Theory of Parallel Computing 2015 Yinliang Zhao (4R 5%) Xi'an Jiaotong University

MapReduce LK JHT-LISP (Scheme)

(map f list [list, list; ...])
e (map square ‘(12 3 4))

KRR FAT gAY ~(14916)

MapReduce L
 (reduce fid list)
* (reduce+0°‘(14916))
—(+16(+9(+4(+10))))
—-30
¢ (reduce + 0 (map square (map — 11 12))))
REARIFATMIERL L. MapReduce MapReduce
* MapReducese— P = & AT 4 J& 1) i A AR Y o IXERLE:
— IR R R R T RS R B AT AT R AL R RIS
Jﬁ?& (>1TB)
. 1994$MGoogIeT%$#%ﬁﬁf, ﬁrﬂli CarEN% — FEARME
HiApache Hadoop Fii A H 15k 2 — Jff W MapReduce (i
v . — BTy RE
* MapReduceili Ny R Edi A B 3 2B
—a%pfgﬁfuﬁgeﬁﬁ ~ — MapReduce 11 5 12 255
— REETE — 5 ER S AER L

— fei b
M TR S DL B R R G

http://gr.xjtu.edu.cn/web/zhaoy 1

Theory of Parallel Computing 2015

Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Problem Scope

MapReduce (4 4b 2 1) g AR AR Y
- &G THR S

MapReducef{J e /) RIMAE AT R E R A ET-H)
THEAL, T HBANEE LA

WHEEFZK?

— TBELPBZL Web%#E

— BB AE A RN RO R

— [k, A O RS (WIGFS, HDFS

Isolated Tasks

— MapReduce |5 TAE L8R 2 AN ISTAT S5 I 5 2
— DARR B 7 sl e B — M5 T e 4 SE o B TAE

o MBS ERIEER EEZR T YRR R

— The communication overhead required to keep the
data on the nodes synchronized at all times would
prevent the model from performing reliably and
efficiently at large scale

AL, Lt A 3P
i RN A
MapReduce Uit NiB I ELE — T 2 5 S L AT
A KRR

it I 1000-CPU WA EIER & 5t, @ RKT 10004 H.CPU B
250 DU AZ LA

MapReduce 4 5/N H A B AR HLES IRAE — il O — DA K
5 AR R

Bl oA

¢ Ina MapReduce cluster, data is distributed to all the nodes of the
cluster as it is being loaded in

¢ Anunderlying distributed file systems (e.g., GFS) splits large data
files into chunks which are managed by different nodes in the
cluster

et

Node 2 Node 3

¢ Even though the file chunks are distributed across several machines,
they form a single namesapce

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015

MapReducef ¥

In MapReduce, chunks are processed in
isolation by tasks called Mappers

ap Phase

as intermediate outputs (I0s) and are brought = |
into a second set of tasks called Reducers

The outputs from the mappers are denoted mappers (o1)
vV
101

The process of bringing together 10s into a set _ ' shufting bata /
of Reducers is known as shuffling process

The Reducers produce the final outputs (FOs)

Overall, MapReduce breaks the data flow into two phases,
map phase and reduce phase

Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Bl: GEitinEl A

The averall MapReduce waord eounl process

Input Splinting Mapping Shutfling Reducing Final result
— Baar, | ~| Boar, 2
Deer, ! = Bear, 1
Deer Bear River |- ~ Bear, 1
- River, 1 *
= w Cari 7
- Gar, 1 Car, 3 Bear, 2
Dear Bear River —— Car, 1 : Car, 1 =] Car, 3
Car Car River @| = Car i Doar, 2
Dear Car Boar - Rivar, 1 River, 2
e Deer, 2 -
ey L —
Deer, 1 =
‘*t Deer Car Bear = Gart N e P
Bear, 1 \J River, 1 | River, 2 1~
R —— Fiver, 1 4
function map(name, document) function reduce (word, List partialCounts)

for each word in document sum =0

emit (word, 1) for each pc in partialCounts
sum += pc
emit (word, sum)

B 1E

— The programmer in MapReduce has to specify two functions,
the map function and the reduce function that implement the
Mapper and the Reducer in a MapReduce program

— In MapReduce data elements are always structured as
key-value (i.e., (K, V)) pairs
— The map and reduce functions receive and emit (K, V) pairs

Input Splits Intermediate Outputs Final Outputs

))
Pairs

http://gr.xjtu.edu.cn/web/zhaoy

Partitions

= In MapReduce, intermediate output values are not usually
reduced together

= All values with the same key are presented to a single
Reducer together

= More specifically, a different subset of intermediate key space is assigned
to each Reducer : hash(k’) mod R

