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Abstract

Series machines, i.e., machines connected in series with no buffering, are pervasive in pro-
duction systems. In the analysis, design, and optimization of the series-machine system, the
efficiency analysis is one of the most fundamental issues. There are not a lot of researches
analyzing the efficiency of the series-machine system under the assumption of Operation-
Dependent-Failures (ODF) mechanism and almost all of them assumed that machines break
down in terms of ODF-I (i.e., the breakdown of a machine could make all other series machines
forced down) rather than under ODF-II (i.e., the breakdown of a machine does not make any
other series machines forced down). The reason that ODF-I is usually assumed in the literature
is that the analysis of the series-machine system under ODF-II is much more complex than un-
der ODF-I, although ODF-II might be more common in practice. To systematically analyze
the efficiency of the series-machine system, in this paper, we propose an analytical method to
investigate the efficiency under both ODF-I and ODF-II failure mechanisms. Different from
under ODF-I, analytical expressions of the efficiency of series-machine systems under ODF-II
are hard to obtain and thus, limit bounds of the efficiency are derived and an algorithm is devel-
oped to calculate its exact value. Results show that the series-machine system under ODF-II
is more efficient than under ODF-I, which, intuitively making sense, is the reason that ODF-II
are more common in the industry.

Keywords: Efficiency, Series machines, Operation-Dependent-Failures, Production lines.



1 Introduction

Machines connected in series with no buffering are pervasive in production systems, e.g., in gen-

eral assembly systems of the automotive industry [1]. This configuration is called series-machine

system, which is shown in Figure 1.1, where circles represent machines m1,m2, . . . ,mN . In gen-

eral, series machines are connected without buffering in the plant mainly due to two considerations:

1) buffers may be very expensive, e.g., they take up huge and costly space in the automotive in-

dustry; 2) although buffers could improve the throughput, they cause higher work-in-process and

longer production lead time, which conflicts the leanness concept in the production systems. Thus,

series-machine systems are inevitable and important in the production industry.

Figure 1.1: A series-machine system with N machines

In production systems, machines are usually unreliable, i.e., they break down randomly during

the production process and the repair time is also random. In the literature, the failure mechanism

of a machine could be either Time-Dependent-Failures (TDF) or Operation-Dependent-Failures

(ODF). Their difference is that, under ODF, a machine can break down only when it is operational

(i.e., up and busy); while under TDF, it could break down as well when it is idle (i.e., up but

forced down). More details of ODF and TDF can be found in monographs [2]-[4] and survey [5].

Since there are no intermediate buffers between the series machines, for each of the above two

failure mechanisms, the breakdown of a machine could either make all the other series machines

forced down or not make any series machines forced down, which we call type-I and type-II

mechanisms, respectively. Thus, we have four combinations of failure mechanisms for the series-

machine system and call them TDF-I, TDF-II, and ODF-I, ODF-II. In this paper, we concentrate

on ODF-I and ODF-II mechanisms. Differences of ODF-I and ODF-II failure mechanisms are

illustrated by exemplifying two series machines m1 and m2 in Figure 1.2, where cycle times of

machines are deterministic and identical. Note that these two machines are synchronous (i.e., jobs

do not move to the next machine until all of them are completed on the current machine).

The efficiency is one of the most important measures of the series-machine system. It indicates
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Figure 1.2: Illustration of ODF-I and ODF-II on two series machines

the extent to which machines’ downtimes impact on the throughput of the series-machine system.

Since it is closely related to the throughput, the efficiency plays a key role in analysis, design,

and optimization of production lines such as performance analysis of lines with stages consisting

of series machines [1], buffer allocation [6], stage aggregation [7], and performance analysis and

optimization of production systems obtained by stage aggregation [8, 9], etc. Clearly, if the effi-

ciency is not accurately estimated, errors of the throughput and other performance measures may

be large and unacceptable, which would lead to totally wrong conclusions and/or wrong decisions

in analysis, design, and optimization of production lines. Therefore, it is critical to analyze the

efficiency of the series-machine systems.

