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Iterative regularization algorithms, such as the conjugate gradient algorithm for least
squares problems (CGLS) and the modified residual norm steepest descent (MRNSD) algo-
rithm, are popular tools for solving large-scale linear systems arising from image deblur-
ring problems. These algorithms, however, are hindered by a semi-convergence behavior,
in that the quality of the computed solution first increases and then decreases. In this
paper, in order to overcome the semi-convergence behavior, we propose two iterative algo-
rithms based on soft-thresholding for image deblurring problems. One of them combines
CGLS with a denoising technique like soft-thresholding at each iteration and another com-
bines MRNSD with soft-thresholding in a similar way. We prove the convergence of
MRNSD and soft-thresholding based algorithm. Numerical results show that the proposed
algorithms overcome the semi-convergence behavior and the restoration results are
slightly better than those of CGLS and MRNSD with their optimal stopping iterations.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Image deblurring is a process of reconstructing an approximation of an image from an observed but degraded image,
which is often modeled as the solution of the linear operator equation
Kf þ e ¼ g; ð1Þ
where f 2 Rn2
is a vector representing the true n� n image we aim to recover, e 2 Rn2

represents random noise, g 2 Rn2

stands for the observed distorted image, and K 2 Rn2�n2
is a blurring matrix with special structures [30,40]. Such problems

arise in applications such as astronomy, medical imaging, geophysical applications and many other areas
[18–20,23,28,32,39,48,54,55]. Typically Eq. (1) comes from the discretization of an ill-posed continuous model, that is, the
matrix K is ill-conditioned and noise in the data may give rise to significant errors in the computed approximate solution.
As a result, directly solving the equation Kf ¼ g does not yield an accurate and stable approximate solution and it is neces-
sary to resort to a regularization method. In the literature many regularization techniques can be found, such as Tikhonov
regularization [52], truncated singular value decomposition (TSVD), truncated iterative algorithms (e.g. steepest descent
and conjugate gradient (CG) iterations) [18,54] and hybrid approaches [8,33,35,36,45].
Project
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A suitable value of the regularization parameter is important when incorporated with a regularization approach. For Tik-
honov regularization, various parameter-choice techniques can be used, such as the discrepancy principle [41], the L-curve
[18,28], generalized cross validation (GCV) [21], the weighted-GCV (W-GCV) [14] and the fixed point algorithm (FP) [3].
These parameter-selection methods have both advantages and disadvantages and it is nontrivial to choose an ‘optimal’ reg-
ularization parameter [28,54].

Iterative regularization algorithms like CG and steepest descent can be favorable alternatives to Tikhonov regularization
[10,18,42,49,50,54]. They access the coefficient matrix K only via matrix–vector multiplication with K and/or KT . It is known
that applying these iterative regularization algorithms to solving the linear system Kf ¼ g is often hindered by a semi-con-
vergence behavior. That is, the first few iterations produce regularization solutions and, after some ‘optimal’ iteration, the
approximate solutions converge to some other undesired vector. This undesired vector is contaminated by errors and is
therefore a poor approximation. In other words, an imprecise estimate of the termination iteration is likely to result in a poor
approximate solution and hence it becomes crucial to decide when to stop the iterations. Parameter-selection methods such
as the discrepancy principle and the L-curve can be used to choose such a proper termination, but it is also nontrivial as in
the case for Tikhonov regularization.

The difficulty in determining the stopping iteration number of iterative regularization algorithms can be partially allevi-
ated by employing hybrid approaches [4,9,12,14,26,27]. Lanczos-hybrid type approaches combine an iterative Lanczos bidi-
agonalization algorithm with a regularization algorithm such as Tikhonov regularization and TSVD at each iteration.
Regularization is therefore achieved by Lanczos bidiagonalization filtering and appropriately selecting a regularization
parameter at each iteration. Recently, parameter-selection methods such as W-GCV and FP have been studied for the Lanc-
zos-Tikhonov hybrid approach, see [4,14]. The W-GCV based Lanczos-Tikhonov hybrid approach makes the solution be less
sensitive to iteration number. However, it is characterized by the semi-convergence property as the iteration proceeds. The
GKB-FP algorithm in [4] combines a partial Golub-Kahan bidiagonalization (GKB) iteration with Tikhonov regularization in
the generated Krylov subspace and the regularization parameter for the projected problem is chosen by FP. In some cases,
GKB-FP yields more accurate solutions than W-GCV based Lanczos-Tikhonov. But in some cases the two methods perform
comparably.

In this paper, we propose two iterative algorithms based on iterative regularization algorithms and soft-thresholding for
image deblurring. Recall that it is the noise in the right-hand side g and its propagation with iterations that are the main
reason of the semi-convergence behavior of iterative regularization algorithms like CGLS and MRNSD. Therefore, we pro-
pose to combine the iterative regularization algorithms with a noise reduction technique like soft-thresholding at each iter-
ation to suppress the propagation of noise and thus overcome the semi-convergence behavior. One of the proposed
algorithms combines CGLS with soft-thresholding at each iteration and another combines MRNSD with soft-thresholding
in a similar way. The resulting algorithms are stable and very effective in practical applications. We prove the convergence
of MRNSD and soft-thresholding based algorithm. Numerical experiments show that the proposed algorithms overcome
the semi-convergence behavior and the restoration results are slightly better than those of CGLS and MRNSD with their
optimal iterations.

