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Shared Memory Programming Models

X3H5 Constructs for Parallelism

m X3H5 uses a set of specific language constructs

= No explicit definition of the number of threads that
execute

® Programs start in sequential mode with a master thread

m Constructs are parallel psection psingle pdo

Pragramming for High Perormance - An Introduction © Thomas Ludwlg, 2000 (72/148)

Shared Memory Programming Models

X3H5 Example 2

threads:
programmain
A N
parallel _ _ _ _ _ _ _ . imphait
pdoi=16 — — _ _ _ _ barner
Fi) I
end pdo nowait
G
end parallel - __
H =~ — ., implicit
end barrier
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Shared Memory Programming Models

X3H5 Example 1

programmain

Shared Memory Programming Models

X3H5 Semantics
parallel
m a number of threads are started
m change to parallel execution mode

» further constructs are executed in parallel

Worksharing constructs

® psection: multiple code multiple data parallelism

corresponds to code partitioning

end parallel
end

A -
threads: r
parallel - _ P q
B . -~ A
psection i, - 7 o
section ~. Implicit
C barmer
section B B B
| | |
end sections
psingle — - _ S cC D
E T - _‘lmphmt
end psingle barrier '

Pragramming for High Perormance - An Introduction

© Thomas Ludwlg, 2000 (73/148)

® psingle: only one thread executes (e.g. input/output)
» pdo: single program multiple data parallelism

Pragramming for High Perormance - An Introduction © Thomas Ludwlg, 2000 (75/148)

http://gr.xjtu.edu.cn/web/zhaoy




Theory of Parallel Computing 2015 Yinliang Zhao (i#i-%) Xi'an Jiaotong University

Shared Memory Programming Models Shared Memory Programming Models
X3H5 Semantics (2) Threads Programming Model
Worksharing constructs support load balancing ® Manual thread creation
® &.g. with pdo threads execute indices according to upthread create({ ... (* myrouting) ...}
availability u low abstraction level
Implicit barriers m Synchronisation

m parallel, end parallel, end psections, o Mutex variable {mutual exclusion)

end pdo, end psingle a Condition variable
= No high level abstraction constructs

ono parallel, psection, pdo or similiar

m enforces memory consistency
Explicit barriers
® no wait- construct; faster, more error prone

Pragramming for High Perlormance- An Introduction © Thomas Ludwlg, 2000 (758/145) Pragramming for High Performance - An Introduction © Thomas Ludwlg, 2000 (32/148)
Shared Memory Programming Models Shared Memory Programming Models
The POSIX Thread Model The OpenMP Standard
m |EEE standardisation 1995 m By vendors ke DEC, Intel, IBM, Potland Group, and
= Slightly different implementations in different operating others
systems s OpenMP initially for Fortran in 1997
m Similiar to threads in Solaris ® OpenMP has compiler directives, libraries, and
= Designed for SMP systems with low number of environment variables
Processors m OpenMP defines AP for shared memory programming

m Pure library approach under Unix and WindowsNT

= No compiler support necessary/available = Similiar to X3H5 but more constructs

Pragramming for High Perlormance- An Introduction © Thomas Ludwlg, 2000 (81/145) Pragramming for High Performance - An Introduction © Thomas Ludwlg, 2000 (33/148)
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Shared Memory Programming Models

A Comparison of Concepts Pthreads
X3H5 pthreads | OpenMP
scalability no maybe yes 3 POSIX standard shared-memory multithreading
e interface.
Fortran binding yes no yes
C binding yes yes planned 36 Not just for parallel programming, but for general
multithreading programming.

high abstraction yes no yes . .

