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Abstract-Iterative hard thresholding algorithm (mT) is a 

novel and efficient method to solve signal and image recon­

struction in compressed sensing, but it is sensitive to the initial 

point and converges to a local optimal solution. Therefore, to 

overcome its shortcoming, in this paper a hybrid hard thres­

holding algorithm (HHT) is derived by introducing the simu­

lated annealing algorithm (SA) into the mT. And a series of 

experiments are provided on signal and image reconstruction 

to assess performance of the algorithm. The experiments and 

applications show that the proposed algorithm uses less samp­

ling to construct the signal and image and is more stable, as 

compared with mT. 
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I. INTRODUCTION 

In 2006, E. Candes and D. Donoho officially proposed 
the concept of Compressed Sensing [1][2], whose core 
thought was to amalgamate compression with sampling. 
Compressed sensing mainly contains three aspects: sparse 
representation of a signal, designing on the measurements 
matrix and research on reconstruction algorithms. In this 
paper what we concentrate on is the signal and image 
reconstruction algorithm. 

In general there have been two kinds of reconstruction 
algorithm. One is greedy algorithm, such as Matching 
Pursuit (MP) [3], Orthogonal Matching Pursuit (OMP) [4], 
Regularized Orthogonal Matching Pursuit (ROMP) [5] and 
Compressive Sampling Matching Pursuit (CoS aMP) [6], etc. 
However, only under very strict conditions can these meth­
ods converge to the optimal solution [7][8]. The other is 
relaxed strategy, including basis pursuit de-noising method 
(BP) [9], the interior-point method [10], gradient projection 
method [11] and so on. Though those methods offer better 
performance in many cases, they have high computational 
complexity. 

Recently, iterative hard thresholding algorithm (IHT) 
[12][13] was suggested to solve the problems of signal and 
image reconstruction. It is a simple, fast convergent 
procedure, and can also solve large scale problems for its 
low computational cost of each iteration. Unfortunately, it is 
a local convergent algorithm. If combined it with a global 
convergent algorithm, we can obtain a robust, global 
convergent and effective hybrid algorithm, which will be a 
exciting thing. But some problems arise: Which global 
convergent algOlithm should be combined with? And how? 
Whether the hybrid algOlithm is efficient as we expected? 
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Those problems will be discussed in this paper and arranged 
specifically as follows: 

In section II, we elaborate the hybrid algorithm, and 
some related experimental results would be showed in 
section III. Finally we summarize this paper and make some 
plan in section VI. 

II. THE HYBRID HARD THRESHOLDING ALGORITHM 

The problems of signal reconstruction can be expressed 

concisely as: A measurement matrix A E RMXN (M « N) 

is given together with an observation vector bERM , 

b = AX+E (1) 

Where X is a sparse signal and E is a possible observa­

tion noise (white gaussian noise E � N(O, (j2) in general). 

The reconstruction problem is how to recover the original 

sparse signal X via A and b . 
If original signal X is known as M -sparse, that is, the 

number of nonzero elements of X is not more than M . 
Then, this problem can be written as [12]: 

mm f(x)=llb-Axll� 
s. t. Ilxllo:::; M (2) 

According to [13], we call the model (2) M -sparse 
problem. The main step of IHT to solve this problem is: 

where H M ( x) is the non -linear operator that retains the 

largest (in magnitude) M elements of X and sets others to 
zero. To carry out (3) what we only need are initial iterative 

point Xo and stopping criterion, e. g. ,  iterative times n . 

A. The H ybridAlgorithm 

Simulated Annealing algorithm (SA) [14]-[ 17] is a global 
convergent one. It can jump out of the local optimal "trap" 
by adopting metropolis criterion. The reasons why we choo­
se SA to combine with IHT in this paper are as follows: 

Firstly, they are easy to combine. SA is simple and very 
easy to conduct too, while IHT has a fixed format to select 

parameters for M -sparse problem, and has higher conve-



rgent speed. For instance, considering low computational 
complexity of IHT, we embed IHT in the framework of SA, 
SA provides initial iterative points for IHT, while IHT helps 
SA to do fast local search. For every point generated by SA 
process, we make it converge to the nearest local optimum 
by using IHT. The evaluation value for the original point is 
the value of the object function at the local optimum. Then, 
whether the local optimum is accepted or not is decided by 
the metropolis criterion. 

Secondly, SA is able to deal with evaluation function f, 
which does not need to be differentiable or continuous etc, 

even what we only need are some values of f in its domain. 

So the request of function f is quite little, which helps us to 

prove global convergence of hybrid algorithm easily. 
Finally, SA is easy to parallelize calculation, and after 

combining with IHT, it still has the potential to solve large 
scale problems. 

