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4 systematic procedure that produces—in a finite number of steps—the
answer to a question or the solution of a problem.

4 In computer science, a parallel algorithm, as opposed to a traditional
serial algorithm, is one which can be executed a piece at a time on
many different processing devices, and then put back together again
at the end to get the correct result.
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PARTITION_R(A,lo,hi)

% r<RANDOM(hi-lo+ 1)+ 1o
+ ZHA[lo]FA[r]

% return PARTITION(A,lo,hi)
QUICKSORT_R(A,lo,hi)

#if lo < hi

% p«PARTITION_R(A,lo,hi)
# QUICKSORT_R(A,lo,p)

# QUICKSORT_R(A,p+ 1,hi)
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begin

(1) for i=1 to n par-do B(i)«A(i1) endfor

(2) for h=1 to logn do

for i=1 to n/(2") par-do

B(i1)«B(2i-1)+B(2i1)
endfor
endfor
(3) S«B(1)

end [

W(n)=n+ Z%+1:O(n) T (n) = O(logn)

(1) for j=1 to 1=n/p do
BU(s-1)+j):=A0(s-1)+j)

endfor
(2) tor h=1 to log n do

(2.1) if (k-q—h>=0) then
for j=2k-h-a(s-1)+ 1 to 2k-h-ag
do
B(j):=B(2j-1)+ B(2j)
endfor
endif
(2.2) if(s<=2k"h) then
B(s):=B(2s-1)+ B(2s)
endif

endfor
(3) if(s=1)then S:=B(1) endif

end

(1) O(1)=0O(n/p)
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Begin
(1) Compute z=Bw
(2) if i=1 then y;=0 else receive(y,left) endif
B3 y=ytz
(4) send(y,right)
(5) if i=1 then receive(y,left)
End
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Why models?

What is a machine model?
# A abstraction describes the operation of a machine.

# Allowing to associate a value (cost) to each machine
operation.
Why do we need models?
%4 Make it easy to reason algorithms
% Hide the machine implementation details so that
general results that apply to a broad class of
machines to be obtained.

# Analyze the achievable complexity (time, space, etc)
bounds

% Analyze maximum parallelism

4 Models are directly related to algorithms.

RAM (random access machine) model

Memory consists of infinite array (memory cells).
Instructions executed sequentially one at a time
All instructions take unit time

# Load/store

# Arithmetic

% Logic

Running time of an algorithm is the number of
instructions executed.

Memory requirement is the number of memory cells
used in the algorithm.
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4.2 Parallel Machine Models

4.2.1 PRAM # &
4.2.2 # 4% APRAM # &

4.2.3 BSP# 4
4.2.4 LoGP# #

RAM (random access machine) model

The RAM model is the base of algorithm analysis for
sequential algorithms although it is not perfect.

% Memory not infinite

% Not all memory access take the same time

<% Not all arithmetic operations take the same time

% Instruction pipelining is not taken into consideration.

The RAM model (with asymptotic analysis) often gives
relatively realistic results.
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4.2.1 PRAM # &

ARG
% fHFortuneMWyllie19784E#E H, XHRSIMD-SMAEHE

% PRAM (Parallel Random Access Machine) #EE!E 8§
BOMEBHERI (SIMD) FHATHH I —Fh RAHLER
EERR, BREE N ERRBFENLZFES, I
HEZATIREMERKAIEE, EAERN SIS LA
E I EFEAE T, EEPRAMPE — MRS, B W
BAEEEFL BT

4 PRAM is an abstract machine for designing the
algorithms applicable to parallel computers. It
eliminates the focus on miscellaneous issues such as
synchronization and communication

PRAM % &,

Unbounded number of local memory cells

Each memory cell can hold an integer of unbounded size
All operations take unit time

Unbounded collection of RAM processors — PO, P1, ...,
Each processor has unbounded registers

Unbounded collection of shared memory cells

Processors have a read, compute, write phase that happen
synchronously

% e.g.foralli, do Alfi] = A[i-1]+1;

% Read A[i-1], compute add 1, write A[i]