) 3 Provides primitives for thread management and
performance oriented no no yes synchronization.
data parallelism yes no yes
portability yes yes yes
incremental parallelization yes no yes
vendor support no UNIDX/SMP|  starting

Pragramming for High Pedormance- An Introduction © Thomas Ludwlg, 2000 (38/148)

Threads (lightweight processes)

@ Incremental parallelization

3 A thread is basic unit of CPU utilization

Py— 7 Code N\ / Diectiva™ — Tome | [ oem || vw ]| [[ooe J[ om 1] = |
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code ']}‘l(itlltlﬂﬂllﬂl..l' . Insertion Y code | regw5|ens| | s1ack I ‘ registers | negisbers reg-s|e|s|
o o ) o { slack I ‘ slagk I I shack |
{ Performance

| e— ]
\_evaluation / throad _.rg g g ;1_— theead

single-hreaded mullithraaded
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User Address Space

[Thread 2 | routine2{) warl — |

stack o L Thread Creation

Thread 1 | routinel() varl —o
stack var2 Prgrm. Counter

T int pthread_create
ot Z (pthread_t *new _id,
s rovcine 0 e ddressspace const pthread_attr t *attr,
- ssck || coutinet vario ] SEekrane void *(*func) (void *),
oo void *arg)

arrayh
arrayB

data

& new id: thread’'s unique identifier

- ’ 3 attr: ignore for now
Process ID
data | wczes G | 3 func: function to be run in parallel
. Files | F#arg: arguments for function func
‘*"" sockets
fork thread_create .
Platform 0 pthread_create() Example of Thread Creation

real user sys real user sys
IBM 375 MHz 6194| 3.49| 5374, 746 276| 679

POWER3 void *func(void *arg) {
IBM 1.5 GHz 44,08 2.21| 40.27 149| 097| 097 int *i=arg;
POWER4 )

IBM 1.9 GHz 50.66| 3.32| 4275 113| 054| 0.75 o

POWERS p5-575 }

INTEL24GHz |\ 2381 3.12| 897| 170, 053] 0.30

Xeon void main()
INTEL14GHz | 2361| 0.12| 342 210| 0.04| o0.01 {
Itanium 2 int X.;
Timings reflect 50,000 process/thread pthread_t id;
creations, were performed with the time ]
utility, and units are in seconds, no pthread_create(&id, NULL, func, &X);

DA T http://www.lInl.gov/computing/ }

tutorials/pthreads/#Overview
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Example of Thread Creation (contd.) Thread Joining
. int pthread_join(

main() pthread t new id,

void **status)
# Waits for the thread with identifier new_id to terminate,
pthread func() either by returning or by calling pthread_exit().
create( ﬁmc) ' 3 Status receives the return value or the value given as
argument to pthread_exit().
Pthread Termination Thread Joining Example
void pthread_exit(void *status) void *func(void %) {..... }

pthread_t id; int X;

# Terminates the currently running thread. pthread_create(&id, NULL, func, &X);

¥ Is implicit when the function called in pthread_create
returns.

http://gr.xjtu.edu.cn/web/zhaoy 6
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Matrix Multiplication

for(i=0; i<n; i++)

Master read create ————l reai oin —
[ e [ sy BN
I clilli] = 0.0;

Worker for( k=0; k<n; k++)

Thread 50 WORK pthresd exit() clilljl += alil[k]*bIK][j];

Worker }
Thread

Example of Thread Creation (contd.) Parallel Matrix Multiplication
main() & All i- or j-iterations can be run in parallel.
3 If we have p processors, n/p rows to each processor.
pthl'ead 2 Corresponds to partitioning i-loop.
create(func) func()
pthread
join(id)
Jon( pthread

F— exit()

http://gr.xjtu.edu.cn/web/zhaoy 7
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Matrix Multiply: Parallel Part More about Pthreads?

void mmult(void* s) 3 Critical sections ---- mutex
{ o . .

int slice = (int) s: # Thread synchronization ---- condition variables

U’lt from = (_slice*n)/p; ¥ For complete information, many good references exist:

int to = ((slice+1)"n)/p; BEMultithreaded Programming With Pthreads, Bil Lewis,

for(i=from; i<to; i++) Daniel J. Berg.

for(j=0; j<n; J_*"") { RPthreads Programming, Bradford Nichols, Dick
cfijil = 0.0; Buttlar, Jacqueline Proulx Farrell, Jackie Farrell
for(k=0; k<n; k++)
c[ili] += alilik]"bIKI[j:

}

}
Matrix Multiplication: Main
OpenMPZRIZ2fE 7>

f{m main() < BIEFANSI X3HSHFAE

pthread_t thrd[p]; < [, BEEF B

for( i=0; i<p; i++) + Tz

pthread_create(&thrd[i], NULL, mmult,(void*) i); ¢ DEC, Intel, IBM, HP, Sun, SGIZEATXIF
for( i=0: i<p: i++) + EIEUNIXFINTESTMMERRATES
pthread_join(thrd[i], NULL); <+ BEBNRTERZEHITH
< Fortran77, Fortran90, C, C+HESHEIIEESE
ek,
« http://www.openmp.org/

http://gr.xjtu.edu.cn/web/zhaoy 8
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OpenMP: Supporters*

e Hardware vendors

—Intel, HP, SGI, IBM, SUN, Compaq
e Software tools vendors

— KA, PGI, PSR, APR, Absoft
e Applications vendors

— ANSYS, Fluent, Oxford Molecular, NAG, DOE
ASCI, Dash, Livermore Software, and many
others

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Open MP: Programming Model

Fork-Join Parallelism:
+Master thread spawns a team of threads as needed.

+Parallelism is added incrementally: i.e. the
sequential program evolves into a parallel program.

//f

™ Parallel Regions”

OpenMP:
Structured blocks
+Most OpenMP constructs apply to structured blocks.

— Structured block: a block of code with one point
of entry at the top and one point of exit at the
bottom. The only other branches allowed are
STOP statements in Fortran and exit() in C/C++.

C$OMP PARALLEL C$OMP PARALLEL
10 wrk(id) = garbage(id) wrk(id) = garbage(id)
ras (id) = wrk(id)*#*2 ras (1d)=wrk (id) ++2
if(conv(res(id)) goto 10 if (conv(res (id) Jgoto 20
END PARALLEL go to 10
print *,id END PARALLEL
if (not_DONE) goto 30
print *, id

A structured block Not A structured block

http://gr.xjtu.edu.cn/web/zhaoy

OpenMP:

How is OpenMP typically used?

e OpenMP is usually used to parallelize loops:
— Find your most time consuming loops.
— Split them up between threads.

Split-up this loop between
multiple threads

void main() f | void main()

{
double Res[1000]; double Res[1000];
= #pragma omp parallel for
for(int i=0;i<1000;i++) {
do_huge_comp(Res]i]); do_huge_comp(Resl[i]);

for(int i=0;i<1000;i++) {
}

Sequential Program Parallel Program
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OpenMP:

How do threads interact?

e OpenMP is a shared memory model.
— Threads communicate by sharing variables.

e Unintended sharing of data can lead to race
conditions:

—race condition: when the program’s outcome

changes as the threads are scheduled differently.

e To control race conditions:
— Use synchronization to protect data conflicts.

e Synchronization is expensive so:

— Change how data is stored to minimize the need
for synchronization.

OpenMP: Contents

e OpenMP’s constructs fall into 5 categories:
+Parallel Regions
+Worksharing
+Data Environment
+Synchronization
+Runtime functions/environment variables

e OpenMP is basically the same between
Fortran and C/C++

http://gr.xjtu.edu.cn/web/zhaoy
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OpenMP: Parallel Regions

e You create threads in OpenMP with the “omp
parallel” pragma.

¢ For example, To create a 4 thread Parallel region:

Each thread double A[1000];

redundantly omp_set_num_threads(4);
executes #pragma omp parallel
the code
within the int ID = omp_thread_num();

structured £
bloaic ; pooh(ID,A);

e Each thread calls pooh(ID) for 1D = 0 to 3

OpenMP: Parallel Regions

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel

e Each thread executes the
same code redundantly.

int ID = omp_thread_num(),
double A[1000]; pooh(ID, A);
| }

omp_set_num_threads(4) printf(*all done\n”);

A single | [ | ]

copy of A - " ‘ : \
el __»pooh(D,A) pooh(1,A) pooh(2,A) pooh(3A)

between all
threads. i =

: = “H:‘.“n. Threads wait here for all threads to
printf("all done\n”);  ETASEINS e proceeding (l.e. a barrier)

10
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OpenMP: Work-Sharing Constructs

e The “for” Work-Sharing construct splits up
loop iterations among the threads in a team

#pragma omp parallel
#pragma omp for
for (1=0:1<N;1++){
NEAT_STUFF();

1
J

By default, there is a barrier at the end of
the “omp for”. Use the “nowait” clause to
turn off the barrier.

