Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

HIE5 FTIZRFRI FHTRFETHES TR
< B+IE FHTERRITE < FHTEFRETTEE
- BT=8 HEFRATRE + MFRRBNREEE
< BT SHEFEHTRE # EHTIHRIRE L RETEX
< BTAE HIEFARNE + fmiEsntERk BRCH

+ [EENRMERANBEEELETER
© BAHTERRHIEY RENMRSHEIRESEE(FR
+ WIZMG | BIEEHTES. SHEES. RMERR. REIRS

+ RIETR : BMAPFRMAREMREE TR
fEVEIRTH, SHEIH. M8 IRS

¢ £RETH
RITREFRITSHITIEFRIT MEHITEFIIRRZ
< ERITIERRT
“ TR EMERRE or (0 ﬁﬁﬁﬁ% — (©) méﬁiﬁll«?lfffl-]iﬁ#ﬁ#iﬁﬁ‘m%
s n A= ko1 or (i=0; i<N; i++) A[i]=b[i]*b[i+1]; #pragma paralle
@ ?*”%’f'ﬁﬁ'ﬁﬂag’aﬂ for (i= 0; i<N; i++) c[i]=A[+Afi+1]; #pragma shared(A,b,c)
+ ITHIERARR— - — #pragma local(i)
+ HITRIBESERRATE () EMEREMEHITIER {
. . N id=my_process_id(); # for iterate(i=0;N;1
a.him;ﬁ*u‘:l:‘ﬁﬂ‘isﬁkﬂgﬂzkaﬁ, RERAT BN R Demuber of DToctsses); R el ')i{fufgm*bm 1>];
< HITERZTEHE for (i= id; i<N; i=i+p) A[i]=b[i]*b[i+1]; # pragma synchronize
+ BARSHITEE , BHPE—LIFEH barfierQ; # pragma pfor iterate (i=0; N; 1)
+ IENE HTTE. HEGR. BIRHT B N, T ATl for (FOd<Ni+ClI=ATT A
(b) ¥ RBITES $1F: SGI power C
my_process_id,number_of_processes(), and barrier()
A AL AR (&) BEFHTIL: Autopar
BT izortran 96 (e) iﬁi+%ﬁ#ﬁi§$: Linda, Ocean

http://gr.xjtu.edu.cn/web/zhaoy 1

Theory of Parallel Computing 2015

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

FTmERR

“ What is a parallel programming model?
& REBRGERELSEFRH—Hb g

S TH AR
& R xR AT F AT H Hob LR LHAT

<+ Main Goal:
¢ FIFBHERGBIEN, SMP, MPP, NUMA)RIFRE MRS ;
& RIVEIEFRIITEIE

¢ BURRARREREDELERZLHTHEEL (B, #£4) , &

Shared Memory Model

“ In the shared memory programming model, the abstraction is that
parallel tasks can access any location of the memory

 Parallel tasks can communicate through reading and writing
common memory locations

 This is similar to threads from a single process which share a
single address space

< Multi-threaded programs (e.g., OpenMP programs) are the best fit
with shared memory programming model

BREEER

Parallel Programming Models

Shared Memory

Shared Memory Model

S, = Serial Single Thread ‘ Multi-Thread

P, = Parallel |

<——Time
<——Time

Process

Process U

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Shared Memory Example

for (i=0; i<8; i++)
a[il = b[i] + c[il;
sum =0;
for (i=0; i<8; i++)
if (a[i] > 0)
sum = sum + ali];
Print sum;

Sequential

begin parallel // spawn a child thread
private int start_iter, end_iter, i;
shared int local_iter=4, sum=0;
shared double sum=0.0, a[], b[], c[];
shared lock_type mylock;
start_iter = getid() * local_iter;
end_iter = start_iter + local_iter;
for (i=start_iter; i<end_iter; i++)
ali] = b[i] + c[i];
barrier;
for (i=start_iter; i<end_iter; i++)
if (a[i] > 0) {
lock(mylock);
sum = sum + ali];
unlock(mylock); }
barrier; // necessary
end parallel // kill the child thread

yint sum;
-

Paralle

Message Passing Model
“ In message passing, parallel tasks have their own local memories
< One task cannot access another task’s memory

< Hence, to communicate data they have to rely on explicit
messages sent to each other

< This is similar to the abstraction of processes which do not share
an address space

“ MPI programs are the best fit with message passing
programming model

11

BREEER

Parallel Programming Models

10

Message Passing Model

Single Thread Message Passing
S = Serial Y e T e T S
P = Parallel !

{
{
$

<——Time

Process 0;Process 1 Process 2 Process 3

Nodel | Node2 Node3 Node4

Data transmission over the Network

Process U

12

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015 Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Message Passing Example FTREH F: MPI SPMD/MPMD
10~ genil) - BFHBSENS NERTIG , BEREETRN
local_iter = 4; g 1=k 1 1THIT . REREEFENE

; start_iter = id * local_iter; < MPIEEHH : HRUEE | HRJIGH ;| HAEEF
for (i=0; i<8; i++) end_iter = start_iter + local_iter;
ali] = b[i] + c[i]; i if (id == 0) send_msg (P1, b[4..7], c[4..7]); T——
sum =0; else recv_msg (PO, b[4..7], c[4..7]); —_— > [N
for (i=0; i<8; i++) for (i=start_iter; i<end_iter; i++)
if (ali] > 0) ali] = bli] + c[il; F.,_,D ——
sum =sum + a[i]; local_sum = 0;
Print sum; for (i=start_iter; i<end_iter; i++) SPMD Job
if (a[i] > 0) 5
Sequential local_sum = local_sum + a[il; g
B o |
recv_msg (P1, &local_sum1); E

sum = local_sum + local_sum1;
Print sum;
lelse

U send_msg (PO, local_sum); Pa’i"‘ﬂ

Shared Memory Vs. Message Passing MPMD-Programming Paradigm

= JLEHE S B AR REEE R “ The MPMD model uses different programs for different processes,
but the processes collaborate to solve the same problem
“ MPMD has two styles, the master/worker and the coupled analysis

