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Abstract In this paper, we propose and analyze Adaptive Projected Gradient Thresholding (APGT) methods

for finding sparse solutions of the underdetermined linear system with equality and box constrains. The general

convergence will be demonstrated, and in addition the bound of the number of iterations is established in

some special cases. Under suitable assumptions, it is proved that any accumulation point of the sequence

generated by the APGT methods is a local minimizer of the underdetermined linear system. Moreover, the

APGT methods, under certain conditions, can find all s-sparse solutions for accurate measurement cases and

guarantee the stability and robustness for flawed measurement cases. Numerical examples are presented to

show the accordance with theoretical results in compressed sensing and verify high out-of-sample performance

in index tracking.
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1 Introduction

Sparse optimization has attracted a great deal of attention over recent years in many fields, which

aims at finding sparse solutions of a system or an equation. For example, Compressed Sensing [1], Index

Tracking [2] in finance optimization and many other important applications, such as image reconstruction,

image restoration, supervised learning, unsupervised learning and statistical inference. In this paper, we

consider the sparse solutions of the underdetermined linear system with equality and box constraints by

solving the following problem

min ‖y −Ax‖22
s.t. eTx = d;

0 6 x 6 u;

‖x‖0 6 s,

(1.1)

where matrix A ∈ Rm×n, y ∈ Rm, x ∈ Rn(m� n). Generally, this problem is considered to be NP-hard

and hence is difficult to solve. One special case of (1.1) is the unconstrained sparse least squares problem.

There have been many kinds of algorithms proposed for sparse optimization problems. For the un-

constrained l0 problems, the existing algorithms can be classified into three categories. The first kind of

methods is greedy algorithms, mainly including a variety of matching pursuit (MP) algorithms. Tropp

and Gilbert [3] proposed orthogonal matching pursuit (OMP) algorithms with orthogonal technique to

avoid number of iterations on the basis of MP algorithms. However, both MP and OMP algorithms have
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large cost of computations and slow rate of convergence. Donoho et al. [4] gave the stagewise matching

pursuit (StOMP) method to improve the convergence speed of MP algorithms. Needell and Tropp [5]

proposed the compressive sampling matching pursuit (CoSaMP) algorithm, which was robust to noise.

The second kind of methods is iterative projection methods, mainly including iterative thresholding al-

gorithm. Blumensath and Davies [6] established the iterative hard thresholding (IHT) algorithm to solve

the approximation of l0 problem. Under some conditions, IHT method can solve the l0 problem effi-

ciently. Recently, Foucart [7] proposed hard thresholding pursuit (HTP) algorithm by combining the

CoSaMP and IHT algorithms, and gave the general convergence analysis. The third kind of methods is

the relaxation methods, including convex relaxation l1 problems and non-convex relaxation lp(0 < p < 1)

problems. As for l1 problems, there exist many exclusive and efficient algorithms in [8–15]. As for lp
problems, there are also many works [16–18] and especially an iterative thresholding algorithm [19] for

lp(p = 1/2) problem. For constrained l0 problems, Lu and Zhang [21] proposed the penalty decomposition

method. In 2013, Kyrillidis et al. [22] gave the projected gradient method onto cardinality constraints.

Constrained l0 problems can also be tackled by solving the convex relaxation l1 problems. Kim et al. [20]

transformed the LASSO [23] into quadratic programming solved by the interior point method. Moreover,

Candes et al. [24] changed the LASSO into quadratic conic programming which can be solved by interior

point methods or Newton methods.

Motivated by HTP method, we propose adaptive projected gradient thresholding (APGT) methods,

which its general convergence and a finite number of iterations in particular are also demonstrated.

At each iteration, these methods usually solve several projected gradient subproblems which possess

closed-form solutions and some least squares subproblems. To deal with (1.1), we first consider the

box constrained l0 sparse minimization problem and apply the APGT methods to solve it. Under some

suitable assumptions, we establish that any accumulation point of the sequence generated by the APGT

methods is a local minimizer of the original problem. Furthermore, the APGT methods indeed find

all s-sparse solutions for accurate measurement cases and guarantee stability and robustness for flawed

measurement cases. Then, we find that the above conclusions are still valid for (1.1). Finally, we conduct

empirical tests to show methods are in accordance with theoretical results in compressed sensing and

verify the good performance in real index tracking problems.

The rest of the paper is organized as follows. In Section 1.1, we give some notations which will be

used in this paper. In Section 2, we propose adaptive projected gradient thresholding methods for the

l0 sparse minimization problem with box constraints and establish the convergence. In Section 3, we

extend the APGT methods for solving problem (1.1). In Section 4, we present some empirical tests in

signal recovery and index tracking with comparison to other existed approaches respectively. Finally,

some concluding remarks are made in Section 5.

1.1 Notations

Given a matrix A ∈ Rm×n, denote σmax and σmin the largest and smallest singular values of matrix A

respectively. Define cond(A) = σmax/σmin and ‖A‖2 = supx 6=0 ‖Ax‖2/‖x‖2. Let Is(x) be the indices of

s largest entries of vector x and Π[0,u](t) be the projection of t ∈ R on interval [0, u], that is,

Π[0,u](t) =


0, if t 6 0;

t, if 0 < t < u;

u, if t > u.

∀t ∈ <.

Define Σs the set of all s indices set, that is, Σs = {I : |I| 6 s, I ⊂ {1, 2, · · · , n}}. For index sets

S1, S2 ⊂ {1, 2, · · · , n}, S1 is the complementary set of S1 and S1\S2 is the difference set between S1 and

S2, that is, S1\S2 = {x ∈ R|x ∈ S1, x 6∈ S2}. Define xS the vector obtained by keeping the entries of x

indexed in S and setting the other components to zeroes.
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2 l0 sparse problem with box constraints

In this section, we consider the following l0 sparse minimization problem with box constraints:

min ‖y −Ax‖22
s.t. x ∈ Ω1,

(2.1)

where Ω1 = {x ∈ Rn : 0 6 x 6 u, ‖x‖0 6 s}.

2.1 Algorithm and convergence analysis

In this subsection, we propose adaptive projected gradient thresholding (APGT) methods for solving

problem (2.1), including adaptive projected gradient algorithm with line search (APGT-LS) and algorithm

with constant step (APGT-C). We shall prove the accumulation point of the sequence generated by these

methods is a local minimizer of (2.1).

Before proceeding, we denote the surrogate function at iteration point xk:

Cµ(x, xk) = µ(‖y −Ax‖22 − ‖Ax−Axk‖22) + ‖x− xk‖22.

Clearly, it is an upper-bound approximation of the original objective function at the point xk, that is,

Cµ(x, xk) > µ‖y −Ax‖22 − µ‖A‖22‖x− xk‖22 + ‖x− xk‖22
= µ‖y −Ax‖22 + (1− µ‖A‖22)‖x− xk‖22
> µ‖y −Ax‖22,

provided µ‖A‖22 6 1. Define Sµ(xk) = xk + µA∗(y −Axk), then

arg min
x∈Rn

Cµ(x, xk) = arg min
x∈Rn

‖x− Sµ(xk)‖22.

