symmetry and replacing ε, ||�|| by mε, ||�0|| in
inequality (11), we complete the proof of Lemma 3.

Lemma 4: With all notations as that in Lemma 3, then for
any ε > 0

Pr

{
sup
g∈F

1
m

∑m
i=1 g(zi)− E(g)√

E(g)+ ε
≥ 4

√
ε

}

≤ N (F , ε) exp

{ −εm
56C||�0||2

}
.

Proof: By Lemma 3, we have that for any ε > 0

Pr

{
E(g)− 1

m

∑m
i=1 g(zi)√

E(g)+ ε
≥ √

ε

}
≤ exp

{ −εm
56C||�0||2

}
.

Let {gj}n1
j=1 ⊂ F with n1 = N (F , ε) such that F is covered

by balls Dj = {g ∈ F : ||g − gj||∞ ≤ ε} centered at gj with
radius ε. Then for any j, we have

Pr

{
E(gj)− 1

m

∑m
i=1 gj(zi)√

E(gj)+ ε
≥ √

ε

}
≤ exp

{ −εm
56C||�0||2

}
.

For any g ∈ F , there is some j such that ||g − gj||∞ ≤ ε.
This implies that |E(g)− E(gj)| ≤ ||g − gj||∞ ≤ ε, and∣∣∣∣∣ 1

m

m∑
i=1

g(zi)− 1

m

m∑
i=1

gj(zi)

∣∣∣∣∣ ≤ ||g − gj||∞ ≤ ε.

It follows that E(g)− E(gj)/
√

E(g)+ ε ≤ √
ε and:

| 1
m

∑m
i=1 g(zi)− 1

m

∑m
i=1 gj(zi)|√

E(g)+ ε
≤ √

ε.
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The second inequality above implies that
√

E(gj)+ ε <

2
√

E(g)+ ε. Therefore, we have

Pr

{
sup
g∈F

E(g)− 1
m

∑m
i=1 g(zi)√

E(g)+ ε
≥ 4

√
ε

}

≤
n1∑

j=1

Pr

{
E(gj)− Em(gj)√E(gj)+ ε

≥ √
ε

}

≤ N (F , ε) exp

{ −εm
56C||�0||2

}
.

Lemma 5 [36]: Let c1, c2 > 0, and p1 > p2 > 0. Then the
equation xp1 − c1xp2 − c2 = 0 has a unique positive zero x∗.
In addition, x∗ ≤ max{(2c1)

1/(p1−p2), (2c2)
(1/p1)}.

C. Proofs of Main Results

Now we give the proofs of our main results as follows.
Proof of Theorem 1: We decompose the proof of Theorem 1

into two steps.
Step 1: Estimate the second term of the sample error:

(1/m)
∑m

i=1 ζ2(zi)− Eζ2. By the definition of D(λ)

λ||fλ||2K ≤ E(fλ)− E(fψ)+ λ||fλ||2K = D(λ).

It follows that ||fλ||K ≤ √
D(λ)/λ. By our assumption,

|fψ | ≤ B, we have

|ζ2| := |(1 − yfλ(x))+ − (1 − yfψ)+| ≤ d := √
D(λ)/λ+ B.

By Lemma 3, we have that for any ε > 0

Pr

{
1
m

∑m
i=1 ζ2(zi)− E(ζ2)

E(ζ2)+ ε
≥ √

ε

}
≤ exp

{ −εm
56||�0||2d

}
.

Then for any 0 < δ < 1, with probability at least 1 − δ, the
following inequality is valid:

1

m

m∑
i=1

ζ2(zi)− E(ζ2) ≤ 1

2
D(λ)+ 56 ln(1/δ)d||�0||2

m
.