In the literature, Buzacott initiated the efficiency analysis of the series-machine system in the

seminal work [10] and [11]. However, almost all existing researches focus on the efficiency analy-

sis of series-machine systems under type-I failure mechanisms (i.e., ODF-I and TDF-I). The reason

is that, on the basis of some assumptions, the efficiency of the series-machine system under type-II

failure mechanisms (i.e., ODF-II and TDF-II) is approximated in practice by the efficiency under

corresponding type-I mechanisms. One of these assumptions usually used is that in the series-

machine system, only one machine could break down at any time (see [11] and monographs [2,3]).

Another assumption for the approximation analysis is that the machine cycle time is much shorter

than the mean time between failures [12], [13]. In addition to the approximation analysis, another

reason that existing literature on type-II failure mechanisms is very limited is the complexity of
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efficiency analysis under this type of failure mechanisms. Although it is easy to analyze the ef-

ficiency of the series-machine system under type-I failure mechanisms, it is very difficult under

type-II mechanisms. In [14], a bound analysis approach and an approximation approach were

developed to analyze the throughput of the series-machine system under ODF-II. In the bound

analysis approach, a numerical method was proposed to calculate the lower and upper bounds of

the expectation of the cycle completion time. Based on this method, the gap between the lower

and upper bounds could be as small as possible. In [2], a similar concept for the efficiency analysis

under ODF-II was also mentioned. In [7], an estimate of the efficiency under ODF-II was obtained

by an approximate approach.

Although type-I failure mechanisms are used for performance analysis, series-machine systems

usually operate under type-II failure mechanisms because these mechanisms make more sense and

are intuitively, more efficient. However, the accuracy of approximating type-II failure mechanisms

by type-I may be unacceptable for efficiency analysis, especially when there are a lot of series

machines and efficiencies of the machines are not close to 1 (which will be demonstrated in Section

5). Thus, this paper intends to analyze the efficiency of the series-machine system under type-II

failure mechanism. Due to space limitations, we focus on the analysis under ODF-II.

In this paper, we propose an approach to investigate the efficiency of the series-machine system

under ODF mechanisms. It can also be used to analyze the series-machine systems under TDF

mechanisms. As in the literature, for ODF-I, we obtain closed-form expressions of the efficiency.

While for ODF-II, it is very hard to derive closed-form expressions. Thus, we derive limit bounds

of the efficiency analytically and develop an algorithm to numerically calculate the efficiency under

ODF-II.

The main contribution of this paper is as follows: it analyzes limit bounds of the efficiency

of the series-machine system under ODF-II and develops an algorithm to calculate the efficiency;

it preliminarily investigates some properties of the efficiency under ODF-II, which may provide

some insights for deriving closed-form analytical expressions of the efficiency.

The remainder of the paper is organized as follows: In Section 2, the series-machine system

investigated in this paper is modeled and an approach for efficiency analysis is proposed. Based on

this approach, the efficiency of the series-machine system under ODF-I is analyzed. The efficiency
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under ODF-II is analyzed in Section 3, where limit bounds of the efficiency are derived. In Section

4, an algorithm for estimating the efficiency under ODF-II is developed and based on the algorithm,

the limit bounds of the efficiency are numerically verified. Discussions and insights are presented

in Section 5. The conclusions and topics for future work are addressed in Section 6. Proofs of

theorems are provided in the Appendix.

2 Modeling of Series-Machine System and Approach to Effi-

ciency Analysis

In Subsection 2.1, we will model the series-machine system investigated in this paper. In Subsec-

tion 2.2, an approach to analyze the efficiency of the series-machine system is proposed and based

on this approach, the efficiency under ODF-I is analyzed.

2.1 Model

We make the following assumptions for the series-machine system investigated in this paper:

(i) The system consists of N machines, m1,m2, . . . ,mN , which are connected in series without

buffering.

(ii) The cycle time of machine mi, i = 1, 2, . . . ,N, is denoted as τi.

(iii) All machines are unreliable and are characterized by the reliability model, i.e., continuous

random variables that define machine’s Time Between Failures (TBF) and Time To Repair

(TTR). Mean values of TBF and TTR are Mean Time Between Failures (MTBF) and Mean

Time To Repair (MTTR), respectively. All random variables are mutually independent. The

efficiency of machine mi, i = 1, 2, . . . ,N, is ei = MTBFi
MTBFi+MTTRi

.