Work Sharing Constructs

A motivating example

Sequential code for(i=0;1<N;i++) {a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++) { a[i] = a[i] + b[il;}

OpenMP parallel
region

}

OpenMP parallel #pragma omp parallel

region and a #pragma omp for schedule(static)
work-sharing for- for(i=0;1<N;i++) {a[i] = a[i] + b[i];}
construct

http://gr.xjtu.edu.cn/web/zhaoy
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OpenMP For constuct:

The schedule clause

e The schedule clause effects how loop iterations are
mapped onto threads

#schedule(static [,chunk])

— Deal-out blocks of iterations of size “chunk” to each thread.
#schedule(dynamic[,chunk])

— Each thread grabs "chunk” iterations off a queue until all

iterations have been handled.

#schedule(guided[,chunk])

— Threads dynamically grab blocks of iterations. The size of
the block starts large and shrinks down to size “chunk” as
the calculation proceeds.

#schedule(runtime)

— Schedule and chunk size taken from the
OMP_SCHEDULE environment variable.

OpenMP: Work-Sharing Constructs

e The Sections work-sharing construct gives a
different structured block to each thread.

#pragma omp parallel
#pragma omp sections

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

By default, there is a barrier at the end of the “omp
sections”. Use the “nowait” clause to turn off the barrier.

11
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OpenMP: Combined Parallel Work-
Sharing Constructs

e A short hand notation that combines the
Parallel and work-sharing construct.

#pragma omp parallel for
for (I1=0;I<N;I++){
NEAT_STUFF(l);
}

e There’s also a “parallel sections” construct.

OpenMP:

More details: Scope of OpenMP constructs

OpenMP constructs can span multiple source files.

bar.f
poo.f

subroutine whoami

C$0MP PARALLEL
external omp get thread num

call whoami - - =

integer iam, o et thread num
C$OMP END PARALLEL e » OmP_get =
iam = omp get thread num()

CHOMP CRITICAL -

Static or Dynamic extent print*, ’ HellS"“f.g‘_om ', iam
lexical of parallel CSOMP END CRITICAL < > B -
extent of region includes T L
parallel e — can appear outside a
region end parallel region

http://gr.xjtu.edu.cn/web/zhaoy
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Orphanfl] $i&4)

NTEFXRMBE{ESRIAT, OpenMP REET
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Orphantl] &) 2 15 FRLL7E H 47 X 3 (Parallel Region,
UNPARALLEL) 2 4B FiE )

7EOpenMP 3R T —Fh 4R 2 A ¥ 453X EOrphantl] §1F
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AN B A AR SR IR ILAE HAT IR, oA

Data environment: Data scope

SHARED - variable is shared by all processors
PRIVATE - each processor has a private copy of a variable

'$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I)
do I=1,N
C(I) = A(T) + B(I)
enddo
'$OMP END PARALLEL DO

All CPUs have access to the same storage area for A, B, C and N,
but each loop needs its own private value of the loop index I.

12
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Default Storage Attributes Storage Attributes

Global variables are SHARED among threads

# FORTRAN: COMMON blocks, SAVE variables,
MODULE variables

0 C: File scope variables, static

Stack variables in sub-programs called from parallel
regions are PRIVATE

Storage attributes can be changed using the following

& THREADPRIVATE
The value of a PRIVATE variable inside a parallel loop can
be transmitted to a global value outside the loop with:

& LASTPRIVATE
The default status can be modified with:

@ DEFAULT (PRIVATE | SHARED |[NONE)

Data Environment:
Example storage attributes

PRIVATE clause

program sort subroutine work
common /input/ A(10) common /input/ A(10)
integer index(10) real temp(10)
call input integer count
CSOMP PARALLEL save count
call work(index)
C$OMP END PARALLEL
print*, index(1)

PRIVATE(var) creates a local copy of var for each thread
@ The value is uninitialized
¢ Private copy is not storage associated with the original
program wrong
is=0
C$OMP PARALLEL DO PRIVATE(IS)
do j=1,1000
is=istj !is is not initialized
end do
C$OMP END PARALLEL DO

print *, 1s !this is still the original is

A, index, count

A, index and count are
shared by all threads. temp

I

. Index, count

temp is local to each
thread A

http://gr.xjtu.edu.cn/web/zhaoy 13
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Firstprivate Clause

e Firstprivate is a special case of private.