Some subset of the processors can remain idle
Think of it as SIMD parallelism
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Parallel Random Access Machine (PRAM)

Collection of numbered processors

Accessing shared memory cells
9 Y Control
Each processor could have local

memory (registers)

Each processor can access any HeEEEEE ==

shared memory cell in unit time ~ |——: Private —

Input stored in shared memory jMemory | ¥ )
cells, output also needs to be R — Global
stored in shared memory L& private O

PRAM instructions execute in 3- {MEriOry

Memo
phase cycles Y

» Read (if any) from a shared
memory cell

« Local computation (if any) T
« Write (if any) to a shared memory L—- Private —
cell =+ Memory !

Processors execute these 3-phase
PRAM instructions synchronously

PRAM 1% 5 £ &

PRAM-EREWE Fi£H S
4 Exclusive Read (ER) — all processors can
simultaneously read from distinct memory locations
4 Exclusive Write (EW) — all processors can
simultaneously write to distinct memory locations
PRAM-CREWH KL HFE
# Concurrent Read (CR) — All processors can
simultaneously read from any memory location

PRAM-CRCW3HRiEHEE
# Concurrent Write (CW) — All processors can write to
any memory location
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Concurrent Write (CW)

What value gets written finally?

# Priority CW — processors have priority based on which
write value is decided

4 Common CW — multiple processors can
simultaneously write only if values are same

% Arbitrary/Random CW — any one of the values are
randomly chosen

Theorem. A p-processor CRCW algorithm can be no
more than O(log p) time faster than the best
p-processor EREW algorithm for the same problem.

Proof.

The proof is a simulation argument. We simulate each step of
the CRCW algorithm with an O(log p)-time EREW
computation.

Because the processing power of both machines is the same,
we need only focus on memory accessing.

Let’s present the proof for simulating concurrent writes here.
Implementation of concurrent reading is left a exercise.
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Strength of PRAM models

Model A is computationally stronger(>=) than model B iff
any algorithm written for B will run unchanged on A

Priority >= Arbitrary >= Common >= CREW >= EREW

Most Least
powerful powerful
Least Most

realistic realistic

Terew = O(Terew 109 P) = O(Terew - 109 P)

The p processors in the EREW PRAM simulate a concurrent
write of the CRCW algorithm using an auxiliary array A of
length p.

1.When CRCW processor P;, for
i=0,1,...,p-1, desires to write a

12 18 datum x; to location [;, each
corresponding EREW processor P;
43 |29 instead writes the ordered pair (1I;,x;)
to location A[i].

2. This writes are exclusive, since
26 |92 each processor writes to a distinct
memory location.

3. Then, the array A is sorted by the first coordinate of the ordered
pairs in O(log p) time, which causes all data written to the same
location to be brought together in the output.
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Po ~| (2943) | 0 01| 612 /'m Po 812) | 0
612 |1 1 612 ®12) | 1
(2943) | 2 2 | (29,43) (2943) | 2
P, k (2943) | 3 3 | (29.43) P, (2943) | 3
S ) = .
D raiie h
A A
; ;
E Simulated % Simulated 12 |8
CRCW | ™ " CRCW R
global sort global Simulating step on 13 29
memory memory an EREW PRAM
26 |92

4. Each EREW processor P; now inspects A[i]=(I;x;) and A[i-1]=
(X, where j and k are values in the range 0<j,k<p-1. If |; = I,
or i=0 then P; writes the datum X; to location ; in the global
memory. Otherwise, the processor does nothing.

The issue arises, therefore, of which model is
preferable — CRCW or EREW

Advocates of the CRCW models point out that they are easier to
program than EREW model and that their algorithms run faster

Critics contend that hardware to implement concurrent memory
operations is slower than hardware to exclusive memory
operations, and thus the faster running time of CRCW algorithm
is fictitious.

# In reality, they say, one cannot find the maximum of n values
in O(1) time

Others say that PRAM is the wrong model entirely. Processors
must be interconnected by a communication network, and the
communication network should be part of the model
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End of the proof

Since the array A is sorted by first coordinate, only one
of the processors writing to any given location actually
succeeds, and thus the write is exclusive.