The outline of the paper is as follows. In Section 2.1 we first review the classical CGLS iteration and then give soft-thres-
holding and CGLS based iterative algorithm, called CGLS-like. A widely used satellite test problem is considered to demon-
strate the utility of CGLS-like compared with CGLS. In Section 2.2 we present an MRNSD-like algorithm and prove its
convergence. Several numerical examples are given in Section 3 to illustrate the efficacy of the proposed algorithms. Finally
Section 4 gives some conclusions.

2. Soft-thresholding based iterative algorithms

We are interested in using iterative regularization algorithms such as CG and the steepest descent to solve the large-scale
linear systems Kf ¼ g. Since our problems are usually not symmetric, we solve the normal equations KT Kf ¼ KT g using the
conjugate gradient algorithm for least squares problems (CGLS) [7] and the modified residual norm steepest descent
(MRNSD) algorithm [44], respectively. Due to the ill-conditioning of K and the presence of noise in the right-hand side g,
these algorithms are characterized by the semi-convergence property: the quality of the computed solution first increases
but then after some optimal iteration begins to decrease. In this case, it is hoped to overcome the semi-convergence behavior
by combining the iterative algorithms with a denoising technique like soft-thresholding at each iteration, see also [1,24].
Recall that the soft-thresholding operator Sl is defined component-wise by
SlðxÞ
� �

i ¼ sgnðxiÞ �max jxij �
l
2
;0

n o
; i ¼ 1; . . . ;N; x 2 RN: ð2Þ
We propose two algorithms based on soft-thresholding in the following.

2.1. CGLS-like algorithm

We first review the classical CGLS iteration [7,25,28]. Express the ðkþ 1Þ-th approximate solution as fkþ1 ¼ fk þ akpk, then
the residual vector, i.e. rkþ1 ¼ g � Kfkþ1, satisfies rkþ1 ¼ rk � akKpk, and
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skþ1 ¼ KT rkþ1 ¼ KT rk � akKT Kpk ¼ sk � akKT Kpk:
Then enforcing skþ1 orthogonal to sk leads to
ak ¼
hsk; ski
hKT Kpk; ski

:

Assume the next search direction pkþ1, i.e. pkþ1 ¼ skþ1 þ bkpk, is orthogonal to KT Kpk. Then
hKT Kpk; ski ¼ hKT Kpk; pk � bk�1pk�1i ¼ hKT Kpk;pki:
Thus,
ak ¼
hsk; ski

hKT Kpk;pki
¼ hsk; ski
hKpk;Kpki

:

In addition, hpkþ1;K
T Kpki ¼ hskþ1 þ bkpk;K

T Kpki ¼ 0 gives
bk ¼ �
hskþ1;K

T Kpki
hKT Kpk; pki

¼ �
hskþ1;� 1

ak
ðskþ1 � skÞi

1
ak
hsk; ski

¼ hskþ1; skþ1i
hsk; ski

:

These relations give the following algorithm.

Algorithm 1. CGLS

Given: Matrix K, initial guess f0 and right-hand side g.
Set f ¼ f0; r ¼ g � Kf ; s ¼ KT r, and c ¼ sT s,
for k ¼ 1;2; . . ., do

if (k ¼¼ 1), set p ¼ s,
otherwise compute b ¼ c=cold and p ¼ sþ bp,
q ¼ Kp,
a ¼ c=qT q,
f ¼ f þ ap,
r ¼ r � aq,
s ¼ KT r,
cold ¼ c,
c ¼ sT s,
determine if stopping criteria are satisfied

end for

In [31] it was shown that as k increases, krkk2 ¼ kg � Kfkk2 will decrease monotonically, kfkk2 will increase monotonically
if f0 ¼ 0, but kskk2 ¼ kK

T rkk2 will often exhibit large oscillations when K is very ill-conditioned. Moreover, the ðkþ 1Þ-th iter-
ate fkþ1 minimizes the residual norm kg � Kfk2 among all vectors f from the Krylov subspace
Kkþ1 KT K;KT g
� �

¼ span KT g;KT KKT g; . . . ; ðKT KÞkKT g
n o

:

Assume fk and ftrue are the approximate solution at k-th iteration and the true solution, respectively. Define relative error
by kftrue � fkk2=kftruek2. Then from this definition we see that the lower the relative error is, the closer the computed solution
is to the true solution and therefore the higher quality it has. For discrete ill-posed problems, CGLS often exhibits a semi-con-
vergence behavior in terms of relative error because of the presence of noise, and only an early termination of iterations pro-
vides an accurate solution. For example, we consider the satellite test problem, which has been widely used in the literature
for testing algorithms for image deblurring problems [47]. We obtain the test data from image restoration package Restore-
Tools1 by Nagy and several of his students [43]. The true and blurred noisy images are shown in Fig. 1. The relative error history
of CGLS is shown in Fig. 2(a). It is clear that the relative error first decreases and then after about 60 iterations begins to increase.
This phenomenon is referred to as semi-convergence.