Shared Memory

Communicati Implicit (via loads/stores)

[[
Synchronization Explicit Implicit (Via Messages) b.out m b.out = fluid analysis and
Hardware Support Typically Required None 2
Development Effort Lower Higher g &
Tuning Effort Higher Lower hd = Example
A 2 g
A 2 &

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

| 1. MPMD: Master/Slave | | | 2. MPMD: Coupled Analysis |

14

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015

Yinliang Zhao (4R %) Xi'an Jiaotong University

< BT
<« FEEY
< MEE
¢ ML
& xFF
4 BRI

f5]: Cannon4E & e &

AL
 HHTR

CannonF ik: *fFFA

CannonFEik: #E

Al0,2]
BJ[0,2]
C[0,2]

Cannon¥ i%: *{ 7B

A[0,2]
I
C[0,2]

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

TG RATRGREZECH R & B Fen skt R B|CH 3

B[1,0]
C[1,0]

HERES
&R, CH
RENBE
Pt
AFBE B 1EHB L Cannon4E [F iEMPI A2 7
AJ0,3]
?Bf} P iﬁa, b, flc FRIEHRBEREFENSIR , SRIRIRIA, B, fIC, IRnME

< QLIEREAMEAP B AR Asart(n)MTEEE , p=2t, tHIEEE
< S#conn FFEMAMatrixMatrixMultiply O BIBIZATR | iB(SH%
< EAEMEC MatrixMatrixMultiply(int n, double *a,

double *b, double *c, MPI_Comm comm)

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015

Yinliang Zhao (4R %) Xi'an Jiaotong University

1 MatrixMatrixMultiply(int n, double *a, double *b,

2 double *c, MPI_Comm comm) {

3 int i, nlocal, npes, dims[2], periods[2];

4 int myrank, my2drank, mycoords[2];

5 int uprank, downrank, leftrank, rightrank, coords[2];
6 int shiftsrc, shiftdest;

7 MPI_Status status;

8 MPI_Comm comm 2d;

9 /* Get the communicator related information */

10 MPI_Comm_size(comm, &npes);

11 MPI_Comm rank(comm, &myrank);

12 /* Set up the Cartesian topology */

13 dims[0] = dims[1] = sqrt(npes);

14 /* Set the periods for wraparound connections */

15 periods[0] = periods[1] = 1;

16 /* Create the Cartesian topology, with rank reordering */
17 MPI_Cart_create(comm, 2, dims, periods, 1, &comm_2d);

18 /# Get the rank and coordinates #/

19 MPI_Comm_rank(comm_2d, &my2drank);

20 MPI_Cart_coords(comm 2d, my2drank, 2, mycoords);

21

22 /+ Determine the dimension of the local matrix block */

23 nlocal = n/dims[0];

34

25 /* Perform the initial matrix alignment. */

26 MPI_Cart_shift(comm _2d, 0, -mycoords[0], &shiftsrc
&shiftdest);

27 MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE,
shiftdest, 1, shiftsrc, 1, comm_2d, &status);

28 MPI_Cart_shift(comm 2d, 1, -mycoords[1], &shiftsrc,

&shiftdest);
29 MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE,
30 shiftdest, 1, shiftsrc, 1, comm 2d, &status);

31 /x Getinto the main computation loop */

32 for (i=0; i<dims[0]; i++) {

33 MatrixMultiply(nlocal, a, b, c); /*c=ctaxb*/

34

35 /* Compute ranks of the up and left shifts */

36 MPI_Cart_shift(comm_2d, 0, -1, &rightrank, &leftrank);

37 MPI_Cart_shift(comm_2d, 1, -1, &downrank, &uprank);

38 /* Shift matrix a left by one */

39 MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE,

40 leftrank, 1, rightrank, 1, comm 2d, &status);

41 /* Shift matrix b up by one */

42 MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE,

43 uprank, 1, downrank, 1, comm 2d, &status);

4}

45 /# Restore the original distribution of aand b */

46 MPI_Cart_shift(comm_2d, 0, +mycoords[0], &shiftsrc,
&shiftdest);

47 MPI_Sendrecv_replace(a, nlocal*nlocal, MPI_DOUBLE,

48 shiftdest, 1, shiftsrc, 1, comm 2d, &status);

49 MPI_Cart_shift(comm 2d, 1, +mycoords[1], &shiftsrc, &shiftdest);

50 MPI_Sendrecv_replace(b, nlocal*nlocal, MPI_DOUBLE,

51 shiftdest, 1, shiftsrc, 1, comm 2d, &status);

52

53 MPI_Comm free(&comm_2d); /* Free up communicator */

54 }

55

56 /* This function performs a serial matrix-matrix multiplication ¢ = a*b */

57 MatrixMultiply(int n, double *a, double *b, double *c)

58 {

59 int i, j, k;

60

61 for (i=0; i<n; i++)

62 for (j=0; j<n; j+t)

63 for (k=0; k<n; ktt)

64 cli*ntj] += ali*ntk]#b[k*ntj];

65 }

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015

HT%HEREAE: OpenMP Master—Worker

< ERAFMIMD-SMEHT , TS, GPU
< HERHTIER
< EEHE : ERFTH. SRIREMZENS

™ Parallel Regions”