This process thus implements each step of concurrent
writing in the common CRCW model in O(log p) time

A Basic PRAM Algorithm

= Let there be "n” processors and "2n" inputs
= PRAM model: EREW
= Construct a tournament where values are compared

Processor k is active in step j
if (k% 20)==10
At each step:
Compare two inputs,
Take max of inputs,
Write result into shared memory

PO P1PZP3P4P5P6PT Details:

Need to know who is the “parent” and
whether you are left or right child
\Write to appropriate input field

10
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Parallel search algorithm

PRAM Algorithm:
% Step 1: Inform everyone what x is
% Step 2: every processor checks N/P numbers and sets a
flag
# Step 3: Check if any flag is set to 1.
EREW: O(log(p)) step 1, O(N/P) step 2, and O(log(p)) step 3.
CREW: O(1) step 1, O(N/P) step 2, and O(log(p)) step 3.

CRCW (common): O(1) step 1, O(N/P) step 2, and O(1) step 3.

Pascal triangle

PRAM CREW

rmoxaxem
GOOEED

for cach 1 <4 < 5 do in parallel
Alil; = Ali] + Afi + 1]

QDLW D

1510 10 51
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Example CREW-PRAM

Assume initially table A contains [0,0,0,0,0,1] and we
have the parallel program

for each 1 <4 <5 do in parallel
Ali);= A[i] + Ali + 1]

then the consecutive values of the tables A (in parallel
|| step 0, 1, 2, 3, 4, 5) correspond to the Pascal triangle,
the nonzero elements in the n-th row are
T Y n n
@ (D &) - ()

101 n = 0‘1a2:3! '11516-

Finding Maximum: CRCW Algorithm

Given n elements A[Q, n-1], find the maximum.

With n? processors, each processor (i,j) compare A[i] and A[j], for 0< i, j =n-1.

FAST-MAX(A): 4 [1']

L n«length[A] i

» fori«0to n-1, in parallel 5602 9m

3. do m[i] «true -

«  fori—0ton-1andj<0to n-1,in parallel SETTET]E
do if Ali] < A[j] Ali] 6|F FTFT|F

5 then m[i] «—false ..

7. for i —0 to n-1, in parallel JFFFFFT

" do if m[i] =true 2TTTFT|FE

a then max — A[i] ..

. return max NFEFFFFIT

max=y
The running time is O(1).
Note: there may be multiple maximum values, so their processors
Will write to max concurrently. Its work n:x Oy =0(n?).

11



Theory of Parallel Computing 2015

PRAM-CRCW 1R &

BA: FFIIA,,....A)In > 4h 2 85
. SRR XN

Begin
for each processorido repeat for each processor i<>root do
root=i if (A<Ap)V (A=A /A\i<f) then
f=root LC=i
LC=RC=n+1 if i=LC; then exit else f=LC; endif
end for else
RC;=i
if i=RC;, then exit else f=RC; endif
endif
end repeat
End
PRAM strengths
Natural extension of RAM

It is simple and easy to understand

4 Communication and synchronization issues are
hided.

Can be used as a benchmarks

# If an algorithm performs badly in the PRAM model,
it will perform badly in reality.

# A good PRAM program may not be practical though.

It is useful to reason threaded algorithms for
SMP/multicore machines.
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How practical is PRAM

Unbounded number of local memory cells

< Not true, memory is the bottleneck of many
applications

Each memory cell can hold an integer of unbounded size
4 We don’t care much about this

All operations take unit time

# Very unrealistic for memory operations

% As we traverse up the memory hierarchy, access time
changes by a factor

12
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PRAM — unaccounted costs

Non-local memory access

Latency

Bandwidth (greater problem in PRAM)
Memory access contention
Synchronization

# What were the synchronization issues in our example
problem

Some variants of PRAM

LPRAM
4 Charge a cost of L units to access global memory

# Any algorithm that runs properly in a p processor
PRAM can run in this model with a loss of factor L

BPRAM
# Charge L units to access first message
% B units for each subsequent message
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Some variants of PRAM