= These subsets are known as partitions

Different colors represent

afrentiespoercay) HHHEN EEEE N
from different Mappers

Partitions are the input to Reducers

Theory of Parallel Computing 2015

MapReduce] ¥ 4% #i +h

3
T

MapReduce assumes a tree style network topology
Nodes are spread over different racks embraced in one or many
data centers
R B — R AR T8 5 B AT TTE M 28 H0 4 TR AR AL E A O
— For example, nodes that are on the same rack will have higher
bandwidth between them as opposed to nodes that are off-rack

Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Hadoop

= Since its debut on the computing stage, MapReduce has frequently
been associated with Hadoop

= Hadoop is an open source implementation of MapReduce and is
currently enjoying wide popularity

= Hadoop presents MapReduce as an analytics engine and under the
hood uses a distributed storage layer referred to as Hadoop
Distributed File System (HDFS)

= HDFS mimics Google File System (GFS)

MapReduce

In this part, the following concepts of MapReduce will be
described:

= MapReduce ¥ i

Hadoop MapReduce: A Closer Look

Node 1 Node 2

http://gr.xjtu.edu.cn/web/zhaoy

Files loaded from local HDFS store Files loaded from local HDFS store

InputFormat InputFormat

RecordReaders RR RecordReaders

Input (K, V) pairs Input (K, V) pairs

Intermediate (K, V) pairs Intermediate (K, V) pairs

Shuffling
Partitioner Process Partitioner
—
Intermediate
(KV) pairs
exchanged by

Reduce all nodes Reduce

Final (K, V) pairs Final (K, V) pairs

OutputFormat

OutputFormat

Writeback to local
HDFS store

Writeback to local
HDFS store

Theory of Parallel Computing 2015 Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Input Files InputFormat Types

= |nput files are where the data for a MapReduce task is = Several InputFormats are provided with Hadoop:
initially stored

= The input files typically reside in a distributed file system

TextinputFormat Default format; reads The byte offset The line contents
(e.g. HDFS) lines of text files of the line
= The format of input files is arbitrary KeyValuelnputFormat :?me§ lines into (K, Er\:el'fYthingbup to T:elll'emainder of
pairs the first tal the line
character
® Line-based IOg files SequenceFilelnputFormat A Hadoop-specific user-defined user-defined
L] Binary files == high-performance

- . binary format
= Multi-line input records

= Or something else entirely

InputFormat Input Splits

= How the input files are split up and read is defined by = An input split describes a unit of work that comprises a single map task in
the InputFormat a MapReduce program

= By default, the InputFormat breaks a file up into 64MB splits

= |nputFormat is a class that does the following: Files loaded from local HDFS store
Fes oaded fom ocal WDFS tore = By dividing the file into splits, we allow
= Selects the files that should be used e :ﬁ;’?r:al ;T::I’I)etIaSkS to operate on a single
for input P
- D?'fllnes the InputSplits that break = |[f the file is very large, this can improve
afile

performance significantly through parallelism
= Provides a factory for RecordReader objects that
read the file = G4 map AT BT AN E Csplit)

http://gr.xjtu.edu.cn/web/zhaoy 5

Theory of Parallel Computing 2015

RecordReader

= The input split defines a slice of work but does not describe how to access
it

= The RecordReader class actually loads data from its source and converts it
into (K, V) pairs suitable for reading by Mappers

Files loaded from local HDFS store

= The RecordReader is invoked repeatedly
on the input until the entire split is
consumed

= Each invocation of the RecordReader & & &

leads to another call of the map function
defined by the programmer

Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Partitioner

Each mapper may emit (K, V) pairs to any partition

Files loaded from local HDFS store

Therefore, the map nodes must all agree on

where to send different pieces of

intermediate data

The partitioner class determines which $ $ $
partition a given (K,V) pair will go to ? ?