(iv) All series machines have the same failure mechanism, which is either Operation-Dependent-

Failures-I (ODF-I) or Operation-Dependent-Failures-II (ODF-II).
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(v) All series machines process jobs in pace with each other, i.e., at the beginning of a processing

cycle, all machines start to process jobs; when all of them complete the processing, jobs are

synchronously moved to the next adjacent machine.

2.2 Analysis approach

Although the efficiency of the series-machine system under ODF-I has been analyzed in the litera-

ture, e.g., [2] and [3], existing methods are not applicable to analyze the efficiency under ODF-II.

In the following, we propose an approach for the efficiency analysis and verify its effectiveness

under ODF-I.

Denote the maximum value of the cycle times as τmax, i.e.,

τmax = max
16i6N

τi. (2.1)

Let Y denote the cycle completion time of the series-machine system. Since the series machines

process jobs in pace with each other (see assumption (v) in Subsection 2.1), Y is the maximum

completion time of the series machines. Clearly, it is a random variable because of random failures

and repairs of the machines. Then, based on the definitions of throughput and capacity in [7], the

throughput and capacity of the series-machine system can, respectively, be expressed as

TP =
1

EY[Y]
, c =

1
τmax

. (2.2)

Thus, based on the definition of efficiency in [7], the efficiency of the series-machine system is

E =
TP
c

=
τmax

EY[Y]
. (2.3)

To derive the efficiency of the series-machine system, we need to calculate the denominator in

(2.3), i.e., the average cycle completion time EY[Y]. In the following, we verify the effectiveness

of the above approach.

Under ODF-I, the breakdown of a machine will make all the other series machines forced
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down. In other words, there is no overlapping between the operational time of a machine and

downtimes of the other machines. Since a machine could break down only when it is operational,

downtimes of all machines are non-overlapping, which can be observed in Figure 1.2. Thus, the

cycle completion time Y of the series-machine system can be expressed as the sum of two parts:

the necessary processing time τmax and the total downtime in a processing cycle of the series-

machine system. For machine mi, i = 1, 2, . . . ,N, the average downtime in a processing cycle is

MTTRi
MTBFi

τi, where MTBFi and MTTRi are Mean Time Between Failures and Mean Time To Repair of

mi, respectively. Therefore,

EY[Y] =τmax +

N∑

i=1

MTTRi

MTBFi
τi

=τmax +

N∑

i=1

1 − ei

ei
τi

(2.4)

and thus, based on (2.3), the efficiency of the series-machine system defined by model (i)-(v) under

ODF-I is

Eod f 1 =
τmax

τmax +
N∑

i=1

1−ei
ei
τi

. (2.5)

The efficiency in (2.5) is in accordance with the result in [2] and [3], which indicates the effective-

ness of the approach for efficiency analysis of the series-machine system.

3 Efficiency Analysis under Operation-Dependent-Failures-II

Using the proposed approach in Subsection 2.2, the efficiency of the series-machine system could

be derived by analyzing the average cycle completion time EY[Y]. However, it is extremely hard to

calculate EY[Y] analytically under ODF-II because downtimes of machines may overlap with each

other. In the following, we will present the expression of EY[Y]. Since it is difficult to calculate

its exact value, we derive limit bounds for it. Based on the bounds of EY[Y], we obtain lower and

upper bounds of the efficiency of the series-machine system under ODF-II.

Inspired by the analysis method in [14], we now provide the expression of EY[Y]. Let Wi,

i = 1, 2, . . . ,N, denote the number of failures of machine mi in a processing cycle. (Clearly,

the values of Wi’s are non-negative integers.) Corresponding repair times are denoted by Xi j,
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i = 1, 2, . . . ,N, j = 1, 2, . . . ,Wi. Thus, the completion time (i.e., the processing time and repair

times) of mi to process a job is τi+
Wi∑
j=1

Xi j. Since the breakdown of a machine cannot make any other

series machines forced down (see Figure 1.2), the cycle completion time of the series-machine

system can be expressed as

Y = max
16i6N

(
τi +

Wi∑

j=1

Xi j

)
. (3.1)

In expression (3.1), the distribution of Wi, i = 1, 2, . . . ,N, depends on τi and on the distribution of

TBF of machine mi; TBF and TTR (i.e., Xi j’s) follow general continuous distributions.