Bounded shared memory PRAM, PRAM(m)

% Global memory segmented into modules

# Any given step, only m memory accesses can be
serviced

Bounded number of processor PRAM

% Any problem that can be solved for a p processor
PRAM in t steps can be solved in a p’ processor PRAM
in t’=0(tp/p’)steps

A A XK

iR, FRE B, PRAMATLARPBSAERY | {3 {0l 5 IL AT
HATHEE, Journal of Software, Feb. 2004,15(2):159-
169

13
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(3) Rk (4) R REA RS EPAT BN RRER
TSR B 20 e o FF (9 2 RAH 2 AR
APRAMAR &Y
HERER 1 4hIRER 2 4R p . X
read n read ¥ read x, I‘I‘ﬁﬁﬂ‘lﬁ]
phasel  readx * * WREERIERBAIR ], 2R/ S EIn R Ad, dfEEL
* wite to B * EEBE RN, R B AT A A B=B(p)IERE R 3L -
write to &4 write to C waite to D WRRR<d<B<p ;B=B(p)=0(dlogp) B
R O(d log p/logd)
wad B read & wad C 41, AL REASABRBHIITHERKSE, WAPRAM L
phease2 * * * TR E A
wite to B write to D T:thh+BX|§Jifsﬁﬁ(§&
RIEE
* wite to wrte to B ﬁﬁﬁ
read I read & GRS EENE R E, BEE5RLHERE, H T
write to B HLAEEAR, BAEAMIMD-DMER,
RIEE
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BSP # #l
4.2 #irtE £ A # HiValiant(1990) Communication

!l %II:H B{], “ﬂ”
421 PRAM# & FSHY, B network
4.2.2 —ﬁ- %APRAM #ﬁ- Z'!J_ Fh R AEMIMD-

i DMIER, 7
4.2.3 BSP# & BB ARG, H
4.2.4 logP #t #! WRBIHT, B
] 2R .

L. 6. Valiant. A bridging model for parallel computation.

Communications of the ACM, 33:103-111, 1990.

BSP ﬁ gg! The BSP model emphasized the separation of communication from
N computation by incorporating the bulk-synchrony with a distributed
) ) memory model over message passing.
A BSP computer consists of a collection of processors,
each with its own memory. It is a distributed-memory

computer. A ¢ )
. . set rocessor-memory pairs.
Access to own memory is fast, to remote memory et ol processor-memory pa
slower * A communication network that
. . . delivers messages in a point-to-point
Uniform-time access to all remote memories. manner
. - < .
No need to open the black box of the communication e A mechanism for the efficient barrier

network. Algorithm designers should not worry about
network details, only about global performance.
Algorithms designed for a BSP computer are portable:
they can be run efficiently on many different parallel
computers.

synchronization for all or a subset of
the processes.

* There are no special combining,
replicating, or broadcasting facilities.

15
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The communication network or routeris described by only two
parameters:

The message latency L : the time needed by a short message to
travel across the network to its destination processor.

The bandwidth factor g : the parameter corresponds to a capacity
constraint on the network. More precisely, it is defined as the ratio

of local operations performed by all processors in one time unit to
the total number of messages delivered by the router in the same
time unit.

A BSP program is a sequence of supersteps. During each
superstep, the processors (processor/memory modules) perform
arbitrary local computations. At the end of each superstep,

the processors synchronize and communicate by sending
messages over the network (router). The router realizes
supersteps in which each processor sends and receives at

most 4 messages (#-relation). This pattern of independent
computations followed by synchronization and communication
steps is called bulk-synchronous.

BSP algorithm

A BSP algorithm consists of a sequence of supersteps.

A computation superstep consists of many small steps, such
as the floating-point operations (flops) addition, subtraction,
multiplication, division.

A communication superstep consists of many basic
communication operations, each transferring a data word
such as a real or integer from one processor to another.

In our theoretical algorithms we distinguish between the
two types of supersteps. This helps in the design and
analysis of parallel algorithms.

In our practical programs, we drop the distinction and mix
computation and communication freely in each superstep.