Here, we propose a CGLS-like algorithm to overcome this semi-convergence behavior by suppressing the propagation of
noise at each iteration round of CGLS. Based on the CGLS iteration, we recursively derive that
fkþ1 ¼ fk þ akpk ¼ fk�1 þ ak�1pk�1 þ akpk ¼ � � � ¼ f0 þ
Xk

j¼0

ajpj ¼ f0 þ
Xk

j¼0

hsj; sji
hKpj;Kpji

pj;
://www.mathcs.emory.edu/�nagy/RestoreTools/index.html.



Fig. 1. Satellite test data.
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Fig. 2. Convergence behavior of CGLS and Algorithm 2 on satellite test problem. Initial guess for both algorithms is the zero vector.
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and in a similar manner,
rkþ1 ¼ g � Kf0 �
Xk

j¼0

hsj ;sji
hKpj ;Kpji

Kpj;

skþ1 ¼ KT g � KT Kf0 �
Xk

j¼0

hsj ;sji
hKpj ;Kpji

KT Kpj;

pkþ1 ¼ skþ1 þ
Xk

j¼0

Yk

i¼j

bi

 !
sj ¼ skþ1 þ

Xk

j¼0

Yk

i¼j

hsjþ1 ;sjþ1i
hsj ;sji

 !
sj:
Notice from components of fkþ1; rkþ1; skþ1 and pkþ1 that the residual vector rkþ1 contains directly the noisy right-hand
side g, or in other words, the noise in g propagates mainly via the residual vectors, since matrix–vector multiplications
Kpj have suppressed noise in pj [17,16]. Therefore, we propose to filter the residual vector by a denoising technique like
soft-thresholding at each CGLS iteration to suppress noise propagation. To make this more clear, we consider the
iteration:
fkþ1 ¼ fk þ akpk;

~rkþ1 ¼ rk � akKpk;

rkþ1 ¼ Slð~rkþ1Þ;
~skþ1 ¼ sk � akKT Kpk;

skþ1 ¼ KT rkþ1;

pkþ1 ¼ skþ1 þ bkpk:
Similarly to CGLS, we enforce the following two essential properties:
h~skþ1; ski ¼ 0 and hpkþ1;K
T Kpki ¼ 0:
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A direct consequence of the first inner product is
h~skþ1; ski ¼ hsk � akKT Kpk; ski ¼ 0;
and thus
ak ¼
hsk; ski
hKT Kpk; ski

:

From the assumption that pkþ1 is orthogonal to KT Kpk, one obtains that hpk;K
T Kpk�1i ¼ 0. Substituting sk ¼ pk � bk�1pk�1 in

hKT Kpk; ski gets
hKT Kpk; ski ¼ hKT Kpk; pk � bk�1pk�1i ¼ hK
T Kpk;pki ¼ hKpk;Kpki:
Therefore,
ak ¼
hsk; ski
hKpk;Kpki

:

In addition, writing hpkþ1;K
T Kpki ¼ 0, with pkþ1 ¼ skþ1 þ bkpk, leads to
hskþ1 þ bkpk;K
T Kpki ¼ 0;
requiring
bk ¼
�hskþ1;K

T Kpki
hKpk;Kpki

:

This yields an iteration described by the following algorithm.

Algorithm 2. CGLS-like
Given: Matrix K, initial guess f0, right-hand side g, soft-thresholding parameter l > 0
and threshold value sð0 < s < 1Þ.

Set f ¼ f0; r ¼ g � Kf ; s ¼ KT r; c ¼ sT s, and r ¼ 1,
for k ¼ 1;2; . . ., do

if (k ¼¼ 1), set p ¼ s,

otherwise compute b ¼ �hs;K
T qi

hq;qi and p ¼ sþ bp,

q ¼ Kp,
a = c=qT q,
fold ¼ f ,
f ¼ fold þ ap,
r ¼ Slðr � aqÞ,
s ¼ KT r,
c ¼ sT s,
r ¼ kfold � fk2=kfk2,
if r < s or krk2 ¼ 0, break;

end for
We remark that applying the soft-thresholding operator on the residual vector at each iteration prevents simplifying bk in
Algorithm 2 to the form in CGLS, i.e. sT

kþ1skþ1=sT
k sk. As a consequence, one additional matrix–vector multiplication is required

for bk in Algorithm 2, compared with the original CGLS algorithm. Recall that applying soft-thresholding on an N-length vec-
tor requires OðNÞ operations. This cost is clearly less than that of a matrix–vector multiplication involving an N � N blurring
matrix, which is OðN log NÞ. In this event, for K 2 Rn2�n2

, the computational complexity of both Algorithms 1 and 2 at each
iteration is Oðn2 log nÞ. In fact, the simple soft-thresholding operator makes iterations much stable. For example, we plot the
relative error history of Algorithm 2 with l ¼ 4� 10�8 for the satellite test problem in Fig. 2(a). From this plot we see that as
the iteration number k increases, the relative error of the approximation first decreases and then remains steady, showing
that an accurate stopping iteration number for Algorithm 2 is no longer such vital. In addition, we show the ‘2-norm of rk

against iteration k from 1 to 200 in Fig. 2(b). We observe that numerically, the quantity krkk2 of Algorithm 2 decreases mono-
tonically and moreover, faster than that of CGLS. For further comparison, restored images of CGLS and CGLS-like after 200
iterations are provided in Fig. 3. This figure shows that after 200 iterations, the computed solution of CGLS is very poor
but CGLS-like is relatively stable.