— Initializes each private copy with the corresponding
value from the master thread.

program almost right
Is=0
CS0MP PARALLEL DO FIRSTPRIVATE (IS)
Do J=1,1000
Frp T e S Each thread gets its own IS
1000 CONTINUE with an initial value of 0
print *, IE___

Regardless of initialization, IS is
undefined at this point

Lastprivate Clause

e Lastprivate passes the value of a private from the
last iteration to a global variable.

program closer
Is =0
C$OMP PARALLEL DO FIRSTPRIVATE (IS)
CS30MP+ LASTPRIVATE (IS)
D= 10H0 . Each thread gets its own IS

Y it an initial value of O

1000 CONTINUE
print *, 1

IS is defined as its value at the last
iteration (l.e. for J=1000)

http://gr.xjtu.edu.cn/web/zhaoy

Yinliang Zhao (4R %) Xi'an Jiaotong University

Example
program wrong3

is=0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$OMP* LASTPRIVATE(IS) CETAIHIE
do j=1,1000 junior:~> a.out
is=is+j lis is now 0 S
end do Parallel output:
C$OMP END PARALLEL DO junizor:-> setenv OMP_NUM_THREADS
print *,is junior:~> a.out
375250
junior:~> setenv OMP_NUM_THREADS
4

junior:~> a.out
218875

OpenMP:

Another data environment example

e Here’s an example of PRIVATE and FIRSTPRIVATE
variables A,.B,and C =1

CSOMP PARALLEL PRIVATE(B)
CSOMP&: FIRSTPRIVATE(C)

® Inside this parallel region ...
e “A” is shared by all threads; equals 1

e “B” and “C” are local to each thread.
— B’s initial value is undefined
— C’'s initial value equals 1
e Outside this parallel region ...
e The values of “B” and “C” are undefined.

14
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OpenMP: Reduction

e Another clause that effects the way variables

are shared:
—reduction (op : list)
e The variables in “list” must be shared in the

—enclosing parallelregion-————————————————

e Inside a parallel or a worksharing construct:
— A local copy of each list variable is made and

initialized depending on the “op” (e.g. 0 for “+")

— pair wise “op” is updated on the local value
— Local copies are reduced into a single global

——~copyattheend of theconstruet.————————————————

OpenMP:
Reduction example

#include <omp.h=>
#define NUM_THREADS 2
void main ()

4{—

inti;
double ZZ, func(), res=0.0;
omp_set_num_threads(NUM_THREADS)

#pragma omp parallel for reduction(+:res) private(ZZ)

for (i=0; i< 1000; i++){
ZZ = func(l);
res =res + ZZ;

http://gr.xjtu.edu.cn/web/zhaoy
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program compute_pi

integer n, i

double precision w, x, sum, pi, f , a
¢ function to integrate

f (a) =4.d0 / (1.d0 + a*a)

pr int *, 'Enter number of intervals:

read *,n
¢ calculate the interval size

w = 1.0d0/n

sum = 0.0d0

doi=1,n

x =w* (i - 0.5d0)
sum = sum + f(x)
end do

pi =w * sum

pr int *, 'computed pi = ', pi
stop

end

Threadprivate

e Makes global data private to a thread
« Fortran: COMMON blocks
+ C: File scope and static variables
e Different from making them PRIVATE
+ with PRIVATE global variables are masked.

¢ THREADPRIVATE preserves global scope within each
thread

e Threadprivate variables can be initialized using
COPYIN or by using DATA statements.

15
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A threadprivate example
Consider two different routines called within a
parallel region.

subroutine poo subroutine bar

parameter (N=1000) parameter (N=1000)

common/buf /A (N) ,B(N) common/buf /A (N) ,B(N)
C$0OMP THREADPRIVATE (/buf/) C$0OMP THREADPRIVATE (/buf/)

B(i)= const* A(i) A(i) = sqgrt(B(i))

and do and do

return return

and and

Because of the threadprivate construct, each

_thread executing these routines has its own copy

of the common block /buf.