Yinliang Zhao (%) Xi'an Jiaotong University

P(0) P(1) P(2) P(3) P(4)

‘ comp

\ comm
/<><></< comm

‘ comp

W comm

N4 % {Xx1,x2,....xn}, HE&Ae ANA3 Fo:
Si=x1*x2*...*xi, 1<i<n & Z*¥Tit A + KX

x1 x2 x3 x4 x5 x6 x7 x8

k=3 1 12 123 14 15 16 1-7 1-8

Ig p. supersteps such that during the k'™ superstep,
the processes in the range 2k-! < i < p each combine
their local partial sums with process i-2k-1.
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int bsp_allsums1( int x ){
int k, left, right;
bsp_pushregister( &left, sizeof(int));
bsp_sync(Q);
right = x;
for(k=1; k<bsp_nprocsQ); k*=2){
iT( bsp_pid(QQ+k < bsp_nprocsQ)
bs ut( bs idO+k, &right, &left, O,
"—‘sugégf((intpig; © °
bsp_sync(Q);
if( bsp_pid() >= k ) right = left + right;

}
bsp_popregister( &left );
return( right ); Push to remote memory
}
Communication superstep: h-relation
2-relations:

7\
L /:\

()

= An /i-relation is a communication superstep in which
every processor sends and receives at most /» data
words: h = max{hs, h, }.

® /i, is the maximum number of data words sent by a
Processor.

® /i, is the maximum number of data words received by a

: Processor.
Y
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BSP BSP BSP BSP BSP Barrier
Process  Process  Process  Process Synchronization
Time 1 2 3 4 Metwark
1 2 3 4 Local Caiputation
Commufication
I ——— Barfier
] Synchropization
L L —

1 3 ] 7 Local Coputation
REM\ Commufication
‘-—-_____-"‘-—-______“--.% Batier

Synchropization
J ] o
1 3 [} 10
L

Cost of communication superstep

T(h) = hg + I, where g is the time per data word and | the
global synchronization time.

Motivation hg: h determines communication time, since
entry/exit of processor is the bottleneck .

Motivation I: contains fixed overhead such as start-up costs
of sending data, costs of checking whether all data have
arrived at their destination, and costs of the synchronization
mechanism itself.
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Time of an h-relation on an 8-processor IBM SP2 Cost of computation superstep

. . ‘ T =w + |, where w is the maximum number of flops of a
L i = processor in the superstep.

Processors with less than w flops have to wait. This waiting
time is called idle time.

flop units)

Time (in

To measure T, a wall clock is needed, giving the elapsed

soon0 | 1 time. A CPU timer will not work, since it does not measure
. . ’ idle time.
F]
r =212 Mflop/s, p = 8, g = 187 flop (0.88s), Same | as in communication superstep, for simplicity.

[ = 148212 flop (698 us)

P LT T e R & I T & 1]

Comp

i)

Cost of algorithm Parallel algorithm:
supersteps wf

The cost of a BSP algorithm is an expression of the form

a+bg+cl
& This cost is obtained by adding the costs of all the Comm
supersteps. Cost of BSP algorithm for p
# Note that g = g(p) and | = I(p) are in general a function =5,9=25,1=20is 320
of the number of processors p. flops. Comm
# The parameters a; b; ¢ depend in general on p and on a First computation superstep
problem size n. costs 60 + 20 = 80 flops. | |

omp

First communication
superstep costs 4*5*2.5 + 250
20 =70 flops. -

,
\
\

omm

‘._|§_ S B B N B B |
\
[/
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Summary

= An abstract BSP machine is just a BSP(p.r. g.1)
computer. This is all we need to know about the machine
for developing algorithms. The parameters are:

p number of processors

r computing rate (in flop/s)

¢ communication cost per data word (in flop time units)
[ global synchronisation cost (in flop time units)

= The BSP model consists of
® a distributed-memory architecture with a black box
communication network providing uniform-time access
to remote memories;

® an algorithmic framework formed by a sequence of
supersteps,;
= a cost model giving cost expressions of the form

[ I"J_I’,f +af. Recturs 1.2 Buk Synchronous Pacalll Madd

logP # &
AN

% M Culler(1993)F R K], B—FIAEME. K2
RIBRKZAEHER, K@ mba—HSHHR,
EATRRED.