The main idea of the APGT methods consists of two parts: the first one is to determine the iterative

indices sets determined by minimizing an surrogate function; the second one is to solve the least squares

subproblem based on the determined index sets. The APGT methods are described as follows:

Adaptive projected gradient thresholding algorithm with line search (APGT-LS).

Let 0 < µmin < µmax 6 1/σ2
max, c > 0. Choose µ0 ∈ [µmin, µmax], τ ∈ (0, 1), and an arbitrary x0 ∈ Ω1

and set k = 0.

1) Solve

Sk+1 = Is(Sµk(xk)),

pk+1 ∈ arg min
x∈Ω1

‖x− Sµk(xk)‖22, (2.2)

xk+1 ∈ arg min{‖y −Ax‖22 : 0 6 x 6 u, Supp(x) ⊂ Sk+1}; (2.3)

2) If

‖y −Axk+1‖22 − ‖y −Axk‖22 6 −c‖pk+1 − xk‖22, (2.4)

set k ← k + 1 and go to step 1);

Otherwise, set µk = τµk and go to step 1).

Remarks

(i) Let µk ≡ 1, the above algorithm has constant steps, which is called as APGT-C algorithm;

(ii) A specific choice of µk is given by the following formula proposed by Blumensath and Davies [25]:

µk = Π[µmin,µmax](
‖(A∗(y −Axk))Sk‖22
‖A(A∗(y −Axk))Sk‖22

);

(iii) If the subproblem (2.3) is too costly, we may consider an inexact solution and take a certain number

k of gradient descent iterations ;
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(iv) According to the property of the above algorithm, we can set the termination criterion of APGT

methods to be Sk+1 = Sk; another practical termination criterion is to set either a maximum number of

iterations or the absolute (or relative) error in the objective function value.

Next, we will give the closed-form solution of the subproblem (2.2) and prove the line search condition

(2.4) can be satisfied within a limited number of steps.

Firstly, the subproblem (2.2) is a special case of the more general problem

min
x∈Ω1

‖x− a‖22,

which has a closed-form solution for any a ∈ Rn. See Lemma 2.1.

Lemma 2.1. The optimal solution of problem min
x∈Ω1

‖x− a‖22, x∗(a), has the closed-form

[x∗(a)]i =

{
[Π[0,u](a)]i, i ∈ Is(a);

0, otherwise.

Proof. For a fixed index set I satisfying I ∈ Σs, the original problem can be expressed as

min ‖(x− a)I‖22 + ‖(a)IC‖22
s.t. 0 6 xi 6 u, i ∈ I,

xi = 0, i ∈ I,

and the optimal solution is

xi =

{
[Π[0,u](a)]i, i ∈ I;

0, otherwise.

Thus, the original problem is equivalent to find an optimal index set in Σs, that is,

arg min
I∈Σs

‖(x− a)I‖22 + ‖(a)I‖22
= arg min

I∈Σs
‖(Π[0,u](a)− a)I‖22 + ‖(a)I‖22

= arg min
I∈Σs

‖(Π[0,u](a)− a)I‖22 − ‖(a)I‖22 + ‖a‖22
= arg max

I∈Σs
‖(a)I‖22 − ‖(Π[0,u](a)− a)I‖22

= arg max
I∈Σs

∑
i∈I

(a2
i − (Π[0,u](ai)− ai)2).

Therefore, the problem min
x∈Ω1

‖x− a‖22 is equivalent to finding an optimal index set I∗ such that

I∗ ∈ arg max
I∈Σs

∑
i∈I

(a2
i − (Π[0,u](ai)− ai)2).

Define φ(t) = t2 − (Π[0,u](t) − t)2. Then φ(t) = 0,∀t < 0. Furthermore, φ′(t) = 2Π[0,u](t) > 0, that is,

φ(t) is a non-decreasing function. Hence, I∗ = Is(a) is an optimal index set and

[x∗(a)]i =

{
[Π[0,u](a)]i, i ∈ Is(a);

0, otherwise

is an optimal solution.

Secondly, the line search condition can be satisfied in finite steps for each iteration of APGT-LS

algorithm.

Theorem 2.2. For each k > 0, the line search condition (2.4) is satisfied after at most d− log(µmax)−log(‖A‖22+c)
log(τ) +

2e steps.
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Proof. According to the definition of pk+1, we easily know Cµk(pk+1, xk) 6 Cµk(x, xk),∀x ∈ Ω1. In

addition,

Cµk(pk+1, xk) = µk(‖y −Apk+1‖22 − ‖Apk+1 −Axk‖22) + ‖pk+1 − xk‖22
> µk‖y −Apk+1‖22 − µk‖A‖22‖pk+1 − xk‖22 + ‖pk+1 − xk‖22
= µk‖y −Apk+1‖22 + (1− µk‖A‖22)‖pk+1 − xk‖22.

Notice that pk+1 is a feasible solution of problem {min ‖y −Ax‖22 : 0 6 x 6 u, Supp(x) ⊂ Sk+1}. Then

µk‖y −Axk+1‖22 6 µk‖y −Apk+1‖22. (2.5)

This yields

µk‖y −Axk+1‖22 6 µk‖y −Apk+1‖22 + (1− µk‖A‖22)‖pk+1 − xk‖22
6 Cµk(pk+1, xk)

6 Cµk(xk, xk) = µk‖y −Axk‖22.

Hence,

‖y −Apk+1‖22 − ‖y −Axk‖22 6 (‖A‖22 −
1

µk
)‖pk+1 − xk‖22. (2.6)

Combining (2.5) and (2.6), we obtain

‖y −Axk+1‖22 − ‖y −Axk‖22 6 (‖A‖22 −
1

µk
)‖pk+1 − xk‖22.

Define cmax = 1/µmin − ‖A‖22 and cmin = 1/µmax − ‖A‖22. It is not hard to notice that (2.4) holds if

c ∈ (cmin, cmax), which implies that a satisfied µk can been found in finite number of updating. Let µk
be the final value of µk at the kth outer iteration. Thus, we have τ/µk −‖A‖22 < c, that is, µk >

τ
‖A‖22+c

.

Let nk denote the number of inner iterations in the kth outer iteration. For 0 < τ < 1, we obtain

µmaxτ
nk−1 > µkτ

nk−1 = µk > τ/(‖A‖22 + c).

That is, nk 6 d− log(µmax)−log(‖A‖22+c)
log(τ) + 2e.

Now, we are ready to give a convergence result about APGT methods.

Theorem 2.3. Suppose µ0‖A‖22 < 1 and let {xk} be the sequence generated by APGT-LS or APGT-C

algorithm. Then, it holds that:

(1) The sequence {xk} converges in a finite number of iterations.

(2) Let x∗ be the accumulation point of {xk} and I∗ = {i : x∗i 6= 0}. Then x∗ is a local minimizer of the

problem

min
x
‖y −Ax‖22

s.t. 0 < xi 6 u, i ∈ I∗;
xi = 0, i /∈ I∗.