Since it is hard to calculate the exact value of EY[Y], in the following, we derive limit bounds for

it. For this purpose, we first investigate the limits of EY[Y] based on the assumption of exponential

distributions of TBF and deterministic repair times, and then prove for general distributions of TBF

and TTR, EY[Y] is bounded by the above limits.

To derive the limits of EY[Y], for the sake of simplicity, we assume that TBF of mi, i =

1, 2, . . . ,N, are independent and identically distributed with an exponential distribution with pa-

rameter λi and repair times are deterministic. That is to say, Wi ∼ Poisson(λiτi) and Xi j ≡ 1
µi

,

where failure rate λi = 1
MTBFi

, repair rate µi = 1
MTTRi

, and MTBFi and MTTRi are Mean Time Between

Failures and Mean Time To Repair of machine mi, respectively. Thus, expression (3.1) is rewritten

as

Y = max
16i6N

(
τi +

Wi

µi

)
, (3.2)

where Wi ∼ Poisson(λiτi), i = 1, 2, . . . ,N, and Wi’s are independent.

Having λi’s and µi’s go to zero or infinity while ei fixed, we could derive the limits of EY[Y].

To do that, we choose 2N constants (λ∗1, µ
∗
1, λ

∗
2, µ

∗
2, . . . , λ

∗
N , µ

∗
N) such that µ∗i

λ∗i +µ∗i
= ei and let λi = αλ∗i

and µi = αµ∗i , where α ∈ (0,+∞). Now expression (3.2) becomes

Yα = max
16i6N

(
τi +

Wi

αµ∗i

)
, (3.3)

where Wi ∼ Poisson(αλ∗i τi), i = 1, 2, . . . ,N. As a result, we obtain:

Proposition 3.1 When α goes to zero (i.e., all failure and repair rates go to zero), the mean
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value of the cycle completion time Yα in (3.3) goes to τmax +
N∑

i=1

1−ei
ei
τi. Mathematically,

lim
α→0+

EYα[Yα] = τmax +

N∑

i=1

1 − ei

ei
τi. (3.4)

Proof: See the Appendix.

Proposition 3.2 When α goes to infinity (i.e., all failure and repair rates go to infinity), the

mean value of the cycle completion time Yα in (3.3) goes to max
16i6N

τi
ei

with probability one. Mathe-

matically,

lim
α→+∞

EYα[Yα] = max
16i6N

τi

ei
, w.p.1. (3.5)

Proof: See the Appendix.

Lemma 3.1 The right-hand sides of equations (3.4) and (3.5) are, respectively, upper and

lower bounds of the mean value of the cycle completion time Y in (3.1), i.e.,

max
16i6N

τi

ei
6 EY[Y] 6 τmax +

N∑

i=1

1 − ei

ei
τi. (3.6)

Proof: See the Appendix.

Remark 3.1 Although equations (3.4) and (3.5) are derived under the assumption of expo-

nential distributions of time between failures and constant repair times, it is clear that the proof

of Lemma 3.1 is independent of distributions of TBF and TTR. Therefore, Lemma 3.1 holds for

general reliability models.

Theorem 3.1 The efficiency of the series-machine system defined by model (i)-(v) under ODF-

II is bounded by
τmax

τmax +
N∑

i=1

1−ei
ei
τi

6 Eod f 2 6
τmax

max
16i6N

τi
ei

. (3.7)

Based on (2.3), it follows from Lemma 3.1 that (3.7) holds. Note that the lower bound is the

efficiency of the series-machine system under ODF-I.
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Remark 3.2 From (3.7) one can observe that if for some i′, ei′ 6 1 and τi′ = τmax, while

ei = 1, ∀i = 1, 2, . . . ,N, i , i′, then the lower and upper bounds of Eod f 2 are both equal to ei′ , and

thus, the efficiency Eod f 2 = ei′ . Clearly, a special case is that ei′ = 1. In other words, if ei = 1,

∀i = 1, 2, . . . ,N, the lower and upper bounds are 1, and the efficiency Eod f 2 = 1.