BASH

# L: network latency

% 0: communication overhead

% g: gap=1/bandwidth

% P.: #processors

E: LWgRB T @RS NAE
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4.2 # Tt E A
4.2.1 PRAM # &
4.2.2 5 4% APRAM # &!
4.2.3 BSP# &

4.2.4 logP 4 &

Deriving the LogP Model

Processing
— powerful microprocessor, large DRAM, cache =P
Communication
+ significant latency (100's of cycles) =L
+ limited bandwidth (1 —5% of memory bw) =>¢g
+ significant overhead (10's —100's of cycles) =>o

- on both ends
— no consensus on topology
=> should not exploit structure
+ limited capacity
— no consensus on programming model
=> should not enforce one
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LogP
-——— P (processors )———*

[p]im] [p)m] - - -
o (overhead)
g (9ap)

Limited Volume
(L/g toor from
aproc)

Latency in sending a (small) message between modules
overhead felt by the processor on sending or receiving msg
gap between successive sends or receives (1/BW)

Processors

LogP philosophy

¢ Think about:

. — mapping of a task onto P processors

. — computation within a processor, its cost, and balance

J — communication between processors, its cost, and
balance

e given a charaterization of processor and network
performance

¢ Do not think about what happens within the network
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Using the Model

time

° Send n messages from proc to proc in time 20 + L + g(n-1)
— each processor does 0 n cycles of overhead
— has (g-0)(n-1) + L available compute cycles

° Send n messages from one to many

in same time 4

° Send n messages from many to one \
in same time

—all but L/g processors block E;é

so fewer available cycles ™~

Develop optimal broadcast algorithm based
on the LogP model

Broadcast a single datum to P-1 processors

PO | L

P2 S

P3 \LH-Y L

P4 Ty

P3 D e o o SR

PG Ty e
P77 P6 P4 P7 Ty

] |5 Iﬂ:l |1$ IZO Tllme

Figure 3: Optimal broadcast tree for P = 8, L = 6,9 = 4.0 = 2 (left) and the activity of each processor
over time (right). The number shown for each node is the time at which it has received the datum and can

begin sending it on. The last value is received at time 24.
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Latency and Bandwidth Model

Time to send message of length n is roughly
Time = latency + n*cost_per_word
= latency + n/bandwidth
Topology is assumed irrelevant.
Often called “ o—f3 model” and written
Time = a + n*B
Usually a >> 8 >> time per flop.
# One long message is cheaper than many short ones.
o+ n#B << n*x(o + 1#B)

# Can do hundreds or thousands of flops for cost of one
message.

Lesson: Need large computation-to-communication ratio to
be efficient.

Model Time Varying Message Size & Machines

10000

1000

-

machine

—e—T3E/Shm
—a— TIEMPI
—a— IBMLAPI
—— BMMPI
100 —%— Quadrics/Shm
—e— Quadrics/MPI
MyrinetGM
MyinetMPI
GigEMPL
GigE/MPI

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
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Alpha-Beta Parameters on Current Machines

These numbers were obtained empirically

machine o B . .

T3E/Shm 12| o003 &'° IBaxncy In usecs Byt
T3E/MPI 67 0.003 Bis in usecs per Byte
IBM/LAPI 9.4 0.003

IBM/MPI 7.6] 0.004

Quadrics/Get 3.267| 0.00498

Quadrics/Shm 13 0.005 How well does the model
Quadrics/MPI 7.3] 0.005 Time = a +n*p
Myrinet/GM 7.7] 0.005 predict actual performance?
Myrinet/MPI 7.2 0.006

Dolphin/MPI 7.767| 0.00529

Giganet/VIPL 3.0 0.010

GigE/VIPL 4.6/ 0.008

GigE/MPI 5.854| 0.00872

— Measured Message Time -

[um ofga|

10000

1000

machine

—e—T3E/Shm
—a—T3E/MPI
—a— IBM/LAPI
—%— IBM/MPI

——Q

—e— Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GIigE/VIPL
GigE/MPI

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
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End to End Latency Over Time