(2.7)

Furthermore, if |I∗| = s, then x∗ is a local minimizer of problem (2.1).

Proof. (1) From (2.4), the nonnegative sequence {‖y−Axk‖22} is nonincreasing and hence convergent.

Due to its periodicity, the sequence must be eventually a constant. Furthermore, it follows from (2.4)

that pk+1 = xk and Sk+1 = Sk when k is large enough. Thus the conclusion holds.

(2) According to (1), pk+1 = xk and Sk+1 = Sk with k large enough. Thus, we can know that

x∗ = pk+1 = xk and Supp(xk) = I∗ for a large integer k. Since xk+1 ∈ arg min
x
{‖y − Ax‖22 : 0 6 x 6

u, Supp(x) ⊂ Sk+1}, xk+1 is also the minimizer of the problem

min
x
‖y −Ax‖22

s.t. 0 6 xi 6 u, i ∈ Supp(xk);

xi = 0, i /∈ Supp(xk).
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Thus, x∗ is the minimizer of problem (2.7). Furthermore, if |I∗| = s, then x∗ is a local minimizer of

problem (2.1). In fact, let U(x∗, ε) = {x ∈ Ω1 : ‖x− x∗‖ < ε}, U ′(x∗, ε) = {x ∈ Ω′1 : ‖x− x∗‖ < ε}, where

Ω1 and Ω′1 are the feasible sets of problem (2.1) and (2.7), respectively, and ε = min{x∗i : i ∈ I∗}. Clearly,

‖y −Ax‖22 > ‖y −Ax∗‖22 for any x ∈ U ′(x∗, ε). According to the definition of ε and the assumption that

|I∗| = s, it is not hard to see that U(x∗, ε) = U ′(x∗, ε). This implies that x∗ is a local minimizer of

problem (2.1).

2.2 Precise recovery of sparse vectors from accurate measurements

In this subsection, we present some results of precise recovery of sparse vectors from accurate measure-

ments by our proposed APGT methods. Before proceeding, we give the restricted isometry constant [7],

δs = max
|S|6s

‖A∗SAS − I‖2,

where AS denotes the submatrix of A obtained by keeping the columns indexed by S. This enables us

to easily observe the following formula [7]:

|(w, (I −A∗A)t)| 6 δs‖w‖2‖t‖2, |Supp(w) ∪ Supp(t)| 6 s.

Next we give the main precise recovery results for APGT method.

Theorem 2.4. (1) For the APGT-LS algorithm, suppose that matrix A ∈ Rm×n is of full row rank

and cond(A) 6 1.64. Then for all k > 0, there exists µk ∈ [µmin, µmax], for any s-sparse solution x ∈ Ω1

of y = Ax, the sequence {xk} generated by the APGT-LS algorithm converges to x at a geometric rate ρ

given by

‖xk+1 − x‖2 6 ρk‖x0 − x‖2, ρ :=

√
2(1− µminλmin)2

1− (1−mλmin)2
< 1, (2.8)

where λmax = σ2
max, λmin = σ2

min,m = 2
λmin+λmax

.

(2)For the APGT-C algorithm, suppose that the 3sth order restricted isometry constant of the mea-

surement matrix A ∈ Rm×n satisfies δ3s < 1/
√

3. Then for any s-sparse solution x ∈ Ω1 of y = Ax, the

sequence {xk} generated by the APGT-C algorithm converges to x at a geometric rate ρ1 given by

‖xk+1 − x‖ 6 ρk1‖x0 − x‖, ρ1 :=

√
2δ2

3s

1− δ2
2s

< 1. (2.9)

Proof. (1) For the APGT-LS algorithm, we know from the first-order optimality conditions of (2.3)

that

〈z − xk+1, A∗(Axk+1 − y)〉 > 0, ∀z satisfies 0 6 z 6 u, Supp(z) ⊆ Sk+1.

Since y = Ax, it can be rewritten as

〈z − xk+1, A∗A(xk+1 − x)〉 > 0.

Thus, we can derive

‖(xk+1 − x)Sk+1‖22 = 〈(x− xk+1)Sk+1 , (x− xk+1)〉
6 〈(x− xk+1)Sk+1 , (I −mA∗A)(x− xk+1)〉
6 ‖I −mA∗A‖2‖xk+1 − x‖2‖(xk+1 − x)Sk+1‖2
= (1−mλmin)‖xk+1 − x‖2‖(xk+1 − x)Sk+1‖2,

(2.10)

where m = 2/(λmin+λmax). After simplification, we have ‖(xk+1−x)Sk+1‖2 6 (1−mλmin)‖xk+1−x‖2.

Hence, we obtain

‖xk+1 − x‖22 = ‖(xk+1 − x)Sk+1‖22 + ‖(xk+1 − x)
Sk+1‖22

6 (1−mλmin)2‖xk+1 − x‖22 + ‖(xk+1 − x)
Sk+1‖22.
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Then we can obtain

‖xk+1 − x‖22 6
1

1− (1−mλmin)2
‖(xk+1 − x)

Sk+1‖22. (2.11)

Let S = Supp(x), we notice ‖(pk+1)S‖22 6 ‖(pk+1)Sk+1‖22. Hence, by eliminating the contribution of

S ∩ Sk+1,

‖(pk+1)S\Sk+1‖22 6 ‖(pk+1)Sk+1\S‖22.

Further, we know that

‖(pk+1)S\Sk+1‖2 = ‖(x− xk+1)
Sk+1 + (pk+1 − x)S\Sk+1‖2

> ‖(x− xk+1)
Sk+1‖2 − ‖(pk+1 − x)S\Sk+1‖2.

Thus, we obtain

‖(x− xk+1)
Sk+1‖2 6 ‖(pk+1 − x)S\Sk+1‖2 + ‖(pk+1)Sk+1\S‖2

= ‖(pk+1 − x)S\Sk+1‖2 + ‖(pk+1 − x)Sk+1\S‖2
6
√

2‖(pk+1 − x)S∪Sk+1‖2.
(2.12)

Next we need to find the relationship between ‖(pk+1 − x)S∪Sk+1‖2 and ‖xk − x‖2. In fact,

‖(pk+1 − x)S∪Sk+1‖2 = ‖(Π[0,u](Sµk(xk))− x)S∪Sk+1‖2
= ‖(Π[0,u](x

k + µkA
∗(y −Axk))−Π[0,u](x))S∪Sk+1‖2

6 ‖(xk + µkA
∗(y −Axk)− x)S∪Sk+1‖2

= ‖((I − µkA∗A)(xk − x))S∪Sk+1‖2
6 ‖I − µkA∗A‖2‖xk − x‖2
= (1− µkλmin)‖xk − x‖2.

(2.13)

Combining (2.11), (2.12) and (2.13), we obtain

‖xk+1 − x‖2 6
√

2(1−µkλmin)2

1−(1−mλmin)2 ‖x
k − x‖2 6

√
2(1−µminλmin)2

1−(1−mλmin)2 ‖x
k − x‖2.