Remark 3.3 From (3.7), we can see that Eod f 1 is a lower bound of Eod f 2. This can be intuitively

explained under the assumption of the exponential reliability model of machines: when failure rates

λi’s and repair rates µi’s are close to 0, downtimes of different series machines hardly overlap with

each other, which implies that the average cycle completion time under ODF-II is close to that

under ODF-I. As for the upper bound of Eod f 2, we can see that if τi = τ, i = 1, 2, . . . ,N, then

Eod f 2 6 min
16i6N

ei, which intuitively makes sense.

4 Numerical Verification of Limit Bounds of the Efficiency

Although Theorem 3.1 provides the lower and upper bounds, no closed-form expressions of Eod f 2

are derived so far (note that the error of the estimate in [7] may be large). To precisely estimate

Eod f 2 in terms of (2.3), based on the mechanism of ODF-II, we propose a numerical method to

calculate the expected cycle completion time, EY[Y]. This method is shown in Algorithm 1.

The output of the above algorithm, Y , is an estimate of EY[Y]. In this algorithm, N, as before,

is the number of series machines, T the total number of processing cycles simulated, ki the number

of failures of machine mi, and R f
i represents mi’s residual uptime to its next failure.

Algorithm 1 can be used to verify the generalization of (3.7) for all reliability models. To do

that, we numerically verify (3.6) by estimating the expected cycle completion time (i.e., EY[Y]) of

the series-machine system. For this purpose, 5, 000 series-machine systems are constructed with

parameters selected randomly and equiprobably from the following sets:

N ∈ [2, 10], τ ∈ {0.9, 0.95, 1, 1.05, 1.1},

e ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99},

α ∈ {0.1, 1, 10, 100}, MTTR∗ ∈ {0.5, 1, 1.5, 2, 2.5},

(4.1)
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Algorithm 1 Calculation of Expected Cycle Completion Time under ODF-II
1: ki ← 1, ∀i ∈ {1, 2, . . . ,N}
2: Y ← 0, t ← T
3: for i = 1 : N do
4: Generate TBFiki following the specified distribution of Time Between Failures
5: Generate TTRiki following the specified distribution of Time To Repair
6: R f

i ← TBFiki

7: end for
8: while t > 0 do
9: t ← t − 1

10: for i = 1 : N do
11: S r,new

i ← 0
12: while R f

i < τi do
13: S r,new

i ← S r,new
i + TTRiki

14: ki ← ki + 1
15: Generate TBFiki following the specified distribution of Time Between Failures
16: Generate TTRiki following the specified distribution of Time To Repair
17: R f

i ← R f
i + TBFiki

18: end while
19: S i = Y + τi + S r,new

i , R f
i ← R f

i − τi

20: end for
21: Y ← max

16i6N
S i

22: end while
23: Y ← Y

T

where α and MTTR∗ are used to calculate MTTR in terms of MTTR = MTTR∗
α

.

As for the reliability models, we consider exponential distribution and Weibull, gamma, and

log-normal distributions with various coefficient of variation (CV). For the sake of simplicity, dis-

tributions and CV’s of all times between failures and repair times of machines in a series-machine

system are assumed to be identical. The reliability model and CV are selected randomly and

equiprobably from the following set:

Reliability model ∈ {Exp, Weibull, gamma, log-normal},

CV ∈ {0.1, 0.25, 0.5, 0.75, 1}.
(4.2)

The analysis is confined to CV 6 1 since, most of manufacturing equipment has CV’s of times

between failures and repair times less than 1 (see [15] and [16]).

The expected cycle completion time of the series-machine system is estimated based on Algo-
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rithm 1 and the estimation result with 99% confidence level is denoted as [ȲLB
od f 2, Ȳ

UB
od f 2]. To verify

(3.6), we denote

LBod f 2 = max
16i6N

τi

ei
, UBod f 2 = τmax +

N∑

i=1

1 − ei

ei
τi, (4.3)

and define

ε =
∣∣∣min(ȲLB

od f 2 − LBod f 2, 0) + min(UBod f 2 − ȲUB
od f 2, 0)

∣∣∣ . (4.4)

Clearly, if ε = 0, then the interval [ȲLB
od f 2, Ȳ

UB
od f 2] locates in [LBod f 2,UBod f 2], which implies that

EY[Y] is in [LBod f 2,UBod f 2] with a probability greater than 99%; if ε is very small, say, less than