Step 2: Estimate the first term of the sample error:
Eζ1 − (1/m)

∑m
i=1 ζ1(zi) := S1. For R > 0, let FR =

{(1 − yf (x))+ − (1 − yfψ(x))+, f ∈ BR} and g =
(1 − yf (x))+ − (1 − yfψ(x))+. We have E(g) = E( f ) −
E(fψ) ≥ 0, (1/m)

∑m
i=1 g(zi) = Em( f ) − Em(fψ). For any

f ∈ BR, we have || f ||∞ ≤ κ|| f ||K ≤ κR. By the assumption
|fψ | ≤ B, we have |g(z)| ≤ κR + B := b. By Lemma 4, we
have that for any ε > 0

Pr

{
sup

f ∈BR

E ′( f )− E ′(fψ)√E( f )− E(fψ)+ ε
≥ √

ε

}

= Pr

{
sup

g∈FR

E(g)− 1
m

∑m
i=1 g(zi)√

E(g)+ ε
≥ √

ε

}

≤ N (FR, ε) exp

{
εm

56b||�0||2
}

(12)

where E ′( f ) = E( f ) − Em( f ). Since for any g1, g2 ∈ FR,
|g1(x)−g2(x)| ≤ ||f1 − f2||∞, by inequality (12), we have that

for any ε > 0

Pr

{
sup

f ∈BR

E ′( f )− E ′(fψ)√E( f )− E(fψ)+ ε
≥ √

ε

}

≤ N
( ε

R

)
exp

{
εm

56||�0||2(κR + B)

}
.

It follows that for fS that minimizes the regularized empirical
error (2) over BR:

Pr

{
E ′(fS)− E ′(fψ)√E(fS)− E(fψ)+ ε

≥ √
ε

}

≤ N
( ε

R

)
exp

{
εm

56||�0||2(κR + B)

}
. (13)

Set the right-hand side of inequality (13) to the same value
δ above. By Definition 3, we have

exp

{
Cs

(
R

ε

)s

− εm

56||�0||2(κR + B)

}
= δ.

It follows that:

ε1+s − 56(κR + B) ln(1/δ)||�0||2
m

· εs

− 56Cs(κR + B)Rs||�0||2
m

= 0.

By Lemma 5, we can solve this equation with respect
to ε := ε′(m, δ). The solution is then given by ε′(m, δ) ≤
max {m̃, m̂}, where

m̃ = 112(κR + B) ln(1/δ)||�0||2
m

m̂ =
[

112Cs(κR + B)Rs||�0||2
m

] 1
1+s

.

Using the fact that
√
ε
√E( f )+ ε ≤ (1/2)E( f ) + ε and

inequality (13), we have that with probability at least 1 − δ,
the following inequality is valid:

S1 = E(fS)− E(fψ)− [Em(fS)− Em(fψ)
]

≤ 1

2

[E(fS)− E(fψ)
]+ ε′(m, δ).

Thus, we have that for any 0 < δ < 1, with probability at
least 1 − 2δ the inequality

E(fS)− E(fψ)+ 2λ||fS||2K ≤ 3D(λ)+ 2ε′(m, δ)

+ 112 ln(1/δ)||�0||2
(√

D(λ)/λ+ B
)

m
(14)

is valid. Replacing δ by δ/2 in inequality (14), we complete
the proof of Theorem 1. �

Proof of Theorem 2: By Theorem 1, we have that for any
0 < δ < 1, the inequality

� := E(fS)− E(fψ)+ 2λ||fS||2K
≤ 112 ln(2/δ)||�0||2

(√
D(λ)/λ+ B

)
m

+ 3D(λ)+ 2R ·
[

112Cs(κ + 1)||�0||2
m

] 1
1+s

(15)
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is valid with probability at least 1 − δ provided that m ≥
112(κ + 1)||�0||2 ln(2/δ) (ln(2/δ)/Cs)

1/s.
Denote W(R) = {S ∈ Zm : ||fS||K ≤ R}. Taking λ =

(1/m)ϑ , we easily check that

1

m
λ
β−1

2 ≤ λβ, λ
1

ϑ(s+1) ≤ λ
β+1

2 .