Fig. 3. Deblurring results at 200th iteration for satellite test data.
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We finally remark that the proposed algorithm is different from Lanczos-hybrid type approaches in overcoming semi-
convergence behavior. Lanczos-hybrid type approaches first project the large-scale problem onto Krylov subspaces of small
(but increasing) dimension and then apply any direct regularization algorithm to solve the projected problem. It implies that
Lanczos-hybrid type approaches suppress the semi-convergence behavior by filtering the solution of the projected problem
with any regularization method like Tikhonov regularization. Algorithm 2, in contrast, is designed to overcome the semi-con-
vergence behavior by filtering the residual vector with a denoising algorithm at each iteration. Recall that it is the noise in
the right-hand side g and its propagation with iterations that cause the semi-convergence behavior. Then it may be more
effective to filter the residual vector which mainly bears the noise in g rather than filter the solution of the projected problem
at each iteration.

2.2. MRNSD-like algorithm

Unconstrained Krylov subspace algorithms like CGLS for computing approximate solutions are fast, but they do not pro-
duce approximate solutions preserving nonnegativity. Consider minimizing the regular least squares function
Jðf Þ ¼ 1
2
kKf � gk2

2 ð3Þ
subject to a nonnegativity constraint f P 0. In [44] the authors provided a nonnegatively constrained minimization algo-
rithm, which is a variant of the EMLS algorithm proposed by Kaufman [34]. They parameterized f ¼ ez. Then the constrained
minimization problem as in (3) transforms into the problem of minimizing the following unconstrained function
~JðzÞ ¼ 1
2
kKez � gk2

2:
Differentiating using the chain rule gives that
gradz
~JðzÞ ¼ Fgradf Jðf Þ ¼ FKTðKf � gÞ; F ¼ diagðf Þ:
Setting gradz
~JðzÞ ¼ 0, the authors in [44] obtained the Karush–Kuhn–Tucker conditions for this particular constrained min-

imization problem in f-space. They assumed the iteration of the form:
fkþ1 ¼ fk þ akpk;
where pk ¼ FkKTðg � KfkÞ and the line search parameter ak is obtained by minimizing the residual norm kg � Kfk2 subject to
f P 0 at each iteration, i.e.
ak ¼ argmin
a2R; f kþapkP0

kg � Kðfk þ apkÞk2 ¼ argmin
a2R; f kþapkP0

krk � aKpkk2;
in which we have defined the k-th residual vector rk ¼ g � Kfk. To be more precise, let sk ¼ KT rk and thus pk ¼ Fksk, then sim-
ple calculation gives that
ak ¼min
hKpk; rki
hKpk;Kpki

;minðpkÞi<0ð�ðfkÞi=ðpkÞiÞ
� �

¼min
hFksk; ski
hKpk;Kpki

;minðpkÞi<0ð�ðfkÞi=ðpkÞiÞ
� �

:

Consequently, the ðkþ 1Þ-th residual vector,
rkþ1 ¼ g � Kfkþ1 ¼ rk � akKpk;
satisfies krkþ1k2 6 krkk2. This is called the modified residual norm steepest descent (MRNSD) algorithm.
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Algorithm 3. MRNSD
Given: Matrix K, initial guess f0 and right-hand side g.
Set f ¼ f0; s ¼ KTðg � Kf Þ; F ¼ diagðf Þ, and c ¼ sT Fs,
for k ¼ 1;2; . . . ; do

p ¼ Fs,
q ¼ Kp,
a ¼minðc=qT q;minpi<0ð�fi=piÞÞ,
f ¼ f þ ap,
F ¼ diagðf Þ,
z ¼ KT q,
s ¼ s� az,
c ¼ sT Fs,
determine if stopping criteria are satisfied

end for

We note that MRNSD has been extended to solve weighted least squares problems by Bardsley and Nagy [2] and the ex-
tended algorithm can be viewed as a preconditioned version of MRNSD in which the preconditioning matrix is constructed
using a priori knowledge of noise statistics. Preconditioning strategies for both algorithms have been considered as well.
These algorithms can provide more accurate approximate solutions and be computationally competitive with unconstrained
Krylov subspace algorithms. We remark that preconditioning techniques are beyond the scope of this study and we do not
consider them here. We also remark that the authors in [37] used an active set approach to solve nonnegative least squares
problems appearing in nonnegative matrix factorization, while recently the authors in [22] use the fast Nesterov’s optimal
gradient algorithm to solve such nonnegative least squares subproblems. Applying these algorithms to framelet-based image
deblurring problems (see e.g. [6,13,51]) is currently under investigation.