OpenMP:

Default Clause

e Note that the default storage attribute is
DEFAULT(SHARED) (S0 no need to specify)
e To change default: DEFAULT(PRIVATE)

+ each variable in static extent of the parallel region is made
private as if specified in a private clause

+ mostly saves typing

 DEFAULT(NONE): no default for variables in static
extent. Must list storage attribute for each variable
in static extent

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

http://gr.xjtu.edu.cn/web/zhaoy
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OpenMP:

Default Clause Example

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)
np = cmp_get num threads ()
each = itotal/np

C$OMP END PARALLEL These two
codes are

itotal = 1000 equivalent

CSOMP PARALLEL DEFAULT (PRIVATE) SHARED (itotal)
np = omp get num threads()
each = itotal/mp

OpenMP: Synchronization

e OpenMP has the following constructs to
support synchronization:
- =atomic
—critical section

— barrier
—flush We discuss this here, but it really
isn’t a synchronization construct.
—ordered " It's a work-sharing construct that
. e includes synchronization.
—-single

—master *~__ We discus this here, but it really

isn’t a synchronization construct.

16
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OpenMP: Synchronization

e Only one thread at a time can enter a critical
section.

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)
-~ DO100I=t,NITERS

B = DOIT(l)

C$OMP CRITICAL
CALL CONSUME (B, RES)

C$OMP END CRITICAL

100 CONTINUE

K\ KIE

inti; int max_num=-1;
for (i=0; i<n; i+ +)
if(ar[i1>max_num)
max_num=ar[il;

inti; int max_num=-1;
for (i=0; i<n; i++)

if(ar[i]1>max_num)
max_num=arl[il;

#pragma omp critical [(name)]

http://gr.xjtu.edu.cn/web/zhaoy
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KR\ KE
inti; int max_num=-1;
for (i=0; i<n; i+ +)

if(ar[i]>max_num)
max_num=arl[il;

OpenMP: Synchronization

e Atomic is a special case of a critical section
that can be used for certain simple statements.

e It applies only to the update of a memory
location (the update of X in the following
example)

C$OMP PARALLEL PRIVATE(B)
B = DOIT(I)

C$OMP ATOMIC
X=X+B

C$OMP END PARALLEL

17
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OpenMP: Synchronization OpenMP: Synchronization

e Barrier: Each thread waits until all threads arrive. e The ordered construct enforces the

#pragma omp parallel shared (A, B, C) private(id) sequential order for a block.

{
|d=omp_get_thread_'num(); e ——— #pragma omp parallel private (tmp)

A[id] = big_calc1(id
end of a for work- —#pragmaomp forordered

:g::gm: gﬁ: :J:rrrler sharing construct for (I=0;1<N;1++){

for(i=0;i<N;i++){C[i]=big_calc3(l,A);} < tmp = NEAT_STUFF();
#pragma omp for nowait #pragma ordered

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }. res = consum(tmp);

A[id] = big_calc3(id); }

" of a parallel region due to nowait

#pragma omp parallel for
for(inti=0;i<6; ++ i)
Test(i);

OpenMP: Synchronization

e The master construct denotes a structured
block that is only executed by the master
" T f » is just skip it {

implied barriers or flushes).

<T:0>-0

<T:1>-3 #pragma omp parallel for
<T0> - 1 ordered

<T:1> - 4 for(inti=0;1<6; ++ i)
<T:0> -2 {

<T:1>-5

#pragma omp parallel private (tmp)

do_many_things();
#pragma omp master
{ exchange_boundaries(); }
#pragma barrier
do_many_other_things();

#pragma omp ordered
Test(1i);

} }
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T:1> -3
#pragma omp parallel for ordered <T:0>-10
for(inti=0;i<6; ++ i) <T:0> -1
{ <T:0>-11
Test(i); <T:0> -2
#pragma omp ordered <T:0> -12
Test( 10 + i); <T:1>-13
<T:1>-4
<T:1>-14
<T:1>-5
<T:1>-15