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

¥HH1T (Phase Parallel)

o —4HERE ()

R ilﬁgﬁﬁ'ﬁ € C C
<« SHEE. B e =

“ BSP (4.23)

< BIEEEELEs

- HEEEARES h é é
e

TR

<+ $8¥F4T (Phase Parallel)

< §3i&F1T (Divide and Conquer Parallel)
= RIK&HF1T (Pipeline Parallel)

< EMHIT (Master-Slave Parallel)

< T{EhIT (Work Pool Parallel)

“ Task-Farming

< SPMD

“ Data Pipeline

“ Divide and Conquer

“ Speculative Parallelism

http://gr.xjtu.edu.cn/web/zhaoy

F—MH4T (Master-Slave Parallel)

< Task-Farming

< R : BT, HRES
< FHHE HTEFMES

< RIMEHEAR (6.1) Master
<« SRATES

< EHIERRRIHRER

Theory of Parallel Computing 2015

Yinliang Zhao (4R %) Xi'an Jiaotong University

JA¥1T (Divide and Conquer Parallel)

- :éi&&ﬂ!’.ﬁﬁﬁ%ﬂ#ﬁﬂﬁ!ﬁ?i&

< 8l

- ERETFRH
- AR (6.2)
< MELASAERE

T{EH3H4T (Work Pool Parallel)

< YRR - —HITHE
< HIEMREESS T
< BIFEERMESS it
< BEESAHE

< BFaEFE Work Pool

< IRREEE (REHS(EE)

5 @

Rk FH1T (Pipeline Parallel)

< —iHiHfE

 RAKEELY ﬁ

< FIKEIRIHEAR (6.5)

B

FTEFEITHER (40

< IBRH1T (Implicit Parallel)
< $1i@¥H1T (Data Parallel)

http://gr.xjtu.edu.cn/web/zhaoy

Theory of Parallel Computing 2015

FasNH1T (Implicit Parallel)

< B

+ EFERAMENRTESHEE

+ WMEBRHIETISRRENE TR
ol %:ﬁ :

+ {BX P

+ TIRSENEYF

+ PR , BT RINHISIEIETE
+ BERE

Yinliang Zhao (4R %) Xi'an Jiaotong University

Programming Model 2: Data Parallel

“*Single thread of control consisting of parallel

operations.
“»Parallel operations applied to all (or a defined subset)

of a data structure, usually an array

#Communication is implicit in parallel operators

4FElegant and easy to understand and reason about

4Coordination is implicit — statements executed synchronously
“*Drawbacks:

4Not all problems fit this model

4Difficult to map onto coarse-grained machines

A = array Of a” data A: 1 A O A A N N A |

A = f(A) f

S:SUm(fA) fA 0 I O A A |
sum

S:

#IEH1T (Data Parallel)

B *FE)R .
+ SIMDRYBESAESR
o [BERT IR IR
B ﬁnﬁ“ .
+ HgE
0 FTIRMFTFRAMIESEE (H4A)
& MRS
o Ea—itrhitEsiE
¢ [BXZEEA
o BB

http://gr.xjtu.edu.cn/web/zhaoy

Machine Model 2a: SIMD System

“A large number of (usually) small processors.
4A single “control processor” issues each instruction.
4Each processor executes the same instruction.
4Some processors may be turned off on some instructions.
“*Machines are very specialized to scientific
computing, so they are not popular with vendors
(CM2, Maspar)
“*Programming model can be implemented in the compiler

#mapping n-fold parallelism to p processors, n >> p, but it's hard
(e.g., HPF) [

control processor |

NI NI NI e NI
I memory I memory I memory n I memory I memory

[interconnect]

10

Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

Machine Model 2b: Vector Machines HEEERNGES R

“ Vector architectures are based on a single processor

& Multiple functional units #define N 1000000

. . main() {
4% All performing the same operation

& Instructions may specific large amounts of parallelism (e.g., double local, pi = 0.0, w;

64-way) but hardware executes only a subset in parallel long i;
“ Historically important w=1.0/N:
@ Overtaken by MPPs in the 90s

. . i for (i=0; i<N;i++){
“ Re-emerging in recent years

@ At a large scale in the Earth Simulator (NEC SX6) and Cray local = (i +0.5)*w;
X1 pi = pi + 4.0/(1.0+local * local);
% At a small sale in SIMD media extensions to microprocessors }
SSE, SSE2 (Intel: Pentium/IA64)
Altivec (IBM/Motorola/Apple: PowerPC) printf(*pi is %f \n”, pi *w);
VIS (Sun: Sparc) }

“ Key idea: Compiler does some of the difficult work of
finding parallelism, so the hardware doesn’t have to

HHEERRMEARERF main() {
long i,j,t, N=1000000;
double local[N],tmp[N], pi, w;