4 × 10−5, then either ȲLB
od f 2 is a little less than LBod f 2 or ȲUB

od f 2 a little greater than UBod f 2, which

implies that EY[Y] is in [LBod f 2,UBod f 2] with a probability close to 99%. Taking into consideration

that the estimate based on simulations is noisy, we regard EY[Y] locates in [LBod f 2,UBod f 2] (in

other words, (3.6) holds) if

ε < 4 × 10−5. (4.5)

The expected cycle completion time of these constructed 5, 000 series-machine systems has

been estimated using the following procedure: 20 repetitions of Algorithm 1 were carried out and

for each repetition, the simulation run for 200, 000, 000 processing cycles (i.e., T in Algorithm 1

was 200, 000, 000). As a result, we have:

Numerical Fact 4.1 For all 5, 000 series-machine systems constructed in terms of (4.1) and

(4.2), ε = 0 for 4970 of the systems; for the other 30 systems, ε < 4 × 10−5. Thus, (3.6) holds for

all 5, 000 systems analyzed, which implies (3.7) holds.

5 Discussions and Insights

In this section, we compare the efficiency of the series-machine system under ODF-I and ODF-II

and get some insights from the efficiency analysis.

From (2.5), we can see that under ODF-I, the efficiency of the series-machine system does not

depend on failure and repair rates. In other words, for a given N, if cycle times and efficiencies

of machines are fixed, the efficiency of the series-machine system under ODF-I is a constant.
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However, this conclusion does not hold for ODF-II (see (3.4) and (3.5)). Although the exact value

of the real efficiency under ODF-II is hard to obtain, Theorem 3.1 indicates that

Eod f 1 6 Eod f 2. (5.1)

Inequality (5.1) indicates that, Eod f 1 is a lower bound of Eod f 2. Since it is hard to analytically

calculate Eod f 2, in practical applications, Eod f 1 is usually used to approximate it. The accuracy of

this approximation is very high for systems with small N, large relative MTTR (i.e., large MTTR
τ

), and

e close to 1, which could be observed in Table 5.1 (see the case that N = 2, e = 0.99, MTTR = 5),

where Eod f 2 is calculated based on Algorithm 1. However, for systems with large N and small e

and relative MTTR, the approximation error could be as large as 49.93% (see the case that N = 8,

e = 0.7, MTTR = 0.25). Based on the results in Table 5.1, one can expect that the approximation

accuracy is much worse for larger N and smaller e and relative MTTR. Thus, we should carefully

use the efficiency approximation in performance analysis and continuous improvement of practical

systems.

Table 5.1: Efficiency of the series-machine system with identical machines (τ = 1)

N e MTTR Eod f 1 Eod f 2

2
0.7

0.25 0.5385 0.5998
5 0.5385 0.5437

0.99
0.25 0.9802 0.9804

5 0.9802 0.9803

8
0.7

0.25 0.2258 0.4510
5 0.2258 0.2510

0.99
0.25 0.9252 0.9298

5 0.9252 0.9256

From (3.7), we can see that when ei = 1, ∀i = 1, 2, . . . ,N, the efficiency of the series-machine

system under both ODF-I and ODF-II are 1. In other words, if all machines are (nearly) reliable,

operations of the system under both failure mechanisms are (almost) identical, which can also be

observed in Figure 1.2 and Table 5.1.
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6 Conclusions and Future Work

The efficiency of the series-machine system is important in production systems engineering. How-

ever, almost all researches focus on type-I failure mechanisms (i.e., ODF-I and TDF-I), under

which the breakdown of a machine makes all other series machines forced down. Nevertheless,

type-II failure mechanisms (i.e., ODF-II and TDF-II), under which the breakdown of a machine

does not make any other series machines forced down, are more common in the industry. In this

paper, we proposed an approach to investigate the efficiency of the series-machine system under

ODF-I and ODF-II mechanisms. Although it is very hard to derive the closed-form expression of

the efficiency under ODF-II, we analyzed its lower and upper bounds by limit analysis and devel-

oped an algorithm to calculate the efficiency. The results show that, ODF-II is more efficient than

ODF-I.