Let 2(1−µminλmin)2

1−(1−mλmin)2 < 1, then µmin > (1 −
√

1−(1−mλmin)2

2 )/λmin. In addition, since µk < 1/λmax,

we get (1 −
√

1−(1−mλmin)2

2 )/λmin < 1/λmax. Hence, we obtain λmax/λmin 6 2.691739 which implies

cond(A) 6 1.64. Denote ρ =
√

2(1−µminλmin)2

1−(1−mλmin)2 and ρ < 1. Thus, this completes the proof of the APGT-LS

algorithm.

(2) As for the APGT-C algorithm, it follows from the second inequality in (2.10) and the definition

of δ2s that

‖(xk+1 − x)Sk+1‖22 6 δ2s‖xk+1 − x‖2‖(xk+1 − x)Sk+1‖2, (2.14)

Similar to (2.11), we can obtain by (2.14)

‖xk+1 − x‖22 6
1

1− δ2
2s

‖(xk+1 − x)
Sk+1‖22. (2.15)

Also, similar to (2.13), we can prove that

‖(pk+1 − x)S∪Sk+1∪Sk‖2 6 δ3s‖xk − x‖2. (2.16)

Combining (2.12), (2.15) and (2.16), we arrive at

‖xk+1 − x‖2 6

√
2δ2

3s

1− δ2
2s

‖xk − x‖2.

The multiplicative coefficient ρ1 :=
√

2δ2
3s/(1− δ2

2s) is less than one as soon as 2δ2
3s < 1 − δ2

2s. Since

δ2s < δ3s, this implies δ3s < 1/
√

3. Thus, we complete the proof.
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Furthermore, we establish that the convergence of APGT methods requires finite iterations in precise

recovery.

Corollary 2.5. (1) Suppose that the matrix A ∈ Rm×n satisfies cond(A) 6 1.64 and ‖x‖0 = s. Then

any s-sparse vector x ∈ Ω1 is recovered by APGT-LS algorithm with y = Ax in at most

d ln(‖x0 − x‖2/ξ)
ln(1/ρ)

e+ 1

iterations, where ρ is defined in Theorem 2.4 and ξ is the smallest nonzero entry of x.

(2) Suppose that the matrix A ∈ Rm×n satisfies δ3s < 1/
√

3 and ‖x‖0 = s. Then any s-sparse vector

x ∈ Ω1 is recovered by APGT-C algorithm with y = Ax in at most

d
ln(

√
2/3‖x0 − x‖2/ξ)
ln(1/ρ1)

e+ 1

iterations, where ρ1 is defined in Theorem 2.4 and agagin ξ is the smallest nonzero entry of x.

Proof. (1) If we find a sufficiently large integer k such that Sk = S, then the APGT-LS algorithm

implies xk = x. By the definition of Sk, this occurs if for all i ∈ S, j ∈ S, we have

[Π[0,u](x
k−1 + µk−1A

∗A(x− xk−1))]i > [Π[0,u](x
k−1 + µk−1A

∗A(x− xk−1))]j . (2.17)

For the left side term of the inequality (2.17), we have

[Π[0,u](x
k−1 + µk−1A

∗A(x− xk−1))]i

> [Π[0,u](x)]i − [Π[0,u]((I − µk−1A
∗A)(xk−1 − x))]i

> ξ − |((I − µk−1A
∗A)(xk−1 − x))]i|.

For the right side term of the inequality (2.17), we notice that

[Π[0,u](x
k−1 + µk−1A

∗A(x− xk−1))]j

= [Π[0,u](x
k−1 + µk−1A

∗A(x− xk−1))]j − xj
= [Π[0,u](x

k−1 + µk−1A
∗A(x− xk−1))]j − [Π[0,u](x)]j

6 |(xk−1 + µk−1A
∗A(x− xk−1))j − xj |

= |((I − µk−1A
∗A)(xk−1 − x))j |.

Thus, it is not hard to verify that (2.17) holds when

ξ − |((I − µk−1A
∗A)(xk−1 − x))]i| > |((I − µk−1A

∗A)(xk−1 − x))j |.

In addition, we notice that

|((I − µk−1A
∗A)(xk−1 − x))i|+ |((I − µk−1A

∗A)(xk−1 − x))j |
6
√

2‖((I − µk−1A
∗A)(xk−1 − x)){j,l}‖2

6
√

2‖I − µk−1A
∗A‖2‖xk−1 − x‖2

6
√

2(1− µminλmin)‖xk−1 − x‖2
=

√
1− (1−mλmin)2ρ‖xk−1 − x‖2

6 ρk−1‖x0 − x‖2.

Thus, (2.17) holds when ξ > ρk−1‖x0 − x‖2. This is true provided that k > d ln(‖x0−x‖2/ξ)
ln(1/ρ) e+ 1.

(2)As for the APGT-C algorithm, the inequality (2.17) can be written as

[Π[0,u](x
k−1 +A∗A(x− xk−1))]i > [Π[0,u](x

k−1 +A∗A(x− xk−1))]j . (2.18)
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Similarly, (2.18) holds when

ξ − |((I −A∗A)(xk−1 − x))]i| > |((I −A∗A)(xk−1 − x))j |.

Hence,

|((I −A∗A)(xk−1 − x))i|+ |((I −A∗A)(xk−1 − x))j |
6
√

2‖((I −A∗A)(xk−1 − x)){j,l}‖2
6
√

2δ3s‖xk−1 − x‖2
=

√
1− δ2

2sρ1‖xk−1 − x‖2
6

√
2/3ρk−1

1 ‖x0 − x‖2.

Therefore, (2.18) holds when ξ >
√

2/3ρk−1
1 ‖x0 − x‖2. Thus, the required smallest of integer k is given

as in the conclusion.

2.3 Approximate recovery of vectors from flawed measurements

We extend the previous conclusion of the APGT methods to the case of approximate recovery of vectors

from flawed measurements. Before proceeding, we give the following observation in [7], for any e ∈ Rm,

‖(A∗e)S‖2 6
√

1 + δs‖e‖2, whenever |S| 6 s.

Theorem 2.6. (1) Suppose that matrix A ∈ Rm×n is of full row rank, satisfying cond(A) 6 1.64.

Then for any x ∈ Rn and e ∈ Rm, if S denotes the index set of s largest entries of x, the sequence {xk}
generated by the APGT-LS algorithm with y = Ax+ e satisfies

‖xk+1 − xS‖2 6 ρk‖x0 − xS‖2 + τ
1− ρk

1− ρ
‖AxS + e‖2, ∀k > 0, (2.19)

where ρ is given in (2.8) and

τ =
µmax

√
2(1 + δ2s)√

1− (1−mλmin)2
+

√
1 + δs
λmin

.

(2) In particular, suppose the 3s-th restricted isometry constant of the measurement matrix A ∈
Rm×n satisfies δ3s 6 1/

√
3 ≈ 0.57735. Then for any x ∈ Rn and e ∈ Rm, if S denotes the index set of s

largest entries of x, the sequence {xk} generated by the APGT-C algorithm with y = Ax+ e satisfies

‖xk+1 − xS‖2 6 ρk1‖x0 − xS‖2 + τ1
1− ρk1
1− ρ1

‖AxS + e‖2, ∀k > 0, (2.20)

where ρ1 is given in (2.9) and

τ1 :=

√
2(1− δ2s) +

√
1 + δs

1− δ2s
6 5.15.