_J-l 4 dx ~ Z 4 1 w=1.0/N;
CPLed T o, (105 N forall (=0 <N: 10 €
N local[i] = (i + 0.5)*w;
tmp[i] = tmpli] + 4.0/(1.0+locall[i] * local[i]);
}
pi=sum(tmp);

printf(“pi is %f \n”, pi *w);

http://gr.xjtu.edu.cn/web/zhaoy 11

Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

=758 (Shared Variable) Shared Memory Code for Computing a Sum
7N
+ PVP, SMP, DSMAIEIZAEE
i Thread 1 Thread 2
& BE4IE : SPMD, MPMD fori=0,n/2-1 fori=n/2, n-1
+* B s =s + f(A[]) s =s + f(A[i])
+ B—ithtit==E
2 gﬁggﬁﬁ « Problem is a race condition on variable s in the program
- ﬁ;‘:ﬁ% « Arace condition or data race occurs when:
- two processors (or two threads) access the same
variable, and at least one does a write.
- The accesses are concurrent (not synchronized) so
they could happen simultaneously
Programming Model 1: Shared Memory Shared Memory Code for Computing a Sum
“*Program is a collection of threads of control.
#Can be created dynamically, mid-execution, in some static int s = 0;
languages
“*Each thread has a set of private variables, e.g., local stack UIATEEE) 4 e 2
\I;ariables . compute f([A[i]) and putinreg0 7 | compute f([A[i]) and put in reg0 9
“Also a set of shared variables, e.g., static variables, shared regl=s 27 | regl=s 27
common blocks, or global heap. regl =regl +reg0 34| regl=regl +reg0 36
#Threads communicate implicitly by writing and reading s =regl 34| s=regl 36

shared variables.
#Thread — 1 2 1 iables * Assume s=27, f(A[i])=7 on Threadl and =9 on Thread2

Wd memory « For this program to work, s should be 43 at the end
y=.s.. - « butit may be 43, 34, or 36
E ErivEa E » The atomic operations are reads and writes
memory « Never see Y2 of one number

Y « All computations happen in (private) registers

1

http://gr.xjtu.edu.cn/web/zhaoy 12

Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

Improved Code for Computing a Sum . .
P PUting jEEf&i® (Message Passing)
static int s = 0;
static lock Ik; < R .
+ MPP, COWRIE #AERY
Thread 1 Thread 2 oo
local_s1=0 local_s2 =0 © BHIE
fori=0, n/2-1 fori=n/2,n-1 & B
local_s1 =local_s1 + f(A[i]) local_s2=local_s2 + f(A[i]) + ShbhtzsE
lock(Ik); lock(Ik); » BRESE
s S o - BRBERSHIREHE

. TS — = + RiBE
« Since addition is associative, it's OK to rearrange order
< Most computation is on private variables
- Sharing frequency is also reduced, which might improve speed
- But there is still a race condition on the update of shared s

- The race condition can be fixed by adding locks (only one
thread can hold a lock at a time; others wait for it)

#define N 1000000

main() { Programming Model 2: Message Passing
dOUbI?_ local, pi =0.0, w; “*Program consists of a collection of named processes.
long i; #Usually fixed at program startup time

w=1.0/N;
#Pragma Parallel

#Pragma Shared(pi,w
#Pragma Local(i,(IF())caI)) “+*Processes communicate by explicit send/receive pairs

{ #Coordination is implicit in every communication event.

4Thread of control plus local address space -- NO shared data.
#Logically shared data is partitioned over local processes.

#Pragma pfor iterate(i=0;N;1) #MPI is the most common example Private

for (i=0;i<N;i++){ (1] [TT1] D:I:I] memory
local = (i + 0.5)*w;
local = 4.0/(1.0+local * local); | | | | :|

receive Pn,s

} y=.5.. E L ~
#Pragma Critical

pi = pi + local; send P1,s

[Network]

printf(“pi is %f \n”, pi *w);

http://gr.xjtu.edu.cn/web/zhaoy 13

Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

H _ int MPI_Reduce (void *sendbuf,
Computing s = A[1]+A[2] on each processor sdefine N 1000000 void “recvbut, {at sout,
. . . . MPI_Datatype datatype,
° First possible solution — what could go wrong? main() { MPI_Op op, int root, MPI_Comm comm)

5 I 5 5 double local, pi, w;
rocessor rocessor H H .
xlocal = A[1] xlocal = A[2] |Ogg I‘ta_Skld‘numtaSk’
send xlocal, proc2 send xlocal, procl W‘l-O/N_-
receive xremote, proc2 receive xremote, procl MPI_Init(&argc,&argv);
s = xlocal + xremote s = xlocal + xremote MPI_Comm_rank(MPI_COMM_WORLD,&taskid);

MPI_Comm_Size(MPI_COMM_WORLD,&numtask);
If send/receive acts like the telephone system? The post office? for (i = taskid; i<N; i =i+numtask) {
local = (i + 0.5)*w;
° Second possible solution local = 4.0/(1.0+local * local);
}

Processor 1 Processor 2 MPI_Reduce(&local,&pi,1,MPI_Double,MPI_MAX,0,MPI_
xlocal = A[1] xload| = A[2] COMM_WORLD);
send xlocal, proc2 receive xremote, procl : P AR » oA .
receive xremote, proc2 send xlocal, procl If(taSKI(.j__p)prmtf(piis %f \n”, pi *w);
s = xlocal + xremote s = xlocal + xremote MPI_Finalize();

}

MPI — the de facto standard HEERBHITHRIZEENA

In 2002 MPI has become the de facto standard for parallel & Cilk

computing < Pthreads

The software challenge: overcoming the MPI barrier # OpenMP

MPI created finally a standard for applications
development in the HPC community

Standards are always a barrier to further development

The MPI standard is a least common denominator
building on mid-80s technology

Programming Model reflects hardware!

“l am not sure how | will program a Petaflops computer,
but | am sure that | will need MPI somewhere” — HDS 2001

http://gr.xjtu.edu.cn/web/zhaoy 14

Theory of Parallel Computing 2015

Yinliang Zhao (4R %) Xi'an Jiaotong University

Cilk
Cilk is a language for multithreaded parallel programming
based on ANSI C. Cilk is designed for general-purpose
parallel programming, but it is especially effective for
exploiting dynamic, highly asynchronous parallelism,
which can be difficult to write in data-parallel or message-
passing style. Using Cilk, our group has developed three
world-class chess programs, StarTech, *Socrates, and
Cilkchess. Cilk provides an effective platform for
programming dense and sparse numerical algorithms, such
as matrix factorization and N-body simulations, and we are
working on other types of applications. Unlike many other
multithreaded programming systems, Cilk is algorithmic, in
that the runtime system employs a scheduler that allows
the performance of programs to be estimated accurately
based on abstract complexity measures.