It has been shown in [44] that MRNSD can be more stable than unconstrained Krylov subspace algorithms like CGLS.
However, MRNSD also exhibits a semi-convergence behavior because of the presence of noise (specific examples are detailed
Fig. 4. Example 3.1: Original, contaminated, and restored images by different algorithms for 256� 256 boat image convolved by a 3� 3 Gaussian kernel
and degraded by 2% Gaussian white noise.
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in the later section). In this case, we filter the residual vector by the soft-thresholding operator at each iteration to address
this undesired behavior as in Algorithm 2. To be more specific, iterate
fkþ1 ¼ fk þ akpk;

Fkþ1 ¼ diagðfkþ1Þ;
~rkþ1 ¼ rk � akKpk;

rkþ1 ¼ Slð~rkþ1Þ;
skþ1 ¼ KT rkþ1;

pkþ1 ¼ Fkþ1skþ1:

ð4Þ
Although the above rk is different from that equal to g � Kfk in MRNSD, we still determine ak by minimizing krk � aKpkk2

subject to a nonnegative solution, i.e.
ak ¼ argmin
a2R; f kþapkP0

krk � aKpkk2 ¼min
hKpk; rki
hKpk;Kpki

;minðpkÞi<0ð�ðfkÞi=ðpkÞiÞ
� �

: ð5Þ
Observing from the iterate scheme (4) that sk ¼ KT rk and pk ¼ Fksk, we derive
ak ¼min
hFksk; ski
hKpk;Kpki

;minðpkÞi<0ð�ðfkÞi=ðpkÞiÞ
� �

:

Putting these relations together results in our algorithm in the following.

Algorithm 4. MRNSD-like

Given: Matrix K, initial guess f0, right-hand side g, soft-thresholding parameter l > 0
and threshold value sð0 < s < 1Þ.

Set f ¼ f0; r ¼ g � Kf ; s ¼ KT r; F ¼ diagðf Þ; c ¼ sT Fs, and r ¼ 1,
for k ¼ 1;2; . . . ; do

p ¼ Fs,
q ¼ Kp,
a ¼minðc=qT q;minpi<0ð�fi=piÞÞ,
fold ¼ f ,
f ¼ fold þ ap,
F ¼ diagðf Þ,
r ¼ Slðr � aqÞ,
s ¼ KT r,
c ¼ sT Fs,
r ¼ kfold � fk2=kfk2,
if r < s or krk2 ¼ 0, break;

end for

We see that at each iteration both Algorithms 3 and 4 require two matrix–vector multiplications and Algorithm 4 needs
one more soft-thresholding. Recall that the cost of the soft-thresholding operator on an n2-length vector is Oðn2Þ, which is
much less than Oðn2 log nÞ for matrix–vector multiplications. Thus, both Algorithms 3 and 4 require Oðn2 log nÞ operations at
each iteration. We also see that r in Algorithm 4 is different from that in MRNSD. However, the following result shows that
the monotonicity of krkk2 in Algorithm 4 is preserved as that in MRNSD, which consequently guarantees the convergence of
Algorithm 4.
Theorem 1. Let K be any N-by-N matrix and assume Sl as defined in (2). If krkk2 > 0, then rkþ1 ¼ Slðrk � akKpkÞ generated by
Algorithm 4 satisfies the relation
krkþ1k2 < krkk2
and Algorithm 4 converges for any initial guess f0.
Proof. Let ~rkþ1 ¼ rk � akKpk as in (4). We first show that k~rkþ1k2 6 krkk2. This inequality holds naturally if kKpkk2 ¼ 0. For
kKpkk2 > 0, define
UðaÞ ¼ krk � aKpkk
2
2
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and let a�k ¼
hKpk ;rki
kKpkk22

. Simple calculation shows that
Fig. 5.
and deg

Table 1
Summa

Nois

2%

5%
UðaÞ ¼ krkk2
2 þ kKpkk

2
2a

2 � 2hKpk; rkia ¼ krkk2
2 þ kKpkk

2
2 a� a�k
� �2 � hKpk; rki2

kKpkk
2
2

:

It is clear that UðaÞ decreases monotonically with respect to a in ½0;a�k�. Note from (5) that
ak ¼min a�k;minðpkÞi<0ð�ðfkÞi=ðpkÞiÞ

� �
and as a result 0 6 ak 6 a�k. Thus UðakÞ 6 Uð0Þ, following
k~rkþ1k2
2 ¼ UðakÞ 6 Uð0Þ ¼ krkk2

2:
We now prove that krkþ1k2 6 k~rkþ1k2. It is clear that krkþ1k2
2 ¼ kSlð~rkþ1Þk2

2 ¼
P

ijðSl ~rkþ1ð ÞÞij
2. For each component ð~rkþ1Þi,

the definition of Sl reveals that
jðSl ~rkþ1ð ÞÞij ¼
jð~rkþ1Þij � l=2 if jð~rkþ1ÞijP l=2
0 if jð~rkþ1Þij < l=2

�
ð6Þ
and therefore
jðSl ~rkþ1ð ÞÞij 6 jð~rkþ1Þij: ð7Þ
Example 3.1: Original, contaminated, and restored images by different algorithms for 256� 256 boat image convolved by a 3� 3 Gaussian kernel
raded by 5% Gaussian white noise.

ry of restoration results of different algorithms for Example 3.1.