Proof. (1) According to the first-order optimality conditions of (2.3), we have

〈z − xk+1, A∗(Axk+1 − y)〉 > 0, ∀z satisfies 0 6 z 6 u, Supp(z) ⊆ Sk+1.

The above inequality can be rewritten

〈z − xk+1, A∗A(xk+1 − xS)〉+ 〈xk+1 − z,A∗e′〉 > 0

by using e′ = AxS + e [7]. Hence, we get

‖(xk+1 − xS)Sk+1‖22 = 〈(xS − xk+1)Sk+1 , xS − xk+1〉
6 〈(xS − xk+1)Sk+1 , (I −mA∗A)(xS − xk+1)〉+m〈e′, A((xk+1 − xS)Sk+1)〉
6 ‖I −mA∗A‖2‖xk+1 − xS‖2‖(xk+1 − xS)Sk+1‖2 +m

√
1 + δs‖e′‖2‖(xk+1 − xS)Sk+1‖2

= (1−mλmin)‖xk+1 − xS‖2‖(xk+1 − xS)Sk+1‖2 +m
√

1 + δs‖e′‖2‖(xk+1 − xS)Sk+1‖2,

(2.21)
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where m = 2
λmin+λmax

. After simplification, we obtain

‖(xk+1 − xS)Sk+1‖2 6 (1−mλmin)‖xk+1 − xS‖2 +m
√

1 + δs‖e′‖2.

Thus,

‖xk+1 − xS‖22
= ‖(xk+1 − xS)Sk+1‖22 + ‖(xk+1 − xS)

Sk+1‖22
6 ‖(xk+1 − xS)

Sk+1‖22 + ((1−mλmin)‖xk+1 − xS‖2 +m
√

1 + δs‖e′‖2)2,

which implies P (‖xk+1 − xS‖2) 6 0 for the following quadratic polynomial

P (t) = (1− (1−mλmin)2)t2 − 2m
√

1 + δs(1−mλmin)‖e′‖2t
−(‖(xk+1 − xS)

Sk+1‖22 +m2(1 + δs)‖e′‖22).

Since (1 − (1 −mλmin)2) > 0, we know that ‖xk+1 − xS‖2 is bounded by the largest root of P (t) = 0,

that is,

‖xk+1 − xS‖2

6 m
√

1+δs(1−mλmin)‖e′‖2
1−(1−mλmin)2 +

√
(1−(1−mλmin)2)‖(xk+1−xS)

Sk+1‖22+m2(1+δs)‖e′‖22
1−(1−mλmin)2

6 m
√

1+δs(1−mλmin)‖e′‖2
1−(1−mλmin)2 +

√
(1−(1−mλmin)2)‖(xk+1−xS)

Sk+1‖2+m
√

(1+δs)‖e′‖2
1−(1−mλmin)2

= 1√
1−(1−mλmin)2

‖(xk+1 − xS)
Sk+1‖2 + m

√
1+δs

1−(1−mλmin)‖e
′‖2

= 1√
1−(1−mλmin)2

‖(xk+1 − xS)
Sk+1‖2 +

√
1+δs
λmin

‖e′‖2.

(2.22)

Furthermore, ‖(pk+1)S\Sk+1‖2 6 ‖(pk+1)Sk+1\S‖2 still holds here, that is,

‖(Π[0,u](x
k + µkA

∗(y −Axk)))S\Sk+1‖2 6 ‖(Π[0,u](x
k + µkA

∗(y −Axk)))Sk+1\S‖2.

For the right side of this inequality, we have

‖(Π[0,u](x
k + µkA

∗(y −Axk)))Sk+1\S‖2
= ‖(Π[0,u](x

k + µkA
∗(AxS + e′ −Axk)))Sk+1\S‖2

= ‖(Π[0,u]((I − µkA∗A)(xk − xS) + xS + µkA
∗e′))Sk+1\S‖2

6 ‖(Π[0,u]((I − µkA∗A)(xk − xS))Sk+1\S‖2 + ‖(Π[0,u](xS + µkA
∗e′))Sk+1\S‖2

6 ‖((I − µkA∗A)(xk − xS))Sk+1\S‖2 + ‖(µkA∗e′)Sk+1\S‖2.

For the left side of this inequality, we have

‖(Π[0,u](x
k + µkA

∗(y −Axk)))S\Sk+1‖2
= ‖(Π[0,u](xS + xk + µkA

∗(y −Axk)− xS))S\Sk+1‖2
= ‖(Π[0,u]((I − µkA∗A)(xk − xS) + xS + µkA

∗e′))S\Sk+1‖2
= ‖(Π[0,u]((I − µkA∗A)(xk − xS) + xS − xk+1 + µkA

∗e′))S\Sk+1‖2
> ‖(xS − xk+1)

Sk+1‖2 − ‖(Π[0,u]((I − µkA∗A)(xk − xS))S\Sk+1‖2 − ‖(Π[0,u](µkA
∗e′))S\Sk+1‖2

> ‖(xS − xk+1)
Sk+1‖2 − ‖((I − µkA∗A)(xk − xS))S\Sk+1‖2 − ‖(µkA∗e′)S\Sk+1‖2.

Combining these inequalities, it is not hard to know that

‖(xS − xk+1)
Sk+1‖2 6 ‖((I − µkA∗A)(xk − xS))Sk+1\S‖2 + ‖(µkA∗e′)Sk+1\S‖2

+‖((I − µkA∗A)(xk − xS))S\Sk+1‖2 + ‖(µkA∗e′)S\Sk+1‖2
6
√

2(‖((I − µkA∗A)(xk − xS))S∪Sk+1‖2 + ‖(µkA∗e′)S∪Sk+1‖2)

6
√

2(‖I − µkA∗A‖2‖xk − xS‖2 + µk
√

1 + δ2s‖e′‖2)

6
√

2((1− µminλmin)‖xk − xS‖2 + µmax
√

1 + δ2s‖e′‖2).

(2.23)
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Substituting (2.23) into (2.22), we obtain

‖xk+1 − xS‖2 6 ρ‖xk − xS‖2 + τ‖e′‖2 ∀k > 0.

Since cond(A) 6 1.64, we know from the proof of Theorem 2.4 that ρ < 1. Thus the estimate (2.16)

holds, and the proof is completed.

(2) Specially, for APGT-C algorithm, (2.21) with m = 1 can be further written as

‖(xk+1 − xS)Sk+1‖22 6 δ2s‖xk+1 − xS‖2‖(xk+1 − xS)Sk+1‖2 +
√

1 + δs‖e′‖2‖(xk+1 − xS)Sk+1‖2.