The Cilk language has been developed since 1994 at the MIT
Laboratory for Computer Science.
http://supertech.csail.mit.edu/cilk/

Commercialization of Cilk Technology

Prior to ~2006, the market for Cilk was restricted to high-
performance computing. The emergence of multicore
processors in mainstream computing means that hundreds
of millions of new parallel computers are now being
shipped every year. Cilk Arts was formed to capitalize on
that opportunity: In 2006, Professor Leiserson launched
Cilk Arts to create and bring to market a modern version of
Cilk that supports the commercial needs of an upcoming
generation of programmers. The company closed a Series A
venture financing round in October 2007, and Cilk++ 1.0
shipped in December, 2008. Cilk++ differs from Cilk in
several ways: support for C++, operation with both
Microsoft and GCC compilers, support for loops, and "Cilk
hyperobjects" - a new construct designed to solve data race
problems created by parallel accesses to global variables.

Charles Eric Leiserson is a computer scientist, specializing in the
theory of parallel computing and distributed computing

WIKIZE X

Cilk is a general-purpose programming language
designed for multithreaded parallel computing.

The biggest principle behind the design of the Cilk
language is that the programmer should be
responsible for exposing the parallelism, identifying
elements that can safely be executed in parallel; it
should then be left to the run-time environment,
particularly the scheduler, to decide during execution
how to actually divide the work between processors. It
is because these responsibilities are separated that a
Cilk program can run without rewriting on any
number of processors, including one.

Basic parallelism with Cilk

spawn -- this keyword indicates that the
procedure call it modifies can safely operate in
parallel with other executing code. Note that
the scheduler is not obligated to run this
procedure in parallel; the keyword merely alerts
the scheduler that it can do so.

sync -- this keyword indicates that execution of
the current procedure cannot proceed until all
previously spawned procedures have completed
and returned their results to the parent frame.
This is an example of a barrier method.

http://gr.xjtu.edu.cn/web/zhaoy

15

Theory of Parallel Computing 2015

Yinliang Zhao (4R %) Xi'an Jiaotong University

Introducing Cilk

cilk int fib(int n) {
if(n<2) return n;
else {
int n1, n2;
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync,;
return (n1 + n2);

}

* Cilk constructs

—cilk: Cilk function. without it, functions are standard C
—spawn: call can execute asynchronously in a concurrent thread
—sync: current thread waits for all locally-spawned functions

Cilk constructs specify logical parallelism in the program
-what computations can be performed in parallel
—not mapping of tasks to processes

Cilk Terminology

* Parallel control = spawn, sync, return from spawned function

* Thread = maximal sequence of instructions not containing
parallel control (task in earlier terminology)

cilk int fib{n) { Thread A: if statement up to first spawn
if(n<2) return n;
else { Thread B: computation of n-2 before 2" spawn

int n1, n2
n1=spawn f!b(“ ‘13 | Thread C: n1+ n2 before the return
n2 = spawn fib(n-2);
sync;

return (n1 + n2); [lihin}
3 1.'<‘I||illll'\llll‘ll o o

Cilk Language

Cilk is a faithful extension of C
—if Cilk keywords are elided — C program semantics

Idiosyncrasies
—spawn keyword can only be applied to a cilk function
spawn keyword cannot be used in a C function
—cilk function cannot be called with normal C call conventions
— must be called with a spawn & waited for by a sync

< FfiBcontinuation , EISEARE—MHEGRRNE.

BIREBNREOERG A 2SI | SR Activation recordgk &l Stack frame3
ICRNRTREHEE LR HAIFfG context, —4Mrame/recordfi@—MREIRIFER
LTXEE GIEFEHNREEEIEISP, PCISHINE (BIESHIT LB
TENEBERUFREFN , HHFNOMERBRERNABE(E[stack frame, FiT ,
B L, BINABRBEEEHERETT) . BHNERNEEEEE—LpushRFF
context{SR , BENE HEIN BN LiRIfrecord/frame , #RE E—MEBER
record/frame,

FRpascaliXERIZIFHREHLRY , WEE—MEIMIUISHRFER BRI rameltriit,
A, sl , EEMENR | RAFEEHHRE—NEAGLNE , — M EH—B
1B, BAdframeFRiEIIERT .

ContinuationM 25 —#FEEAMARN. ERRAEERGFFELTY , MREXLER
{R1F{Econtinuation recordd, iX%Econtinuation recordfitEAYactivation recordfX
BEF | BARBABALLNEMES , FiGrecordiiER—ER (SKEE) . A—
NMEHRRS— N EHRSETFREITRER—NFh R | ARIERRSFEEE
BAMFER, —MNEHHBEHETFALIT BRI TSR,
g%ﬁg%mﬂﬁ%mgarbage collection3E 1R, MNRZHSIMX M record , MEHEA]
XHEASE R UM S LAY IF AL TERER R ?