By inequality (15), we have that there is a set VR ⊆ Zm

with measure at most δ such that for any S ∈ W(R)\VR

� ≤ λβ
{

2C1 + C1Rλ
1−β

2

}
(16)

where C1 > 1 is a constant independent of m. By using (16)
iteratively, we can find a small ball BR such that it contains fS
with high confidence. Start with R = R(0) = 1/

√
λ, by (16),

we have Zm = W(R(0)) ⊆ W(R(1)) ∪ VR(0) , where R(1) ≤
λ(β−1)/2{2C1 + C1λ

−β/4}.
By inequality (16), for j = 2, 3, . . . , we iteratively derive

Zm = W
(

R(0)
)

⊆ W
(

R(1)
)

∪ VR(0)

⊆ · · · ⊆ W
(

R(j)
)

∪
⎛
⎝ j−1⋃

k=0

VR(k)

⎞
⎠

where each VR(j) has measure at most δ and R(j) is given by
R(j) ≤ λ(β−1)/2{2jC1 + C1λ

−(β/2)(1/2)j}. For ε > 0, choose
J ∈ N such that (1/2)J+1 ≤ ε · (1 + β)(1 + s)/(2β). Thus,
we have that for S ∈ W(R(J)) ||fS||K ≤ λ(β−1)/2{2JC1 +
C1λ

−(β/2)(1/2)J }. This together with inequality (16) gives

E(fS)− E(fψ) ≤ � ≤ Ĉ

(
1

m

)θ
, ∀S ∈ W

(
R(J)
)

\VRJ .

Since
⋃j−1

k=0 VR(k) has measure at most Jδ, replacing δ by
δ/J, the measure of W(R(J))\VR(J) is at least 1 − δ. We
complete the proof of Theorem 2. �

IV. NUMERICAL STUDIES

In this section, we introduce a new Markov sampling algo-
rithm, and then we give the numerical studies on the learning
performance of SVMC with Markov sampling.

A. New Markov Sampling Algorithm

For a given original training sample set Dtr, the new Markov
sampling algorithm for SVMC is stated as follows.

Remark 3: To have better understanding Algorithm 1, we
present the following remarks.

1) We introduce the notions m%2, such that Algorithm 1
is suit to all the cases (even or odd) of training sam-
ple sizes. To generate quickly Markov chain samples, in
Algorithm 1 we introduce the continuously reject num-
ber k and the constant q. Since as the loss �(f , zt) of
sample zt is smaller, the acceptance probability P =
e−�(f0,z∗)/e−�(f0,zt) will be smaller. This implies that the
candidate sample z∗ will always be rejected, and gen-
erating u.e.M.c. samples is very time-consuming. In the
following experiments, we take k = 5 and q = 1.2.

2) Since we have only the dataset Dtr, to define the tran-
sition probability of Markov chain, in Algorithm 1 we

Algorithm 1 Markov Sampling for SVMC

Step 1: Let m be the size of training samples and m%2
be the remainder of m divided by 2. m+ and m−
denote the size of training samples which label
are +1 and −1, respectively. Draw randomly
N1(N1 ≤ m) training samples {zi}N1

i=1 from the
dataset Dtr. Then we can obtain a preliminary
learning model f0 by SVMC and these samples.
Set m+ = 0 and m− = 0.

Step 2: Draw randomly a sample from Dtr and denote
it the current sample zt. If m%2 = 0, set m+ =
m+ + 1 if the label of zt is +1, or set m− =
m− + 1 if the label of zt is −1.

Step 3: Draw randomly another sample from Dtr and
denote it the candidate sample z∗.

Step 4: Calculate the ratio P of e−�(f0,z) at the sample
z∗ and the sample zt, P = e−�(f0,z∗)/e−�(f0,zt).

Step 5: If P = 1, yt = −1 and y∗ = −1 accept z∗
with probability P′ = e−y∗f0/e−ytf0 . If P = 1,
yt = 1 and y∗ = 1 accept z∗ with probability
P′ = e−y∗f0/e−ytf0 . If P = 1 and yty∗ = −1 or
P < 1, accept z∗ with probability P. If there
are k candidate samples z∗ can not be accepted
continuously, then set P′′ = qP and with proba-
bility P′′ accept z∗. Set zt+1 = z∗, m+ = m++1
if the label of zt is +1, or set m− = m− + 1 if
the label of zt is −1 [if the accepted probabil-
ity P′(or P′′, P) is larger than 1, accept z∗ with
probability 1].

Step 6: If m+ < m/2 or m− < m/2 then return to
Step 3, else stop it.

introduce the preliminary learning model f0. The reason
is that under the technical condition, we can compute
easily the transition probabilities P (or P′, P′′), and P, P′,
P′′ are always positive. Thus, by the theory of Markov
chain in [37] (if the size of state space of Markov chain
is finite, and the transition probabilities of any two states
are always positive, then the Markov chain is u.e.M.c.,
please see [37, Th. 3.8]), we can conclude that {zi}t

i=1
generated by Algorithm 1 is a u.e.M.c. sequence.