After simplification, we obtain ‖(xk+1 − xS)Sk+1‖2 6 δ2s‖xk+1 − xS‖2 +
√

1 + δs‖e′‖2. With the same

deduction, it is not hard to get the upper-bound of ‖xk+1 − xS‖2, that is,

‖xk+1 − xS‖2 6
1√

1− δ2
2s

‖(xk+1 − xS)
Sk+1‖2 +

√
1 + δs

1− δ2s
‖e′‖2. (2.24)

Let µk = 1, (2.23) can be expressed by

‖(xS − xk+1)
Sk+1‖2 6

√
2(δ3s‖xk − xS‖2 +

√
1 + δ2s‖e′‖2). (2.25)

Combining (2.24) and (2.25), it yields

‖xk+1 − xS‖2 6

√
2δ2

3s

1− δ2
2s

‖xk − xS‖2 +

√
2(1− δ2s) +

√
1 + δs

1− δ2s
‖e′‖2.

Since δ3s < 1/
√

3, ρ1 :=
√

2δ2
3s/(1− δ2

2s) < 1. Thus, (2.20) holds.

3 l0 sparse minimization problems with equality and box constraints

In this section, we consider the l0 sparse optimization problem with equality and box constraints

min ‖y −Ax‖22
s.t. x ∈ Ω2,

(3.1)

where Ω2 = {x ∈ Rn : eTx = d, 0 6 x 6 u, ‖x‖0 6 s}.
We also apply the APGT methods to solving (3.1), mainly including two parts: the first one is to

determine the iterative index sets by minimizing a surrogate function; the second one is to solve the box

and equality constrained least squares subproblem on the determined indices sets. We can prove that the

solution of subproblem

pk+1 ∈ min
x∈Ω2

‖x− Sµk(xk)‖22 (3.2)

also has the closed form, and the optimal index set can be determined by Theorem 3.1.

Theorem 3.1. The subproblem min
x∈Ω2

‖x− Sµk(xk)‖22 has the closed-form solution

pk+1
i =

{
Π[0,ui]([Sµk(xk)]i + λ), i ∈ Is(Sµk(xk));

0, otherwise

where λ satisfies ∑
i∈Is(Sµk (xk))

Π[0,ui]([Sµk(xk)]i + λ) = d. (3.3)
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Proof. Consider the Lagrangian function of the objective function of the subproblem (3.2)

f(x, λ) = ‖x− Sµk(xk)‖22 − 2λ(eTx− d),

which can be simplified by

arg min
x
f(x, λ) = arg min

x
‖x− Sµk(xk)− λe‖22 (3.4)

In Lemma 2.1, the optimal index set of solution for problem (3.4) is Is(Sµk(xk) + λe). Since λ is a

constant, Is(Sµk(xk) + λe) = Is(Sµk(xk)). Hence, we can give the optimal solution of this problem as

long as there exists one λ satisfying the equation (3.3). In fact, such a λ exists as proved in [26], thus the

proof is completed.

Theorem 3.1 implies that the equality constraint eTx = d has no influence on the determination of

Sk+1. Then we give the main steps of APGT methods:

(1) Let Sk+1 = Is(Sµk(xk), and solve pk+1 ∈ arg min
x∈Ω2

‖x− Sµk(xk)‖22;

(2) Solve xk+1 ∈ arg min
x
{‖y −Ax‖22 : eTx = d, 0 6 x 6 u, Supp(x) ⊂ Sk+1}.

Remarks

(i) If ‖y − Axk+1‖22 − ‖y − Axk‖22 6 −c‖pk+1 − xk‖22 holds with updated µk in each iteration, then the

method is APGT-LS algorithm;

(ii) If µk = 1 for each iteration, then it is APGT-C algorithm;

(iii) The problem in Step (2) is a quadratic programming with box and equality constraints, which can

be solved in Matlab by quadprog;

(iv) The sequence {xk} generated by APGT methods for (3.1) converges in a finite number of iteration.

Moreover, the theory and results in signal recovery still hold for (3.1).

4 Numerical results

In this section, we present several numerical experiments to demonstrate the high performance of APGT

methods by applying it to compressive sensing with box constraint (signal recovery) and general index

tracking. All the computational tests were conducted on a HP dx7408 PC (Intel core E4500 CPU,

2.2GHz,1GB RAM)with using Matlab 7.9 (R2009b).

4.1 Application in compressive sensing

In this subsection, we make some experiments by applying the APGT methods to the signal recovery.

These empirical tests aim at verifying the finite number of iterations, the geometric convergence, effec-

tiveness and robustness of the APGT methods. We consider the general signal recovery problem with box

constraints, that is, problem (2.1). Here, A ∈ Rm×n is the dictionary matrix, y ∈ Rm is the measurement

vector, and x ∈ Rn is the signal we would like to recover.

In each test, the dictionary matrix A is generated by the Gaussian distribution suggested in [1] and

the measurement vector is generated by product of the matrix A and a random real-valued vector x with

sparsity s. The length of the signal is n = 512 and the noise added is the white noise ε ∈ N(0, σ2)

with σ = 0.1 in the noisy case. The performance of algorithm is measured by how few measurements are

required to exactly recover a signal. The fewer the measurements used by an algorithm, the better it is. As

for the parameters in APGT methods, we set µmax = 1/‖A‖22, µmin = 10−16, τ = 0.5, c = 10−4, u = 0.5.

1) The number of iterations.

Theorem 2.3 shows that the convergence of the APGT methods requires only a finite number of iterations.

Hence, the natural stop criterion is Sk+1 = Sk, and this is incorporated in our experiments. We set

m = 330, and the sparsity s ranges from 15 to 55 with step 5. For a fixed sparsity s, we conduct

experiments 100 times randomly, and record the maximum iterations, minimum iterations and average
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iterations. The results are presented in Figure 1. In Figure 1, the x-axis denotes the sparsity and the

y-axis denotes the number of iterations.
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(a) APGT-LS without noise
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(b) APGT-LS with noise

15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

Sparsity

It
e
ra

ti
o
n
s

 

 

max iterations
average iterations
min iterations

(c) APGT-C without noise
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(d) APGT-C with noise

Figure 1 The iterations of APGT methods.

From Figure 1, we can find that (i) For the APGT-LS algorithm, the maximum number of iterations

doesn’t exceed 12 when without noise and 10 when with noise; (ii) For the APGT-C algorithm, the

maximum number of iterations doesn’t exceed 90 when without noise and 25 when with noise. Moreover,

we also notice that the average number of iterations increase as the sparsity increases.

2) Geometric rate of convergence of APGT methods in exact recovery.

As in Theorem 2.4, we have proved that the sequence generated by the APGT methods converges to a s-

sparse solution x satisfying y = Ax at the geometric speed. Thus, we conduct experiments to investigate

its convergence speed by applying the algorithm to signal recovery without noise. Here, the sparsity of

signal x is s = 130 and the number of measurements m ranges in [0, 512]. The experiment is stopped

when the number of iterations exceeds 500 or Sk+1 = Sk. Some of results are given in Figure 2. For each

subfigure in Figure 2, the x-axis denotes the numbers of iterations, and the y-axis denotes the Euclidean

distance between the iteration point xk and the optimal solution x.