The default partitioner computes a hash value for
a given key and assigns it to a partition based on
this result

Partitioner

Reduce

Mapper and Reducer

The Mapper performs the user-defined work of the first phase of the
MapReduce program

Files loaded from local HDFS store

++:

A new instance of Mapper is created for each split

The Reducer performs the user-defined
work of the second phase of the MapReduce
program

HBFpartition#H Bl — T KIReducer sl

I*He
I%

Xt FliRtZaReducer Hpartition #7174 — T key,
Reducer #5 #1411 —k

Reduce

http://gr.xjtu.edu.cn/web/zhaoy

Sort

£/~ Reducer 1 37)45 Files loaded from local HDFS store

Hrhlagg (A2 REERRLAY

HAGE S LA (intermediate keys)
GatE ST,
SR P45 Reducer

I

Partitioner

Sort

Reduce

I

Theory of Parallel Computing 2015 Yinliang Zhao (4R 5%) Xi'an Jiaotong University

OutputFormat Equi-Join in MapReduce

= The OutputFormat class defines the way (K,V) pairs
produced by Reducers are written to output files Files loaded from local HDFS store + Join condition: S.A=T.A
+ Mapl(s) = (s.A, s); Map(t) = (LA, t)

* Reduce computes Cartesian product of set of S-tuples and set of T-tuples with

= The instances of OutputFormat provided by same key

Hadoop write to files on the local disk or in HDFS DFS nodas Mappers Feducers [OFS nodes

= Several OutputFormats are provided by Hadoop:

l.; - v S 2N m \,

2!5_, 2)|

OutputFormat Description

TextOutputFormat Default; writes lines in "key \t value" — — \ , .
Partitioner . \ . g .
format . . N :
~y2 p A, A
SequenceFileOutputFormat Writes binary files suitable for ri;j '] N o m 1L2 listiv2)) :l'_.,EJ_, U
reading into subsequent MapReduce L B ‘m ¥
Jobs (k1,41 "'ﬂ ‘_2 lt,2)—2, [“ﬂ’“l 2] sy
Reduce Ity 2 list(k2 v2) ~
NullOutputFormat Generates no output files
OutputFormat
Transter Map Trancher Reduce Transher
Input Map Cutput Feduce Oulpul

Example: Equi-Join MapReduce

: = In this part, the following concepts of MapReduce will be
* Given two data sets S=(s,,s,,...) and T=(t,,t,,...) described:

of integers, find all pairs (si,tj) where s.A=t.A
* Can only combine the s;and t; in Reduce

— To ensure that the right tuples end up in the same . TR
Reduce invocation, use join attribute A as
intermediate key (k2)

— Intermediate value is actual tuple to be joined

* Map needs to output (s.A, s) for each S-tuple s
(similar for T-tuples)

http://gr.xjtu.edu.cn/web/zhaoy 7

Theory of Parallel Computing 2015 Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Combiner Functions MapReduce

* MapReduce applications are limited by the bandwidth available

on the cluster = |n this part, the following concepts of MapReduce will be

o [EEH/IMEBHATEEM (shuffle) HIEEE (mapfireduceff451a)) described:
¢ Hadoop allows the user to specify a combiner function (just like the
reduce function) to be run on a map output

v (BT combiner
output (1950, 0) output
(1950, 20) (1950, 20)

(1950, 10) = MapReduce (1 5 J 255

(LEGenD: |

*R = Rack

*N = Node

*MT = Map Task
*RT = Reduce Task
*Y = Year

«T = Temperature

Task Scheduling in MapReduce

= MapReduce adopts a master-slave architecture

Careful With Combiners

* Consider Word Count, but assume we Onl\l want * The master node in MapReduce is referred
words with count > 10 to as Job Tracker (IT)
— Reducer computes total word count, only outputs if
greater than 10 = Each slave node in MapReduce is referred

— Combiner = Reducer? No. Combiner should not filter toas Task Tracker (TT)

based on its local count!

= MapReduce adopts a pull scheduling strategy rather than

* Consider computing average of a set of numbers a push one
— Reducer should output average
— Combiner has to output {sum, count] pairs to allow = l.e., JT does not push map and reduce tasks to TTs but rather TTs pull them by

correct computation in reducer making pertaining requests

http://gr.xjtu.edu.cn/web/zhaoy 8

Theory of Parallel Computing 2015

Map and Reduce Task Scheduling

Every TT sends a heartbeat message periodically to JT encompassing a
request for a map or a reduce task to run

Map Task Scheduling:

= T satisfies requests for map tasks via attempting to schedule mappers in the
4T of their input splits (i.e., it considers locality)

. Reduce Task Scheduling:

= However, JT simply assigns the next yet-to-run reduce task to a requesting TT
regardless of TT’s network location and its implied effect on the reducer’s
shuffle time (i.e., it does not consider locality)

Yinliang Zhao (4R 5%) Xi'an Jiaotong University

Fault Tolerance in Hadoop

MapReduce can guide jobs toward a successful completion even when jobs are run
on a large cluster where probability of failures increases

The primary way that MapReduce achieves fault tolerance is through restarting
tasks