[CACIR LAV AV | | \..)L(JLI\., uyllullll\_, yunucu,

runtime)

OpenMP &3i§ for {EIRRIFTA iteration {KFFLLIEE chunk_size
HEIEI R EE chunk; A& B round-robin fashion B3 M &
{8 chunk #&E 4 thread Z#1T-

WMRREIEE chunk_size BI5E, OpenMP BIE1RIE thread BIEL
B & FHr 5 8.

http://heresy.spaces.live.com/blog/

dynamic

N static B5—4%, OpenMP &% forfE3 AIEFA iteration {&kFF
LU E chunk_size #EIEIRREME chunk. {BR2 dynamic B,
chunk MATHZEE 2EHER; & thread BMITE—E chunk &,
EAEEHKBIA chunk RHIT.

WMRZAHIRTE chunk_size BI5E, chunk_size BHERER 1.
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LeliIcuuiIc \JLuLl\-, uyllullll\_, B\JI\J\.\J,

runtime)

guided BY chunk $1EI/53EM staticy dynamic A—#k; &L
[ER | BE 8, R9EIE chunk. ™ chunk 945 A, BIZ
# dynamic —#2ENRERINEL. MIRFBAAN, KATUIEHE
FHRIEREIEER chunk_size.,

WMRIZBIETE chunk_size BIEE, chunk_size B#WERES 1.

. http://heresy.spaces.live.com/blog/
runtime

BRI E, EFRE—ERE. :REM runtime BY5E, OpenMP &7

?}Lﬁiﬁﬂﬁ’aﬁ%‘rﬂi, BEHBEEEE OMP_SCHEDULE RAEEFEA
ViAo

OpenMP: Synchronization

e The single construct denotes a block of code
that is executed by only one thread.
~® A barrier and a flush are implied atthe end of
the single block.

#pragma omp parallel private (tmp)

do_many_things();

#pragma omp single
{ exchange_boundaries(); }
do_many_other_things();
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OpenMP:
Implicit synchronization
e Barriers are implied on the following OpenMP
—construets: 0000
end parallel
end do (except when nowait is used)

end sections (except when nowait is used)
end critical

- ainval : A ;

® Flush is implied on the following OpenMP
constructs:

OpenMP: Synchronization

e The flush construct denotes a sequence point where a
| ri . . . :
— All memory operations (both reads and writes) defined
prior to the sequence point must complete.
All memory operations (both reads and writes) defined
after the sequence point must follow the flush.

— Variables in registers or write buffers must be updated in
memory.

e Arguments to flush specify which variables are
flushed. No arguments specifies that all thread visible

variables are flushed. barrier end sections

critical, end critical end single
end do ordered, end ordered
end parallel

This is a confusing construct and we won’t say much about it.
To learn more, consult the OpenMP specifications.

OpenMP:

A flush example OpenMP: Library routines

¢ Lock routines
omp mit lock(), omp set lock(), omp unset lock(),
omp_test loc
—Modify/Check the number of threads

omp set num_thre
omp get thread num(), omp get max thre:

—Turn on/off nesting and dynamic mode
omp_set neste omp set dynamic(), omp get nes
omp get dyn: )

—Are we in a parallel region?
omp_in_parallel()
—How many processors in the system?

omp_num_procs()

e This example shows how flush is used to implement
pair-wise synchronization.

integer

C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0
CALL WORK
ISYNC(IAM) m all done; signal this to other threads
C$SOMP FLUSH(ISYNC)

DO WHILE (ISYNC(NEIGH) .EQ. 0)
CSOMP FLUSH(ISYNC) __

END DO Il Make sure the read picks up a
CS$SOMP END PARALLEL good copy from memory.
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OpenMP: Library Routines
e Protect resources with locks.

omp_lock_tlck;
omp_init_lock(&Ick);
#pragma omp parallel private (tmp)

{

id = omp_get_thread_num();
tmp = do_lots_of work(id);
omp_set_lock(&lck);
printf(“%d %d”, id, tmp);
omp_unset_lock(&Ick);

OpenMP: Library Routines

e To fix the number of threads used in a
program, first turn off dynamic mode and
_ then set the numberofthreads.