From Figure 2, it is clear to notice that the APGT methods converge with a geometric speed. With

enough measurements (m = 250), the APGT-LS algorithm and the APGT-C algorithm almost have the

same performance. With fewer measurements, the APGT-LS algorithm has a faster convergence speed

than the APGT-C algorithm, for example m = 235. Moreover, we can find that with few measurements

(m = 233), the APGT-C algorithm fails to recover the signal while the APGT-LS algorithm succeed.

All these indicate the choice of parameter µ can (i) accelerate the convergence speed in some extent; (ii)

improve the effectiveness of APGT methods when taking not too much measurements.

3) Effectiveness and robustness of the APGT methods.

Consider the signal recovery under noiseless and noisy conditions respectively. The sparsity of the signal

is s = 130 and the number of measurements is m. The stop criterion is also the number of iterations

exceeds 500 or Sk+1 = Sk. The mean square error (MSE) between the recovered signal and the original

signal is computed, and the CPU time in seconds for running the algorithm is also recorded. Experiment
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(b) m=237
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(c) m=235
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Figure 2 The geometric convergence of APGT methods.

results are provided in Tables 1 and 2.

Table 1 Recovery results of variable measurements without noise.

m Method MSE time m Method MSE time

330 APGT-LS 1.06e-15 14.86 250 APGT-LS 3.46e-15 13.60

APGT-C 8.28e-16 167.01 APGT-C 9.44e-16 183.89

239 APGT-LS 3.70e-15 26.84 237 APGT-LS 1.96e-15 21.52

APGT-C 1.08e-15 157.89 APGT-C 8.68e-16 173.59

235 APGT-LS 2.45e-15 19.29 234 APGT-LS 4.34e-15 25.69

APGT-C 1.05e-15 162.97 APGT-C 1.18e-15 133.05

233 APGT-LS 3.13e-15 29.69 232 APGT-LS 2.52 9.826

APGT-C 2.43 9.79 APGT-C 2.78 11.05

From Table 1, we can find that both the APGT-LS algorithm and the APGT-C algorithm can accurate-

ly recover the signal when m > 234. In this case, APGT-C algorithm attain the higher accuracy but with

much more running time than APGT-LS algorithm. When m = 233, APGT-LS algorithm succeed in the

recovery of signal while APGT-C algorithm fails, which indicates that m = 233 is the phase transition

point for APGT-C algorithm. Moreover, both the APGT-LS algorithm and the APGT-C algorithm fail

in the signal recovery when m = 232, implying m = 232 is the phase transition point for the APGT-LS

algorithm. All these also show that the choice of parameter µ can improve the effectiveness of the APGT

methods with few samplings.

In order to understand the effect of noise better, we have used the Oracle [19] to examine the recovery

capability of the algorithms in the experiments. For each algorithm, we have calculated the ratio of the

MSE generated from the algorithm and the Oracle, listed as ”Ratio” in Table 2. Hence, the more close the

ratio is to 1, the better the algorithm, and the stronger the robustness of the algorithm correspondingly.
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Table 2 Recovery results of variable measurements with noise.

m Method MSE Ratio time m Method MSE Ratio time

330 APGT-LS 2.58 1.03 6.33 300 APGT-LS 2.98 1.03 6.65

APGT-C 2.56 1.02 5.93 APGT-C 2.99 1.03 5.72

Oracle 2.53 Oracle 2.95

275 APGT-LS 3.36 0.98 7.08 250 APGT-LS 4.17 1.01 5.62

APGT-C 3.44 1.00 5.37 APGT-C 4.19 1.02 5.09

Oracle 3.43 Oracle 4.11

249 APGT-LS 3.77 0.89 5.20 232 APGT-LS 3.98 0.82 4.94

APGT-C 3.68 0.87 5.20 APGT-C 4.04 0.83 7.88

Oracle 4.30 Oracle 4.85

231 APGT-LS 4.02 0.82 7.14 230 APGT-LS 3.89 0.79 8.53

APGT-C 3.98 0.81 9.33 APGT-C 3.86 0.78 8.04

Oracle 4.94 Oracle 4.94

From Table 2, we find that m = 249 is the phase transition point for both the APGT-LS algorithm

and the APGT-C algorithm since the Ratios of the two algorithms change dramatically. Moreover, if we

regard an algorithm to have failed in the exact recovery when its ratio is less than 0.9 or more than 1.1,

by observing the Ratio values in Table 2, we find the APGT-LS algorithm and the APGT-C algorithm

both yield highly accurate recovery results when m > 250; both the two algorithms fail in signal recovery

when m 6 249. This shows that the APGT methods in particular provides very nice signal recovery with

noise before the phase transition value is reached.

4.2 Application in index tracking

In this subsection, we apply the APGT-LS algorithm to index tracking according to its excellent per-

formance in compressed sensing experiments. Index tracking aims at replicating the performance and

risk profile of a given market index, and constructs a sparse tracking portfolio such that the performance

of the portfolio is as close as possible to that of the market index. Thus, we can propose the following

general index tracking model:

min
x

TE(x) = 1
T ‖y −Rx‖

2
2

s.t. eTx = 1

‖x‖0 6 s

0 6 xi 6 u,

(4.1)

where x ∈ Rn is the weight vector of n index constituents, y is the T × 1 vector of index returns, and

R is a T × n matrix of the index constituents returns. It is not hard to notice (4.1) is a special case of

problem(3.1).

There have been many works on index tracking (See [2, 27–29]). We mainly conduct two experiments

to compare the performance of the APGT-LS algorithm applied to (4.1) with two other algorithms,

that is, the hybrid evolutionary algorithm in [29] and the hybrid half thresholding algorithm in [2]. For

convenience of presentation, we abbreviate other two approaches as MIP and l1/2 since they are the

methods for mixed integer programming and l1/2 models, respectively.

The data sets used in our experiments are selected from the standard ones in OR-library [30] and the

CSI 300 index from China Shanghai-Shenzhen stock market. For the standard data sets, weekly prices of

the stocks from 1992 to 1997 of Hang Seng (Hong Kong), DAX 100 (Germany), FTSE (Great Britain),

Standard and Poor’s 100 (USA), the Nikkei index (Japan), the Standard and Poor’s 500 (USA), Russell

2000 (USA) and Russell 3000 (USA) are used. For CSI 300 index, the daily prices of 300 stocks from 2011
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to 2013 in China stock market are considered. According to the sample scale, we divide the above data

sets into two categories: small data sets including Hang Seng, DAX 100, FTSE , Standard and Poor’s

100, the Nikkei index; and large data sets including CSI 300, Standard and Poor’s 500, Russell 2000 and

Russell 3000. The tackling of each data set is the same as in Torrubiano and Alberto [29].

For the APGT-LS algorithm, the parameter settings are the same with signal recovery. For the hybrid

evolutionary algorithm, we set the lower bound to 0.01, the upper bound to 0.5, initial population size to

100, mutation probability to 1%, cross probability to 30%. For the hybrid half thresholding algorithm,

the lower and upper bounds are chosen to be 0.01 and 0.5, respectively. We terminate the above three

algorithms when the absolute error of the function values over two consecutive iterations is below 10−8,

or the maximum iteration is 1000.