e level Method Itr ReErr SNR CPU

CGLS 5 0.0583 24.68 0.90
MRNSD 12 0.0587 24.63 1.78
Algorithm 2 9 0.0568 24.91 2.03
Algorithm 4 17 0.0584 24.67 2.51

CGLS 2 0.0759 22.40 0.51
MRNSD 3 0.0762 22.36 0.69
Algorithm 2 6 0.0745 22.56 1.50
Algorithm 4 10 0.0762 22.36 1.89
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It follows that
krkþ1k2
2 ¼

X
i

jðSl ~rkþ1ð ÞÞij
2
6

X
i

jð~rkþ1Þij
2 ¼ k~rkþ1k2

2;
and as a result,
krkþ1k2 6 k~rkþ1k2 6 krkk2:
Finally, under the assumption that krkk2 > 0 we show that krkþ1k2 < krkk2. Suppose krkþ1k2 ¼ krkk2 by contradiction and
thus krkþ1k2

2 ¼ k~rkþ1k2
2 ¼ krkk2

2. Then
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Fig. 6. Example 3.1: Plots of relative error and ‘2-norm of vector r against iteration for different algorithms.
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Fig. 7. Example 3.1: Plots of relative error against noise level from 1% to 10% for different Algorithms.
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X
i

jð~rkþ1Þij
2 � jðSl ~rkþ1ð ÞÞij

2
� �

¼ 0:
For all i, observing from (7) we have jð~rkþ1Þij
2 � jðSl ~rkþ1ð ÞÞij

2 P 0, requiring that
jð~rkþ1Þij ¼ jðSl ~rkþ1ð ÞÞij:
This, combining with (6), yields that ð~rkþ1Þi ¼ 0 for all i and thus ~rkþ1 ¼ 0. Therefore, 0 ¼ k~rkþ1k2 ¼ krkk2 and we arrive at a
contradiction.

Notice that there is no requirement on f0 for proving krkþ1k2 < krkk2, thus the convergence of Algorithm 4 is proved for
any initial guess f0.
Remark 2. In the above proof, we used essentially the property of kSlðxÞk2 6 kxk2 for any x 2 RN , and moreover
kSlðxÞk2 ¼ kxk2 if and only if x ¼ 0. We can use this observation to present a slight generalization of Algorithm 4, in which
Sl is replaced by any operator D satisfying
Example 3.2: Contaminated and restored images by different algorithms for 256� 256 house image convolved by a 3� 5 motion kernel and
d by 8% Gaussian white noise.
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kDðxÞk2 6 kxk2; x 2 RN
and moreover kDðxÞk2 ¼ kxk2 if and only if x ¼ 0, and Theorem 1 stands still.
3. Numerical examples

In this section, we give several numerical examples to illustrate the performance of the proposed iterative algorithms:
CGLS-like and MRNSD-like, for image deblurring problems. Our tests were done by using MATLAB 7.10.0 (R2010a) on a
PC computer with Intel(R) Core(TM)2 Duo CPU 2.93 GHz and 2 GB memory. The floating-point precision is 10�16. The initial
guess of each algorithm is set to be a zero vector and the threshold value s for both Algorithms 2 and 4 is set to be 10�3. The
signal-to-noise ratio (SNR) and the relative error (ReErr) are used to measure the quality of a restored image. They are de-
fined by
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Example 3.2: Plots of relative error and ‘2-norm of vector r against iteration by different algorithms for blurred house image degraded by 8% Gaussian
oise.

e 3.2: Summary of restoration results by different algorithms for blurred house image degraded by 8% Gaussian white noise.

od Itr ReErr SNR CPU

2 0.0880 21.11 0.59
SD 3 0.0862 21.26 0.62

2 with the Wiener filter 14 0.0851 21.41 3.39
2 with soft-thresholding 4 0.0856 21.35 0.97
2 with median filtering 7 0.0828 21.64 1.89

4 with the Wiener filter 8 0.0845 21.46 1.36
4 with soft-thresholding 5 0.0849 21.42 0.90
4 with median filtering 9 0.0821 21.71 1.64
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SNR ¼ 20log10
kftruek2

kftrue � fk2
; ReErr ¼ kf � ftruek2

kftruek2
;

with ftrue and f being the original and restored images, respectively. The number of iterations (denoted by ‘‘Itr’’) and the
elapsed CPU time in seconds (denoted by ‘‘CPU’’) of each algorithm are reported as well. The optimal iterations for
Algorithms 1 and 3 are obtained by considering the smallest relative error of the restored images. The optimal parameters
l for Algorithms 2 and 4 are chosen by trial and error.

3.1. Comparison of Algorithms 1–4

We first demonstrate the performance of Algorithms 2 and 4 compared with Algorithm 1 (CGLS) and Algorithm 3
(MRNSD).

Example 3.1. The original 256� 256 image boat, shown in Fig. 4(a), is first blurred by a 3� 3 Gaussian kernel with standard
deviation rb ¼ 2 and then degraded by 2% and 5% Gaussian white noises, respectively. Blurred noisy images and the restored
images by Algorithms 1–4 are shown in Figs. 4 and 5. It can be seen from the figures that images restored by Algorithms 2
and 4 contain less noise and are smoother than those from original CGLS and MRNSD, respectively. This is not unexpected
since we filter the residual vector in Algorithms 2 and 4 at each iteration.