1000
nCube/2
100 + * CM5 cs2
2 Cube/2 * SP, szs ESB 3
nCube . * Cenju.
3 cElE $ PgFRgon $ SP-Power3
Myrinet
10 *+ CS2 $ uyardncs
* T3E
* T3D
* SPP .
*
L | | | . T3E‘ | Quadrics
1990 1992 1994 1996 1998 2000 2002
Year (approximate)

Latency has not improved significantly, unlike Moore’s Law
# T3E (shmem) was lowest point — in 1997

Data from Kathy Yelick, UCB and NERSC

LogP Parameters: gap
The Gap is the delay between sending
messages
Gap could be larger than send ovhd

4 NIC may be busy finishing the
processing of last message and
cannot accept a new one.

% Flow control or backpressure on  Jap
the network may prevent the NIC ————
from accepting the next message to
send.

# No overlap =

=
[

time to send n messages =

(Osend +L+ Orecy - gap) + n*gap =a+ H*B
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LogP Parameters: Overhead & Latency

Non-overlapping
overhead

Send and recv overhead
can overlap

0recv
EEL = End-to-End Latency = EEL =f(0,,4, L, 0,..,)
Ogend +L+ Oprecy 2 max(osend’ L’ Orecv)

Results: EEL and Overhead

usec

25
20 ]
15
10
0 = ﬁ T T Q Q T T T
QA Q Q S & o & Q
\6 <<> N &\" S &\ &
T 0° & o & o‘Q
‘D Send Overhead (alone) B Send & Rec Overhead B Rec Overhead (alone) O Added Latency‘

Data from Mike Welcome, NERSC
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Send Overhead Over Time Limitations of the LogP Model

14
12 % NCube/2 = ks The LogP model has a fixed cost for each messages
10 - # This is useful in showing how to quickly broadcast a single word
o 8 sp3 ) 4 Other examples also in the LogP papers
3 8 TS a8 ;Um'n For larger messages, there is a variation LogGP
a Dol
> 6 8-CM5 8-T3Ew-sct phin # Two gap parameters, one for small and one for large message
4 4 @ Meiko : : % The large message gap is the f§ in our previous model
@ Paragon  _ LIS No topology considerations (including no limits for bisection
2 wMeiko & EVlyrinet2K bandwidth)
@ T3D | T3E @ Compag
0 T T T T T # Assumes a fully connected network
1990 1992 1994 1996 1998 2000 2002 # For some algorithms with nearest neighbor communication, but
Year (approximate) with “all-te-all” communication we need to refine this further
Overhead has not impr oved si gnifi » antly; T3D was best This is a flat model, i.e., each processor is connected to the network
. . . # Clusters of SMPs are not accurately modeled
# Lack of integration; lack of attention in software
Data from Kathy Yelick, UCB and NERSC
Bandwidth Chart
logP 4% A
400 -
350 ﬁtﬁ)\]—i
— . ] R T MPCHUEHIES, BB T AR B, WL,
w0 ARSI B RAE A . BRI BRIFTIOMIERAL D, (AL
e BATEIERR . BRI .
~#- T3E/Shmem
E 250 —&— IBM/MPI BSP VS. LogP
k4 IBMILAPI
e // = Compron # BSP->LogP: BSPHLFIH->BSPT4EML>BSPIE
2 on %t [E2F =LogP
[ Dolphin/MPI
B  Gomani # BSPH] DLHE B A 714l LogP, LogPw] LAX $H 7
w- I #1BSP
_ ¥ BSP=LogP+Barriers—Overhead
50 -
& BSPIRGL T EHEHIE RIS, LogPE AR T
0 PLER B IR
2048 4096 8192 16384 32768 65536 131072
Message Size (Bytes) Data from Mike Welcome, NERSC B BSP{L}{?Eﬁi\ ﬁ{@*ﬂﬁ%%ﬁ]%ﬁﬁ
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