We measure the performance of each algorithm by the following two criteria as in [2]. Before proceeding,

denote TEIA and TEOA the in-sample errors and out-of-sample errors of a portfolio generated by the

method A respectively.

(i) Consistency: Cons(A) = |TEIA − TEOA|;
(ii) Superiority of out-of-sample: SupO(A,B) = TEOB−TEOA

TEOB
× 100%.

We present numerical results in Tables 3 to 6, where N denotes the number of samples contained

in a data set. In particular, we report in Tables 3 and 5 in-sample error and out-of sample error of

the portfolios generated by the aforementioned three methods. In Table 4, we report the consistency

between in-sample and out-of-sample errors, and the superiority of out-of-sample errors for the portfolios

generated by these methods. In Table 6, we present the CPU time and superiority of out-of-sample errors

of the portfolios given by these methods.

From Table 4, we can make the following observations:

(i) The APGT-LS algorithm generally has higher consistency between in-sample error and out-of-sample

error than the MIP- and l1/2-based methods (namely, hybrid evolutionary and half thresholding algo-

rithms) since Cons(APGT -LS) < Cons(MIP ) holds for 97% (29/30) instances and Cons(APGT -LS) <

Cons(l1/2) holds for 83% (25/30) instances;

(ii) The APGT-LS algorithm is generally superior to the MIP- and l1/2-based methods in terms of out-of-

sample error since SupO(APGT -LS,MIP ) > 0 holds for 90% (27/30) instances and SupO(APGT -LS, l1/2) >

0 holds for 97% (29/30) instances.

In addition, we can have the following observations from Table 6.

(i) The APGT-LS algorithm is generally superior to the MIP- and l1/2-based methods in terms of out-of-

sample error since SupO(APGT -LS,MIP ) > 0 holds in 92.9%(26/28) cases and SupO(APGT -LS, l1/2) >

0 holds in 92.9%(26/28) cases;

(ii) The APGT-LS algorithm also generally outperforms the MIP- and l1/2-based methods in terms of

speed.

5 Concluding remarks

In this paper we have proposed an efficient adaptive projected gradient thresholding method for solving

box-constrained l0 problems and for solving l0 problems with equality and box constraints, respective-

ly. At each iteration, we have showed that each subproblem has a closed-form solution, which can be

computed in a linear time. Under some suitable assumptions, we have showed that any accumulation

point of the sequence generated by the APGT methods is a local minimizer of the two kinds of l0 prob-

lem. For signal recovery problem, the sequence generated by APGT methods converges to the accurate

sparse solution with geometric speed and we can recover the sparse signal in finite number of iterations.

We have also conducted a series of empirical tests to test the performance of APGT methods. Firstly,

we applied the algorithm to signal recovery with box-bounded constraints to verify the finite iterations,

geometric convergence speed and effectiveness and robustness of APGT methods. The empirical results

show that the theories aforementioned are all verified. Secondly, we conducted numerical experiments on

the data sets from OR-library [30] and the CSI 300 index from China Shanghai-Shenzhen stock market
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Table 3 The in-sample and out-of-sample tracking errors on small data sets.

Index Sparsity APGT-LS MIP l1/2

s TEI TEO TEI TEO TEI TEO

Hang 5 6.07e-5 5.66e-5 4.71e-5 7.19e-5 6.60e-5 5.81e-5

Seng 6 6.88e-5 3.93e-5 4.13e-5 5.44e-5 4.97e-5 3.76e-5

(N=31) 7 2.75e-5 3.22e-5 3.27e-5 5.37e-5 2.89e-5 3.73e-5

8 3.64e-5 3.13e-5 2.50e-5 4.41e-5 2.80e-5 3.38e-5

9 3.28e-5 2.70e-5 2.08e-5 3.30e-5 2.06e-5 3.08e-5

10 2.34e-5 1.73e-5 1.81e-5 2.73e-5 1.58e-5 2.46e-5

DAX 5 3.76e-5 1.04e-4 2.27e-5 1.18e-4 5.10e-5 1.34e-4

(N=85) 6 3.68e-5 1.02e-4 1.82e-5 1.02e-4 3.22e-5 1.30e-4

7 3.00e-5 9.85e-5 1.43e-5 9.49e-5 3.26e-5 1.27e-4

8 2.39e-5 9.41e-5 1.22e-5 9.27e-5 1.94e-5 1.05e-4

9 2.03e-5 8.62e-5 1.26e-5 8.54e-5 1.86e-5 9.20e-5

10 2.04e-5 7.66e-5 8.95e-6 8.36e-5 1.22e-5 8.81e-5

FTSE 5 1.22e-4 1.09e-4 6.42e-5 1.58e-4 1.02e-4 1.18e-4

(N=89) 6 8.83e-5 8.75e-5 5.88e-5 1.23e-4 8.45e-5 9.34e-5

7 6.88e-5 7.46e-5 4.65e-5 9.59e-5 7.13e-5 7.74e-5

8 6.50e-5 6.37e-5 3.96e-5 9.45e-5 5.31e-5 6.65e-5

9 4.75e-5 6.17e-5 2.63e-5 8.78e-5 4.22e-5 7.88e-5

10 4.39e-5 5.96e-5 2.19e-5 7.87e-5 3.49e-5 6.90e-5

S&P 5 8.79e-5 1.06e-4 4.50e-5 1.14e-4 8.40e-5 1.07e-4

(N=98) 6 6.66e-5 8.46e-5 3.63e-5 9.18e-5 8.42e-5 9.62e-5

7 5.47e-5 7.26e-5 2.99e-5 8.48e-5 5.92e-5 7.58e-5

8 5.20e-5 5.63e-5 2.74e-5 7.86e-5 5.38e-5 7.55e-5

9 3.82e-5 5.61e-5 1.95e-5 5.83e-5 4.16e-5 5.74e-5

10 3.46e-5 4.69e-5 1.94e-5 5.36e-5 3.73e-5 5.19e-5

Nikkei 5 1.18e-4 1.14e-4 7.28e-5 1.27e-4 1.09e-4 1.38e-4

(N=225) 6 7.30e-5 1.01e-4 5.22e-5 1.12e-4 1.06e-4 1.13e-4

7 7.87e-5 8.19e-5 3.88e-5 9.90e-5 7.25e-5 1.03e-4

8 6.38e-5 8.43e-5 3.56e-5 9.95e-5 6.29e-5 9.27e-5

9 4.18e-5 6.17e-5 3.24e-5 9.72e-5 4.79e-5 8.53e-5

10 4.63e-5 5.93e-5 2.75e-5 9.38e-5 4.62e-5 8.24e-5

to compare our method with the hybrid evolutionary algorithm [29] and the hybrid half thresholding

algorithm [2] for index tracking. The computational results demonstrate that our approach generally

produces sparse portfolios with smaller out-of-sample tracking error and higher consistency between in-

sample and out-of-sample tracking errors. Moreover, our method outperforms the other two approaches

in terms of speed.
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