If a TT fails to communicate with JT for a period of time (by default, 1 minute in
Hadoop), JT will assume that TT in question has crashed

= If the job is still in the map phase, JT asks another TT to re-execute all
Mappers that previously ran at the failed TT

= |If the job is in the reduce phase, JT asks another TT to re-execute all Reducers
that were in progress on the failed TT

Job Scheduling in MapReduce

In MapReduce, an application is represented as a job
A job encompasses multiple map and reduce tasks

MapReduce in Hadoop comes with a choice of schedulers:

= The default is the FIFO scheduler which schedules jobs
in order of submission

= There is also a multi-user scheduler called the Fair scheduler which aims
to give every wuser a fair share of the cluster
capacity over time

http://gr.xjtu.edu.cn/web/zhaoy

Speculative Execution

A MapReduce job is dominated by the slowest task

MapReduce attempts to locate slow tasks (stragglers) and run redundant
(speculative) tasks that will optimistically commit before the
corresponding stragglers

This process is known as speculative execution
Only one copy of a straggler is allowed to be speculated

Whichever copy (among the two copies) of a task commits first, it
becomes the definitive copy, and the other copy is killed by JT

Theory of Parallel Computing 2015

Locating Stragglers

How does Hadoop locate stragglers?

Hadoop monitors each task progress using a progress score
between 0 and 1

If a task’s progress score is less than (average — 0.2), and the task has run for
at least 1 minute, it is marked as a straggler
A

T —:I v Not a straggler

Yinliang Zhao (4R 5%) Xi'an Jiaotong University

MapReduce

In this part, the following concepts of MapReduce will
be described:

= Comparison with existing techniques and models

Ps=2/3
T2 H E | x A straggler
%PS: 1/12 i
Progress Rate Example
2 min
Node 1 ‘ 1 task/min

Node 2 ‘ >< 3x slower

Node 3 ‘ ‘ 1.9x slower

Time (min)

http://gr.xjtu.edu.cn/web/zhaoy

4§45 MapReduce 1 JH A 2

MapReduce is characterized by:

1.

Its simplified programming model which allows the user to quickly
write and test distributed systems

. Its efficient and automatic distribution of data and workload across

machines

. Its flat scalability curve. Specifically, after a Mapreduce program is

written and functioning on 10 nodes, very little-if any- work is
required for making that same program run on 1000 nodes

40

10

Theory of Parallel Computing 2015 Yinliang Zhao (4R 5%) Xi'an Jiaotong University

WAF T 5L AE K Spark

7 Transharmatians ™. [5

5L 48 g REAR LN LE

Aspect Shared Memory Message Passing MapReduce
Communication Implicit (via Explicit Messages Limited and Implicit
loads/stores)
Synchronization Explicit Implicit (via Immutable (K, V) Pairs
messages) y
Hardware Support Typically Required None None . . o o N o
RD D& Spark (i 5 4 A< il G326t T35 A2 5 LU AL H WL RIBL 8% 2% 21 51002, 28 LR H i
Development Effort Lower Higher Lowest P, MCRARTF LR (Transformation) FHE{FE (Action) Xk
Tuning Effort Higher Lower Lowest . .
Spark# WAt E % X2 Key-Value, 3£ HadooptriffiSequence File,

H B 7 33 S RS Parquetix FE I B A% . Key-Valuetk 2Rt s e+ R i,
EEHEEZ S, IR AR, T 2R 2 SQLALERAR AR AR R, BT AR IR

A A TE F R 2, 24l Parquet B f7g s L Atttk key-Valued a{
Mo — R SRR RO KNI 5 e A, TR — MR SR A KR 1 1/3311/4

41

Google N &R 2 A F i HIA 5

o FHPARMIAZHALERE . @ PCHLAL A) R A S
— X864, BATLinuxIRIE RS WALHLAS. 2-4GBN AT
— R N AR, BRI I O E IR EE T

I, AHAIT N T W% BT 350 v i — 2

— EPREERE LTRSS, Fik, PLasiiEs s s
— BB A BIDERERY . — DA RS0 R 4
FH R4S PR AF A AE R Lo F A . SOt R 405 3
ﬁﬁ%%&ﬁﬂ%%@#iﬁﬁﬁﬁ%ﬁ%ﬁﬂﬁﬁ

— PR IE R G FAMEEES — R
1155, Wi RGURK IX BT 55 FE RIS RF o 2 6 0] Y
WS EPAT

http://gr.xjtu.edu.cn/web/zhaoy 11