RANIFLHZ , EALLHERMEE— N B RBER— B R, AREEEES
H—B—Efreturnz5zX. ELINR , EHEMSEHA GREF— I HEHNITR
B8 | T2ALLERreturnZIPEN &S , MASEMIBEEEIZR B SERE. R
HAILIE— M RSEAGERFECHETXER | AR EUREMEZHRMIZ ,
MHEMFT— N EHEmEEE B SIMEE.

http://gr.xjtu.edu.cn/web/zhaoy

16

Theory of Parallel Computing 2015

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Cilk Program Execution as a DAG

libi-) .
o continiiation o o each circle
represents

! a thread

spu nu:J ruun

E[50
[WH] &'®

e TEEUMN

~

Work and Critical Path Example

=

A B3

b2}

filw 1y En.
] If all threads run in unit time
L S T 6

* T = 8 (critical path length)

Performance Measures

-

T, = sequential work; minimum running time on 1 processor
T, = minimum running time on P processors

T = minimum running time on infinite number of processors
—equivalent to longest path in DAG — critical path length

Properties of Performance Measures

‘I‘p zT,P

—P processors can do at most P work in one step
—suppose T, < T,/P, then PT,< T, (a contradiction)
Tp 2T

—suppose not: T,<T

—could use P of unlimited processors to reduce T

* Ty T,=speedup

—with P processors, maximum speedup is P (for simplified model)
—possibilities

- linear speedup: T,/ T,= @(P)

~ sublinear speedup: T,/ T, = o(P}

- superlinear speedup: T,/ T|== 2(P) (never with simplified model)

T,/T = maximum speedup on = processors

http://gr.xjtu.edu.cn/web/zhaoy

17

Theory of Parallel Computing 2015 Yinliang Zhao (4R %) Xi'an Jiaotong University

Analyzing Parallelism in Cilk

cilk int fib{int n) { cilk int fib{int n) { . - :
if (n < 2) return n; if (n < 2) return n; SChedUhng TaSkS n Cllk
else { else {
int n1, n2; int n1, n2;
ni1= spawn fib(n-1); ni1= spawn fib(n-1); * Alternative strategies
nz= spawn fib(n-2); n2 = serial_fib{n-2); —work-sharing: thread scheduled to run in parallel at every spawn
Sync; sync;
r:lum (n1+ n2); reylurn (n1+ n2); — benefit: maximizes parallelism
} } - drawback: cost of setting up new threads is high — should be avoided
} } work-stealing: processor looks for work when it becomes idle
g:p
How much avg parallelism do we expect in each case? — lazy parallelism: put off work for parallel execution until necessary
02" /n) 2 — benefits: executes with precisely as much parallelism as needed

What is the length of the critical path in each case? Wikvivefoci: e it of Miromels o8 et s S

F : runs with same efficiency as serial program on uniprocessor
(counting operations, not threads) s Bred i

Ofn) O(2m) * Cilk uses work-stealing rather than work-sharing
What do we expect for parallel execution time?
O2"/P+n) 02 »

Ron Cytron, et.al. Automatic Generation of DAG Parallelism. ACM PLDI’89

Call Stack of Executing Process

The number of steal
function push [stack
invocations for o
such a function is call
exponential, that stack
is: O(2r)

The number of leaves,
in general, is
precisely
Fib (n+1). * Stack grows downward

pop

0.1.1.2.3.5.8.13.21 * Stack frame contains local variables for a procedure invocation
PTITETRTE R * Procedure call — new frame is pushed onto the bottom of the stack

* Procedure return — bottom frame is popped from the stack

* Stack maintains order (synchronizes) between caller and callee 13

http://gr.xjtu.edu.cn/web/zhaoy 18

Theory of Parallel Computing 2015

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Cactus Stacks

Cilk uses a cactus stack

A cactus stack enables sharing of C function’s local variables

void A() { B(); C(); } ;
void B() { D(); E(); } each procedure's view of stack

void €() { F(); } B B c D E .

void D() {}
void E() {}
void F() {} A A A A A A
call tree B C B B C
A D E F

/\ Rules

B Cc —puointers can be passed down call chain
/\ \ —only pass pointers up if they point to heap
— functions cannot return ptrs to local variables
n] E F 14

Race Conditions

* Two or more concurrent accesses to the same variable

* At least one is a write

cilk int f() { serial semantics? parallel semantics?
intx=0: freturns 2 let's look closely
spawn g(&x);

spewn g(&x); parallel execution of two instances of g: g, g

sync; : ; 2
reburn x many interleavings possible
} one interleaving
" P read
cilk void g(int *p) s :
read x add1 [y fretums 1!
pe=1; add 1 add 1
} write x :
write x
write x

Greedy Scheduling

* Types of schedule steps
—complete step
— at least P threads ready to run
— select any P and run them
—incomplete step
— strictly < P threads ready to run
— greedy scheduler runs them all

Theorem: On P processors, a greedy scheduler executes any
computation G with work T, and critical path of length T in
time T,ST/P+ T

Proof sketch

—only two types of scheduler steps: complete, incomplete

—cannot be more than T,/P complete steps, else work > T,

—every incomplete step reduces remaining critical path length by 1
— nomore than T incomplete steps 15

What’s the Problem with Races?