The future work will concentrate on the efficiency analysis under TDF-II mechanism and fitting

closed-form analytical expressions of the efficiency under type-II failure mechanisms. Based on

these expressions, not only we can easily calculate the efficiency of the series-machine system, but

also analytically investigate the impact of system parameters on the efficiency without using the

time-consuming algorithms.
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A Appendix: Proofs of Theorems

A.1 Proof of Proposition 3.1

Proof: Due to space limitation, we prove it for N = 2 and τ1 = τ2 = τ. The general case is proved

similarly.
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Based on expression (3.2) and the total probability formula, we have

EY[Y] − τ

=

∞∑

m=0

∞∑

n=0

P{W1 = m,W2 = n}max
( m
µ1
,

n
µ2

)

=

∞∑

m=0

∞∑

n=0

P{W1 = m}P{W2 = n}
( m
µ1

+
n
µ2

)
−
∞∑

m=0

∞∑

n=0

P{W1 = m}P{W2 = n}min
( m
µ1
,

n
µ2

)

=
EW1[W1]
µ1

+
EW2[W2]
µ2

−
∞∑

m=1

∞∑

n=1

P{W1 = m}P{W2 = n}min
( m
µ1
,

n
µ2

)

=

2∑

i=1

1 − ei

ei
τ −

∞∑

m=1

∞∑

n=1

(λ1τ)m

m!
(λ2τ)n

n!
e−(λ1+λ2)τ ·min

( m
µ1
,

n
µ2

)
.

(A.1)

Replacing λi and µi by αλ∗i and αµ∗i , respectively, we have

EYα[Yα] − τ

=

2∑

i=1

1 − ei

ei
τ −

∞∑

m=1

∞∑

n=1

αm+n−1 (λ∗1τ)m

m!
(λ∗2τ)n

n!
· e−α(λ∗1+λ∗2)τ ·min

( m
µ∗1
,

n
µ∗2

)
.

(A.2)

Clearly,

lim
α→0+

(EYα[Yα] − τ) =

2∑

i=1

1 − ei

ei
τ, (A.3)

i.e.,

lim
α→0+

EYα[Yα] = τ +

2∑

i=1

1 − ei

ei
τ. (A.4)

�

A.2 Proof of Proposition 3.2

Proof: To prove the proposition, we construct a sub-series of Yα and prove it converges to max
16i6N

τi
ei

with probability 1.

Let S i,α = τi + Wi
αµ∗i

, where Wi ∼ Poisson(αλ∗i τi). We construct N series {S i,k}∞k=1, where S i,k

is S i,α with k = dαe and b = k − α, i = 1, 2, . . . ,N, k = 1, 2, . . ., and b ∈ [0, 1). Clearly, there

is a one-to-one mapping between α and (k, b). Based on {S i,k}∞k=1, we construct {Yk}∞k=1, where

14



Yk = max
16i6N

S i,k. Thus, {Yk}∞k=1 is a sub-series of Yα and for any fixed b, lim
α→+∞

Yα = lim
k→∞

Yk. Hence, to

prove the proposition, we only need to prove that, ∀b ∈ [0, 1),

P
{

lim
k→∞

Yk = max
16i6N

τi

ei

}
= 1. (A.5)

To prove (A.5), we need an auxiliary inequality of S i,k. Clearly,

E[S i,k] = τi +
λ∗i
µ∗i
τi =

τi

ei
(A.6)

and

Var[S i,k] =
λ∗i τi

(k − b)(µ∗i )2 =
1 − ei

ei

τi

(k − b)µ∗i
. (A.7)

Based on Chebyshev’s inequality [17] and taking into account the above two equations, we have

P
{ ∣∣∣∣∣S i,k − τi

ei

∣∣∣∣∣ > ε
}
6

Var[S i,k]
ε2 =

1 − ei

ε2ei

τi

(k − b)µ∗i
,∀ε > 0. (A.8)