3) Different from MCMC method in [19], Algorithm 1 is
a method of generating u.e.M.c. samples from a given
dataset, and in Algorithm 1 we did not use the infor-
mation of distribution of training samples since the
distribution of samples is unknown. While MCMC is
a sampling method of using the probability distribution
of training samples. Compared random sampling with
Algorithm 1, we can find that random sampling can be
regarded as the special case of Algorithm 1, that is, the
acceptance probabilities P,P′,P′′ defined in Algorithm 1
are equal to 1.

B. Experiment Results

We present the numerical study on the learning performance
of SVMC based on linear prediction models for 10 real-world
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TABLE I
TEN REAL-WORLD DATASETS

TABLE II
MISCLASSIFICATION RATES (%) FOR 500 TRAINING SAMPLES

datasets. The information of these datasets are summarized in
Table I and all these datasets are 2-classes real-world datasets.

For random sampling, we decompose the experiment into
two steps. First, m training samples Drand were generated
randomly from the given dataset Dtr, and then we obtain a
classifier by SVMC with these samples Drand. Then we test it
on the given test set. Second, after the experiment had been
repeated 50 times, the misclassification rates were presented
in Table II. For Markov sampling, we first generate m train-
ing samples Dmar from Dtr by Algorithm 1. Then we obtain
a classifier by SVMC with these samples Dmar, and test it
on the same test set. After the experiment had been repeated
50 times, the misclassification rates were presented in Table II,
where “MR (i.i.d.),” “MR (Markov)” denote the misclassifi-
cation rates of SVMC based on random sampling, Markov
sampling, respectively.

To simplify the experimental process, we take N1 = m in
Algorithm 1 for all of these experiments. In the next section,
we will present some discussions on the experimental results
based on N1 < m. The parameter λ of SVMC is chosen by
the method of fivefold cross-validation.

From Table II, we can find that for 500 training samples,
the standard deviations and means of average misclassification
rates of SVMC based on Markov sampling are smaller than
that of random sampling except Isolet and Gisette. To show
the learning performance of SVMC based on Markov sam-
pling, we present the average misclassification rates of SVMC
based on Markov sampling (Markov) and random sampling
(i.i.d.) for different training sizes and four datasets in Figs. 1–4.
These average misclassification rates are based on 50 times
experimental results.

Fig. 1. Average misclassification rates for Shuttle and m = 500, 1000, 2000,
4000, 8000.

Fig. 2. Average misclassification rates for Letter and m = 500, 1000, 2000,
4000, 5000.

Fig. 3. Average misclassification rates for Isolet and m = 500, 1000, 1500,
2000, 4000.

Fig. 4. Average misclassification rates for Gisette and m = 500, 2000, 4000,
5000, 5500.

To have a better understanding of learning performance of
SVMC based on Markov sampling, we also present the follow-
ing figures to show the 50 times experimental misclassification
rates of SVMC based on Markov sampling.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: GENERALIZATION ABILITY OF SVM CLASSIFICATION BASED ON MARKOV SAMPLING 9

Fig. 5. Fifty times misclassification rates for Shuttle and m = 2000.

Fig. 6. Fifty times misclassification rates for Letter and m = 2000.

Fig. 7. Fifty times misclassification rates for Isolet and m = 2000.

Fig. 8. Fifty times misclassification rates for Gisette and m = 5500.

Figs. 1–8 show that for Shuttle, Letter, Isolet, and Gisette, as
the size of training samples is bigger, the experimental results
of SVMC based on Markov sampling are better than that of
random sampling. For other datasets, since the experimental
results are similar, we do not present all of them here.

Fig. 9. Fifty times misclassification rates for Splice, Gaussian kernel, and
m = 1000.

Fig. 10. Average misclassification rates for Waveform, m = 1200, Shuttle,
m = 1200, Isolet, m = 1600, and N1 = 1150.

V. DISCUSSION

In this section, we present some discussions on the learning
performance of SVMC based on Markov sampling.