* Different interleavings can produce different results

* Race conditions cause non-deterministic behavior
—executions may not be repeatable
— multiple executions may yield different results

http://gr.xjtu.edu.cn/web/zhaoy

19

Theory of Parallel Computing 2015 Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Programming with Race Conditions Challenge Problem: N Queens

* Problem
—place N queens on an N x N chess board
—no 2 gueens in same row, column, or diagonal

* Approach 1: avoid them completely
—no read/write sharing between concurrent tasks

—only share between child and parent tasks in Cilk s+ Solution sketch

2 Appmach 2: be careful! cilk void nqueens(n j placement) {
—sometimes, outcome of a race won't affect overall result # precondition. placed | queens so far
if {f == n) return placement
for (k=0 k = n; k++)
place j+1 gueen in k" position

- e.g. processes sharing a work queue

the order in which processes grab tasks is immaterial to the
result that the work gets performed

—avoiding data corruption
— word operations are atomic on microprocessor architectures

if this is a legal placement of j+1 queens
spawn ngqueens(n j+1,...)

syne
definition of a word varies according to processor: 32-bit, 64-bit

- use locks to control atomicity of aggregate structures }
acquire lock

if some child found a legal resull return one, efse return null

* An inefficiency
—a single placement suffices; no need to compute all legal placements
—so far, no way to terminate children exploring alternate placements 3

read and/or write protected data

release lock

#ZERCilk! abort

* Syntax: abort;

* Where: within a cilk procedure p

References * Purpose: terminate execution of all of p’s spawned children

* Does this help with our nqueens example?

o B
Cilk 5.4.1 reference manual. cilk void nqueens(nj, placement) {

* Charles Leiserson, Bradley Kuzmaul, Michael Bender, and # precondition: placed J queens so far
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel ;’U: ”3 _'E’S'”_i’fff”‘e”’
Systems. o A e 0,

place j+1 queen in k™ position
if this is a legal placement of j+1 queens
spawn nqueensin f+1,...)
sync;
if some child found a legal resuit return one, else return nuil

}

Not yet! need a way to invoke abort when a child yields a solution

http:/itheory.lcs.mit.edu/classes/6.895/fall03/scribe/master.ps

http://gr.xjtu.edu.cn/web/zhaoy 20

Theory of Parallel Computing 2015

inlet

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

* Normal spawn: x = spawn £(..);
—result of £ simply copied into caller's frame
* Problem
—might want to handle receipt of a result immediately
—ngueens: handle legal placement returned from child promptly
* Solution: inlet
—block of code within a function used to incorporate results
—executes atomically with respect to enclosing function

Syntax (inlet must appear in declarations section)

N Queens Revisited

New solution that finishes when first legal result discovered

cilk void nqueens(n | placement) {

int *resull = nulf | function initializes result

precondition: placed | queens so far
intet void doresuiifchiidplacement) {
if {chifdplacement == null) return: else { result = childplacement. abort. }
1
if {f == n) return placement
for (k=0 k = n k++)
ace j+1 queen in k" position

if this yialds a legal placement of j+1 queens if solution
sultfspawn nqueensing+1,...)) found, inlet
Syne updates
refur result result and
1 aborts
siblings

cilk int f(...) {
inlet void my_inlel{ResultType* result, iarg2, ..., jargn) {
/l atomically incorporate result into f's variables
returm;
}
niel{spawn g{...), farg2. ..., fargn);
! 5
Using an inlet
A simple complete example
cilk int fib{int n) { cilk int fib{int n) {
if (n < 2) return n; int result = 0;
else { inlet void add{int r) {
intn1, n2; result +=r;
n1 = spawn fib{n-1); return;
n2 = spawn fib{n-2);
sync; if (n < 2} return n;
return (n1 + n2); else { il
} intn1, n2; ;2:{;;;‘3150
} cilk guarantees a;ilg[smwn :!::n';”f fib's
inlet instances from all gvngfpawn ib{n-2)); variables

spawned children are
atomic w.r.t one another }
and caller too

return result;

Implicit inlets

http://gr.xjtu.edu.cn/web/zhaoy

* General spawn syntax
—statement: [lhs op] spawn proc({arg’, ..., argn);
—[lhs op] may be omitted
— spawn update{&data);
—if Ihs is present
— it must be a variable matching the return type for the function
— op may be

= *= |= %= 4= = <<= k= &= M= =

* Implicit inlets execute atomically w.r.t. caller \

implicit
inlets

21

Theory of Parallel Computing 2015

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Using an implicit inlet

cilk int fib(int n) { cilk int fib(int n) {
if (n < 2) return n; int result = 0;
else { if (n < 2) return n;
int n1, n2; else {
n1= spawn fib(n-1); int n1, n2;
n2 = spawn fib(n-2); result += spawn fib(n-1)};
sync; result += spawn fib(n-2));
return (n1 + n2); sync;
} return result;
} }
cilk guarantees H

implicit inlet instances
from all spawned
children are atomic w.r.t
one another and caller

Locks

* Why locks? Guarantee mutual exclusion to shared state
—only way to guarantee atomicity when concurrent procedure
instances are operating on shared data
* Library primitives for locking
Cilk lock_init(Cilk_lockvar k
Cilk_lock(Cilk_lockvar k)
Cilk unlock(Cilk lockvar k)

must initialize a
lock variable
before using it!

SYNCHED

* Determine whether a procedure has any currently outstanding
children without executing sync
if children have not completed
SYNCHED =0
otherwise
SYNCHED =1

* Why SYNCHED? Save storage and enhance locality.

statel = Cilk_alloca(state_size);

spawn foo(statel); /* fill in statel with data */
if (SYNCHED) state2 = statel;

else state2 = Cilk_alloca(state_size);

spawn bar (statel2);

syncj

Concurrency Cautions

* Cilk atomicity guarantees
—all threads of a single procedure operate atomically
—threads of a procedure include
— all code in the procedure body proper, including inlet code

* Guarantee implications
—can coordinate caller and callees using inlets without locks
* Only limited guarantees between descendants or ancestors

—DAG precedence order maintained and nothing more
—don’'t assume atomicity between different procedures!