Table 1 reports the restorations determined by Algorithms 1–4 in ReErr, SNR, CPU and Itr. Observing from the table that
the ReErr and SNR values of Algorithms 2 and 4 are slightly better than or comparable to those of CGLS and MRNSD, and
moreover, Algorithm 2 is shown to be better than Algorithm 4. All algorithms are fast and produce satisfactory results in
seconds.

Figs. 6(a) and 6(c) provide convergence histories of Algorithms 1–4 for 2% and 5% Gaussian white noises, respectively. For
the two test cases, CGLS again exhibits a clearly semi-convergent behavior. MRNSD is relatively stable but still exhibits the
semi-convergence behavior, especially for higher noise level 5%. The proposed Algorithms 2 and 4 successfully overcome the
semi-convergence behavior of the original CGLS and MRNSD algorithms, respectively. In addition, we plot the ‘2-norm of
vector r against iteration number for 2% and 5% noise levels in Figs. 6(b) and 6(d), respectively. The two figures show that
krk2 of Algorithms 1–4 decreases monotonically, which is consistent with our theoretical results. It should be noted that
for Algorithm 2, after 14 iterations for 2% noise and 7 iterations for 5% noise, krk2 ¼ 0 and hence the iteration stops.
Similarly, Algorithm 4 stops after 37 iterations for 2% noise and 15 iterations for 5% noise.

For further comparison, Fig. 7 plots relative errors of all four algorithms for noise level from 1% to 10%. We see that the
proposed Algorithms 2 and 4 provide slightly better or comparable results, especially for higher noise levels.

3.2. Comparison of using different filters in Algorithms 2 and 4

In this subsection, we consider using other denoising techniques compared with the soft-thresholding operator in Algo-
rithms 2 and 4. Median filtering and the Wiener filter are used. The median filter is a popular nonlinear noise reduction tech-
nique which is very widely used in digital image processing because, under certain conditions, it preserves edges while
removing noise [38,46,53]. It runs through the signal entry-by-entry, replacing each entry with the median of neighboring
e 3.2: Summary of restoration results of different algorithms for blurred house image degraded by 5% salt-and-pepper noise and Poisson noise,
ively.

e Method Itr ReErr SNR CPU

alt & pepper CGLS 1 0.1312 17.64 0.34
MRNSD 1 0.1312 17.64 0.27

Alg. 2 with the Wiener filter 38 0.2268 12.89 8.83
Alg. 2 with soft-thresholding 1 0.1312 17.64 0.36
Alg. 2 with median filtering 7 0.1177 18.59 1.81

Alg. 4 with the Wiener filter 32 0.1507 16.44 5.29
Alg. 4 with soft-thresholding 1 0.1312 17.64 0.28
Alg. 4 with median filtering 9 0.1167 18.66 1.59

on noise CGLS 1 0.0906 20.86 0.39
MRNSD 1 0.0906 20.86 0.27

Alg. 2 with the Wiener filter 16 0.0976 20.21 3.90
Alg. 2 with soft-thresholding 4 0.0891 21.00 1.01
Alg. 2 with median filtering 7 0.0864 21.27 1.84

Alg. 4 with the Wiener filter 13 0.0899 20.93 2.20
Alg. 4 with soft-thresholding 4 0.0898 20.94 0.72
Alg. 4 with median filtering 9 0.0858 21.33 1.62
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entries. For each pixel in an n� n image, computing the median from a neighborhood of size m�m requires OðmÞ compar-
isons, and thus applying the median filter to the whole image requiresOðn2mÞ operations. This cost is clearly less than that of
matrix–vector multiplications with K 2 Rn2�n2

, i.e. Oðn2 log nÞ. Another noise-removal technique considered to replace soft-
thresholding in Algorithms 2 and 4 is the Wiener filter, which is based on statistics estimated from a local neighborhood of
each pixel [38]. For a neighborhood of size m�m, estimating the local image mean and standard deviation requires Oðm2Þ
operations. Therefore, applying the Wiener filter to an n� n image costs Oðn2m2Þ operations, again less than Oðn2 log nÞ for
matrix–vector products. In summary, both Algorithms 2 and 4 with any of soft-thresholding, the Wiener filter and the med-
ian filter require Oðn2 log nÞ operations at each iteration. In our tests, MATLAB build-in functions medfilt2 with window
size 3� 3 and wiener2 with window size 9� 9 are used.

Example 3.2. Original 256� 256 house image is contaminated by a 3� 5 motion blur, generated by MATLAB command
fspecial (‘motion’,4,1), and 8% Gaussian white noise. Fig. 8(a) shows the blurred and noisy image. The restored images
by all algorithms are shown in Fig. 8. From these figures, we see that restorations of our algorithms are smoother than those
of CGLS and MRNSD. Moreover, Algorithms 2 and 4 with the median filter produce results comparable to those with soft-
Fig. 10. Example 3.3: Original, contaminated, and restored images by different algorithms for 256� 256 cameraman image convolved by a 5� 5 Moffat blur
and degraded by 3% Gaussian white noise.
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Fig. 11. Example 3.3: Plots of relative error and ‘2-norm of vector r against iteration by different algorithms for blurred and noisy cameraman image.
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thresholding and clearly better than those with the Wiener filter. In addition, we plot convergence histories of these
algorithms in Figs. 9(a) and 9(c) and krk2 against iteration number in Figs. 9(b) and 9(d). Indeed, Algorithms 2 and 4 with
each denoising technique overcome the semi-convergence behavior and make the resulting approximate solutions be less
sensitive to the iterations.