A. Nonlinear Prediction Models

For nonlinear prediction models, we consider the case of
Gaussian kernel SVMC with Markov sampling. We present the
following figure to show the learning performance of Gaussian
kernel SVMC with Markov sampling for Splice. The param-
eters λ and σ of Gaussian kernel SVMC are chosen by the
method of fivefold cross-validation.

By Fig. 9, we can find that for Splice and 1000 training
samples, all the 50 times misclassification rates of Gaussian
kernel SVMC based on Markov sampling are better than that
of random sampling. Different from the case of linear predic-
tion models, the experiments of Gaussian kernel SVMC are
very time-consuming, in particular for the dataset with high
input dimension [38], [39].

B. Preliminary Learning Model Based on Smaller Samples

For the case of N1 < m, we present the following figure
(see Fig. 10) to show the learning performance of SVMC with
Markov sampling for Waveform, Shuttle, and Isolet.

C. Sparsity of SVM Classifier

For SVMC, the optimal separating function f (x) reduces to
a linear combination of kernels on the training samples

f (x) =
∑

i

kiyiK(xi, x)+ b. (17)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE III
AVERAGE NUMBERS OF SUPPORT VECTOR

In (17), the vectors xi that correspond to the nonzero coef-
ficients ki are called to be support vector [1]. If the numbers
of support vector are smaller, then the express (17) is said to
be “more sparse.” In Table III, we present the average num-
bers of support vector of SVM classifier based on Markov
sampling and random sampling for 50 experimental results,
respectively. Here “Abalone-1800” denotes that the number of
support vector is based on Abalone and 1800 training sam-
ples, “SVs(i.i.d.)” and “SVs(Markov)” denote the numbers of
support vector for random sampling and Markov sampling,
respectively.

By Table III, we can find that as the size of dataset is bigger
with regard to the input dimension of data (e.g., Shuttle, Splice,
Abalone, Magic, Letter, Waveform, and Isolet), the classifiers
based on Markov sampling are more sparse than the classifier
based on random sampling.

D. Explanation of Learning Performance

We interpret the learning performance of SVMC based on
Markov sampling as follows. First, in the process of Markov
sampling, the candidate sample z∗ is accepted with different
probabilities. While for random sampling, all the candidate
samples are accepted with probability 1. Second, by these tran-
sition probabilities defined in Step 5 of Algorithm 1, we can
find that the samples that have the same or similar property
with respect to the loss function �(f , z) will be accepted with
another probability P′, which implies that the Markov chain
samples are different or representative compared to random
sampling. For these reasons, as the size of training sam-
ples is large, after many times transitions, the samples that
closer (or closest) to the interface of two classes data will
be sampled and be accepted with high probabilities. By the
theory of statistical learning theory, the samples that closest
to the interface of two classes data are the support vectors,
which are the most “important” samples for classification
problem [22]. Therefore, the learning performance of SVMC
based on Markov sampling is better than that of random sam-
pling, and the classifier based on Markov sampling is more
sparse compared to random sampling as the size of training
samples is bigger.

VI. CONCLUSION

To study the generalization performance of SVMC based
on u.e.M.c. samples, inspired by the idea from [18], in this

paper, we first establish two new concentration inequalities
for u.e.M.c. samples, then we analyze the excess misclassifi-
cation error of SVMC with u.e.M.c. samples, and obtain the
optimal learning rate for SVMC with u.e.M.c. samples. These
results extend the classical results of SVMC based on i.i.d.
samples to the case of u.e.M.c. samples. In addition, in this
paper, we also introduced a new Markov sampling algorithm
to generate u.e.M.c. samples from given dataset. The numer-
ical studies show that as the number of training samples is
large, the learning performance of SVMC based on Markov
sampling is better than that of random sampling, and the SVM
classifier based on Markov sampling is more sparse compared
to that of random sampling as the size of training samples is
bigger with regard to the dimension of data. To our knowledge,
these studies here are the first works on this paper.

Along the line of the present work, several open problems
deserves further research. For example, studying the gener-
alization performance of online learning based on Markov
sampling and studying the Markov sampling algorithm for
regression problems with nonlinear prediction models. All
these problems are under our current investigation.
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