http://gr.xjtu.edu.cn/web/zhaoy

22

Theory of Parallel Computing 2015

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Sorting in Cilk: cilksort

Variant of merge sort
* Divide array into four quarters A,B,C,D of equal size
* Sort each quarter recursively in parallel
* merge sorted A & B into tA and C & D into tC (in parallel)
* merge sorted tA and tC into A
High-level sketch

cilk void cilksort(low,tmp,size){
sized4 = size/d
if size <= 1 return input
spawn cilksort(A,thA,sized); spawn cilksort(B,tB, sized);
spawn cilksort(C, tC, sized);
spawn cilksort(D, tD, size-3*sized);
sync;
spawn cilkmerge(A, A + sized-1, B, B + sized-1, tA);
spawn cilkmerge(C, C + sized-1, D,low + size-1, tC);
sync;
spawn cilkmerge(tA, tC-1, tC, tA + size-1, A);
SYnc;

Optimizing Performance of cilksort

* Recursively subdividing all the way to singletons is expensive

* When size(remaining sequence) to sort or merge is small (2K)
—use sequential quicksort
—use sequential merge

* Remaining issue: does not optimally use memory hierarchy

* Funnelsort is optimal in this regard
—asplit input into n'? sections of size n®*
—sort each recursively in parallel
—merge n'? sorted sequences using an n"?-way merger
—funnelsort(n): only O(1+(n/L}{(1+log,n)} cache misses if z = Q(L?)
See [Frigo MIT PhD 99]

Merging in Parallel

* How can you incorporate parallelism into a merge operation?
* Assume we are merging two sorted sequences A and B
* Without loss of generality, assume A larger than B

Algorithm Sketch
1. Find median of the elements in A and B (considered together).

2. Do binary search in A and B to find its position. Split A and B at
this place to form A,, A,, B,, and B,

3. In parallel, recursively merge A, with B, and A, with B,

Cilk: Behind the Curtain

* cilkc generates two copies of each procedure
—fast: for optimized execution on a single processor
—slow: used to handle execution of “stolen procedure frames”
— key support for Cilk's work-stealing scheduler

* Two schedulers
—nanoscheduler: compiled into cilk program
— execute cilk procedure and spawns in exactly the same order as C
— on one PE: when no microscheduling needed, same order as C
- efficient coordination with microscheduler
—microscheduler
— schedule procedures across a fixed set of processors
— implementation: randomized work-stealing scheduler
when a processor runs out of work, it becomes a thief
steals from victim processor chosen uniformly at random

http://gr.xjtu.edu.cn/web/zhaoy

23

Theory of Parallel Computing 2015

In the Cilk scheduling algorithm, a processor works on subroutine a until:
1. @ spauns subroutine J
 In this case, the procesor pushes o to the bottom of the ready deque, and starts work on
subroutine J.

2. o returns

& IF the deqgue is nonempty. the processor pops the bottom subroutine and begins working on it.

& If the deque is empty, first the processor tries to execute a's parent.

= If a's parent is busy, the processor steals work at random.,
3. e synchs with another subroutine

« If there exists outstanding children and the computation cannot proceed, then the processor
worksteals. Note that the deque must be empty in this case,

1
delete

» The processor chooses a victim uniformly at random.
push | ' pop

o If the victim's deque is empty, the processor tries again

Otherwise, the processor steals the top (oldest) thread of the victim and begins to work on it.

quene end

stack end

Yinliang Zhao (i##R5%) Xi'an Jiaotong University

Microscheduler

Schedule procedures across a fixed set of processors

* When a processor runs out of work, it becomes a thief
—steals from victim processor chosen uniformly at random

* When it finds victim with frames in its deque
—takes the topmost frame (least recently pushed)
—places frame into its own deque
—aives the corresponding procedure to its own nanoscheduler

* Manoscheduler executes slow version of the procedure
—receives only pointer to frame as argument] sing slow proced ure
— real args and local state in frame
—restores pgm counter to proper place using switch stmt (Duff's device)
—at a sync, must wait for children
—before the procedure returns, place return value into frame

Nanscheduler Sketch

* Upon entering a cilk function |Using fast procedure
—allocate a frame in the heap

—initialize the frame to hold the function's shared state
—push the frame into the bottom of a deque (doubly-ended queue)
- one-to-one pairing between frames on stack and in deque

* Ataspawn
—save the state of the function into the frame
~ only live, dirty variables
—save the entry number (position in the function) into the frame
—call the spawned procedure with a normal function call
* After each spawn
—check to see if if the procedure has been migrated
- if the current frame is still in the deque, then it has not
—if so, clean up C stack
* Each sync becomes a no-op

* When the procedure returns
—pop the frame off the deque
—resume the caller after the spawn that called this procedure

Nanoscheduler Overheads

http://gr.xjtu.edu.cn/web/zhaoy

Basis for comparison: serial C

* Allocation and initialization of frame, push onto deque
—a few assembly instructions

* Procedure’s state needs to be saved before each spawn
—entry number, live variables
—memory synchronization for non-sequentially consistent SMPs

* Check whether frame is stolen after each spawn
—two reads, compare, branch (+ memory synch if needed)

* On return, free frame - a few instructions
* One extra variable to hold frame pointer

* Overhead in practice
—fib(n) runs ~ factor of 2 or 3 slower than seq C

24

Theory of Parallel Computing 2015

References

thesis. MIT,1999.

Systems.

* Cilk 5.4.1 reference manual.

* Matteo Frigo. Portable High-performance Programs. PhD

* Charles Leiserson, Bradley Kuszmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel

http:/itheory.lcs.mit.edu/classes/6.895/fall03/scribe/master.ps

http://gr.xjtu.edu.cn/web/zhaoy

Yinliang Zhao (4R %) Xi'an Jiaotong University

25