#include <omp.h>
void main()
{ omp set dynamic(0);

omp set num threads(4);
#pragma omp parallel
{ int id=omp get thread num();
do lots of stuff(id); 1}
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OpenMP: Environment Variables

® pontr_ol how “omp for schedule(RUNTIME)” loop

— OMP_SCHEDULE “schedule[, chunk_size]”
e Set the default number of threads to use.
—OMP NUM THREADS int literal

e Can the program use a different number of threads in
each parallel region?

—~ OMP_DYNAMIC TRUE || FALSE

o Will nested parallel regions create new teams of
threads, or will they be serialized?

—OMP_NESTED TRUE || FALSE

Generating OpenMP Programs
Automatically

parallelizing ource-fo-source

compiler restructurers:

inserts » F90 to F90/OpenMP
to C/OpenMP

user
inserts

directives

directives
\t ¥ il Examples:

OpenMP + SGI F77 compiler
program (-apo -mplist option)

rogram ] d
prog + Polaris compiler
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e Basics Abou
Parallelizing Compilers

e Loops are the primary source of parallelism in

e Compilers detect loops that have independent
iterations.

The loop is
DO I=1,N independent if, for
A(expression1) = ... different iterations,
SV A Il expressionT is always
ENDDO different from
expression?2

Basic Compiler Transformations

Data privatization:

] |csompParALLELDO
DO i=1,n C$OMP+ PRIVATE (work)

work(1:n) = .... DO i=1,n
- work(1:n) = ...

= work(1:n) ]
ENDDO ... = work(1:n)
ENDDO

Each processor is given a separate version of the
private data, so there is no sharing conflict
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Basic Compiler Transformations

Reduction recognition:

C$SOMP PARALLEL DO
C$OMP+ REDUCTION (+:sum)|

sum = sum + a(i)

sum = sum + a(i)
ENDDO

ENDDO

Each processor will accumulate partial sums, followed
by a combination of these parts at the end of the loop.

Basic Compiler Transformations

Induction variable substitution:

DO =1
i1=i1+1
B(i1)= ... Bi) = ...
2=i2+i A2 +i)/2) = ...

AN ENDDO
ENDDO

The original loop contains data dependences: each
processor modifies the shared variables i1, and i2.
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Compiler Options Inspecting the Translated Program

e Source-to-source restructurers:
compiler (KAP includes some 60 options) + transformed source code is the actual output

_ _ + Example: KAP
— optimize : simple analysis, advanced analysis, loop . ;
interchanging, array expansion e Code-generating compilers:
— aggressive: pad common blocks, adjust data layout + typically have an option for viewing the translated
T M P T e P = (parallel) code
+ Example: SGI f77 -apo -mplist

— inline all, spe ow to deal with libraries

- e.g., recurrence and reductio recognition, loop fusion
(These transformations may degrade performance) This can be the starting point for code tuning

More About Compiler Options Compiler Listing

: The listing gives many useful clues for improving the
— e.g., size of optimization data structures, number of optimization performance:
variants tried + Loop optimization tables
+ Reports about data dependences
— e.g., array bounds are not violated, arrays are not aliased + Explanations about applied transformations

_ + The annotated, transformed code

— e.g., cache size, line size, mapping + Calling tree

0_ + Performance statistics

Note, compiler options can be a substitute for advanced The type of reports to be included in the listing can be
compiler strategies. If the compiler has limited set through compiler options.
information, the user can help out.
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erformance o
Parallelizing Compilers

il

BDNA FLO52Q
Native Parallelizer

Tuning Automatically-
Parallelized Code

e This task is similar to explicit parallel
programming (will be discussed later)

e Two important differences :

+The compiler gives hints in its listing, which may
tell you where to focus attention. E.g., which
variables have data dependences.
+You don’t need to perform all transformations by
hand. If you expose the right information to the
compiler, it will do the translation for you.
(E.g., c$ £t ind dent)
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Why Tuning Automatically-

Parallelized Code?

Hand improvements can pay off because
e compiler techniques are limited

E.qg., array reductions are parallelized by only

e compilers may have insufficient
information

E:q

+loop iteration range may be input data
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