Then, we prove equation (A.5). Without loss of generality, assume τ1
e1

= max
16i6N

τi
ei

. Thus, we have

P
{ ∣∣∣∣∣Yk − max

16i6N

τi

ei

∣∣∣∣∣ > ε
}

=P
{ ∣∣∣∣∣max

16i6N
S i,k − τ1

e1

∣∣∣∣∣ > ε
}

=P
{

max
16i6N

S i,k >
τ1

e1
+ ε

}
+ P

{
max
16i6N

S i,k <
τ1

e1
− ε

}

=P
{ N⋃

i=1

{
S i,k >

τ1

e1
+ ε

}}
+ P

{ N⋂

i=1

{
S i,k <

τ1

e1
− ε

}}

6
N∑

i=1

P
{
S i,k >

τ1

e1
+ ε

}
+ P

{
S 1,k <

τ1

e1
− ε

}

6P
{ ∣∣∣∣∣S 1,k − τ1

e1

∣∣∣∣∣ > ε
}

+

N∑

i=2

P
{
S i,k >

τi

ei
+ ε

}

6
N∑

i=1

P
{ ∣∣∣∣∣S i,k − τi

ei

∣∣∣∣∣ > ε
}
,

(A.9)
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i.e.,

P
{ ∣∣∣∣∣Yk − max

16i6N

τi

ei

∣∣∣∣∣ < ε
}

>1 −
N∑

i=1

P
{ ∣∣∣∣∣S i,k − τi

ei

∣∣∣∣∣ > ε
}

>1 −
N∑

i=1

1 − ei

ε2ei

τi

(k − b)µ∗i

=1 − 1
k − b

N∑

i=1

(1 − ei)τi

ε2eiµ
∗
i
.

(A.10)

As a result, ∀b ∈ [0, 1), we have

lim
K→∞

K∑
k=1

P
{ ∣∣∣∣∣Yk − max

16i6N

τi
ei

∣∣∣∣∣ < ε
}

K

> lim
K→∞

K∑
k=1

(
1 − 1

k−b

N∑
i=1

(1−ei)τi
ε2eiµ

∗
i

)

K

=1 − lim
K→∞

1
K

N∑

i=1

(1 − ei)τi

ε2eiµ
∗
i

K∑

k=1

1
k − b

=1,

(A.11)

which implies
∞∑

k=1

P
{ ∣∣∣∣∣Yk − max

16i6N

τi

ei

∣∣∣∣∣ < ε
}

= lim
K→∞

K∑

k=1

P
{ ∣∣∣∣∣Yk − max

16i6N

τi

ei

∣∣∣∣∣ < ε
}

=∞.

(A.12)

Based on Borel-Cantelli Lemma [17], equation (A.5) holds, which implies

P
{

lim
α→+∞

Yα = max
16i6N

τi

ei

}
= 1. (A.13)

Finally, we prove equation (3.5). Based on the monotone convergence theorem [18], we obtain

lim
α→+∞

EYα[Yα] = E
[

lim
α→+∞

Yα
]

= max
16i6N

τi

ei
, w.p.1. (A.14)
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A.3 Proof of Lemma 3.1

Proof: First, we prove the right-hand side inequality. Let S i = τi +
Wi∑
j=1

Xi j, i = 1, 2, . . . ,N. Since

Wi∑
j=1

Xi j is the total repair time of mi in its cycle time τi, its mean value is

E
[ Wi∑

j=1

Xi j

]
=

MTTRi

MTBFi
τi =

1 − ei

ei
τi, (A.15)

i.e., ∀i = 1, 2, . . . ,N,

ES i[S i − τi] =
1 − ei

ei
τi, ES i[S i] =

τi

ei
. (A.16)

As a result, we have

EY[Y] − τmax

=ES i

[
max
16i6N

S i

]
− τmax

=ES i

[
max
16i6N

(S i − τmax)
]

6ES i

[
max
16i6N

(S i − τi)
]

6ES i

[ N∑

i=1

(S i − τi)
]

=

N∑

i=1

1 − ei

ei
τi.

(A.17)

Then, we prove the left-hand side inequality. Since

max
16i6N

S i > S i′ , ∀i′ ∈ {1, 2, . . . ,N}, (A.18)

we have

ES i

[
max
16i6N

S i

]
> ES i′ [S i′] =

τi′

ei′
, ∀i′, (A.19)
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which implies

EY[Y] = ES i

[
max
16i6N

S i

]
> max

16i6N

τi

ei
. (A.20)

�
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