Table 2 lists the corresponding restoration results in ReErr, SNR, Itr and CPU. From this table we observe that Algorithms 2
and 4 with each noise-removal technique produce better ReErr and SNR values and the median filter based algorithms are
best.

For further comparison, Table 3 reports the restoration results for the blurred house image contaminated by 5% salt-and-
pepper noise and Poisson noise, respectively. From the table, we see that Algorithms 2 and 4 based on the median filter are
best especially for the blurred image degraded by salt-and-pepper noise. This is not unexpected since median filtering is very
effective in removing salt-and-pepper noise [38]. It tells us that we may choose specific noise-removal techniques for specific
situations, making the proposed algorithms become more flexible.
3.3. Comparison with other algorithms

We now compare the proposed soft-thresholding based Algorithms 2 and 4 with three popular algorithms: range re-
stricted GMRES (RRGMRES) algorithm from [11], weighted-GCV based Lanczos-Tikhonov hybrid approach (HyBR) from
[14] and iterative shrinkage-thresholding algorithm (ISTA) [5,15] given by
2 http
fkþ1 ¼ Sl fk þ KTðg � KfkÞ
� �

; f 0 ¼ 0:
Clearly, ISTA is easy to implement. We note that RRGMRES is a variant of the classical Krylov subspace algorithm GMRES and
it is more suitable when applied to the solution of linear systems of equations with a singular or nearly singular matrix [11].
Lanczos-hybrid approach combines an iterative Lanczos bidiagonalization with a SVD-based regularization method to stabi-
lize the semi-convergence behavior. The MATLAB implementations of RRGMRES and HyBR are obtained from Regularization
Tools2 by Hansen [29] and RestoreTools by Nagy et al. [43], respectively. The initial guess for all algorithms is zero and ISTA stops
if kfk�1 � fkk2=kfkk2 < s. Similarly to CGLS and MRNSD, optimal restorations of RRGMRES are reported according to the smallest
relative error of the restored images.

Example 3.3. We seek to restore the 256� 256 cameraman image, which has been contaminated by a 5� 5 Moffat blur with
parameters s1 ¼ s2 ¼ 2; q ¼ 0 and b ¼ 2 (see [30] for more details) and 3% Gaussian white noise. The original and
contaminated images are shown in Figs. 10(a) and 10(b), respectively.

Figs. 10(c)–10(i) provide a qualitative comparison of images restored by different algorithms. Algorithm 4 can be seen to
yield a restoration of higher quality with less noise and artifacts. Corresponding convergence histories of different algorithms
and plots of krk2 against iteration are shown in Fig. 11. We remark that at k-th iteration, rk in CGLS, MRNSD, RRGMRES, ISTA,
HyBR represents the residual vector, while rk in both Algorithms 2 and 4 represents the filtered residual vector given by
rk ¼ Sl rk�1 � ak�1Kpk�1ð Þ. Like ISTA and Lanczos-hybrid, Algorithms 2 and 4 are stable and successfully overcome the
://www.imm.dtu.dk/�pcha/Regutools/.



Table 4
Example 3.3: Summary of restoration results of different algorithms for blurred and noisy cameraman image.

Method Itr ReErr SNR CPU

CGLS 6 0.0928 20.65 1.05
MRNSD 17 0.0930 20.63 2.61
RRGMRES 4 0.0928 20.65 0.94
ISTA 42 0.0944 20.50 6.38
HyBR 8 0.0947 20.47 2.17
Algorithm 2 12 0.0919 20.73 2.65
Algorithm 4 27 0.0927 20.66 4.20
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semi-convergence of the original CGLS and MRNSD algorithms, respectively. Table 4 gives a quantitative comparison of the
restorations determined by these algorithms. This table illustrates that Algorithm 2 provides slightly better SNR and ReErr
values and as usual, ISTA is relatively slower than other algorithms.
4. Conclusions

In this paper, we have proposed two soft-thresholding based iterative algorithms, CGLS-like and MRNSD-like. The pro-
posed algorithms filter the residual vector at each iteration to overcome the semi-convergence behavior of CGLS and MRNSD,
making iterations be more stable. We have proved the convergence of MRNSD-like. We demonstrated through a variety of
test problems that our approaches stabilize the iterations, make the solution less sensitive to the number of iterations, and
provide slightly better deblurring results than the classical CGLS and MRNSD methods. We have compared the proposed
algorithms with Lanczos-hybrid, RRGMRES and ISTA as well. Finally, we note that carefully selecting a noise reduction algo-
rithm for specific situations makes the proposed algorithms become more flexible. The research of computing optimal l or
updating it automatically at each iteration is currently under investigation.
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