Next we obtain a hybrid algorithm named hybrid hard 
thresholding Algorithm (HHT), which is described as : 

Step 1. I nitialization, choose the initial vector Xo (M-

sparse). Given error to' initial temperature T, terminal 

temperature Tf, temperature attenuate function a, max­

imum iterative times K max, iterative times n and error 

t (May be equal to to) in stopping criterion of I HT Let 

k=O; 
Step 2. Select Xl from the neighborhood of Xo randomly, 

calculate the local minimum Y = HM.

n.

/XI) correspond­

ding to Xl' then calculate the change of objective function 

I1f=f(y) -f(xo) , k=k+1. Where y=HM,n/Xl) 
is the M -sparse vector iterated by I H T with initial point Xl 
after n iterations or f (y) :s; t ; 

Step 3. if f(y) < to' stop, output vector y ; else if 

I1f < 0 ,  Let Xo = y ,  else produce 17 � U(O, 1), if 

e -tifiT > 17 ' let Xo = y, goto Step 4; 
Step 4. If equilibrium is reached (iterative times 

k � Kmax), let k = 0, goto Step 5, else goto Step 2; 
Step 5. Reduce T, T = Ta , if T < Tf, stop, output 

vector y, else goto Step 2. 

B. The Convergence Analysis of H H T 

In fact, HHT hasn' t changed SA' s structure, we will 
illustrate that HHT maintains the statistical promise of SA 

A 

below. Define f: 
A 

f(x) = f(HM,n,E(X) ) , 

193 

Keeping the same parameters, the only difference 

between employing HHT for fmding the optimal point of f 
A 

and using SA on f is neighborhood. In HHT, 
disturbance , IHT . 

f d Xo 7 Xl � Y ,1 Xo an y can 

achieve each other, then HHT is global convergent by citing 
proof of global convergence of SA [17]. 

Definition 1 Suppose Xo (Xo E RN) is a M -sparse 

column vector. We claim X equals Xo in the error to' if 

their non-zero elements are at the same positions and 

II X -XO II < to' The set consists of all vectors which equal 

Xo in the error to is named Xo equal set in error 

to ,express it as E . Xo'<'o 

Because signal reconstruction makes sense in certain 

precision, if the error (II X -xii) between reconstructive 

signal X and the initial signal X is less than a given 

precision to (to = Ie - n , n EN), or has the same order of 

magnitude with to' then we regard X as a accurate recon­

structed signal. If we choose a vector y E K arbitrarily, X,

'o 

we have 

II x-yll:s; II x-xll+11 x-yll < 2to. 
Then, y accurately reconstructs X too. So the equal set 

can be treated as one vector in an order of magnitude. 

Suppose X is in the neighborhood (augmented) of x , if the 

neighborhood of X contains one element y E Ex' too, ,'0 

then in our opinion X and X can achieve each other. 

Definition 2 (Basin) Given the error to' X is M -

sparse vector, B is a set about X, to' if \fy E B ,we X,

'o 

X,'o 
have HM,n,

/Y) E 

Ex ,'0 , else not. If so, BX,EO is called 

basin about X in the error to' 

Definition 3 (Neighborhood) Suppose Xo (Xo E RN ) 

IS a M -sparse colunm vector. The neighborhood of Xo 
is 

Nxa,j.l = {x I X = HM,n,/Yo) , Yo = Xo + Jirandn(N,I)} 
Where Ji is a given constant. 

fi . .  disturbance , Yo From De lrutIon 3, Xo ----�7 
IHT �X , 

what we should state is X can achieve Xo in the same way, 

that is, ::3 X E {X : X + Jirandn( N , 1  ) } n B Xo ,EO . According 

to the distribution of normal distribution we know 

P( {x: X + Jirandn(N, I)} n BXO,EO :;z!: 0) > O .  



Hence Xo and X can achieve each other, so from the 

above discussion HHT is a global convergent algorithm. The 
experiments completed in next section show HHT is a stable, 
effective and global convergent algorithm. 

III. NUMERICAL EXPERIMENTS 

In this section, some experiments were taken to compare 
the performance of HHT in signal and image reconstruction, 
and to confirm global convergence of HHT, to test and verify 
its ability of large scale image reconstruction. On the premise 
of accurate reconstruction, the lower sampling number is, the 
better algorithm reconstructive performance is. 

Numerical simulated environment is: CPU frequency 
2.4G, 2G memory of personal computer, Matlab 7.S. 

A. The Parameters' Selection 

Dealing with model (2), the parameters in HHT can be 
selected as follows [15]: 

• Initial temperature T . In order to make SA quasi 
balance in the very beginning, the initial acceptance 

ratio should approximate to 1, that is, e-NIT "'" 1. 
In experiments taken the initial acceptance ratio as 

0.95, we calculate !1f to obtain T Via 

e-NIT = 0.95 , take average of them after repeating 

many times, here T = 20 . 
• Terminal temperature Tf . Tf should be small 

enough so that the acceptive probability is sufficient 
-NIT! 1 10 . 

small, e. g. , e = e - . Usmg above method 

we take Tf = 0.01. 
• Temperature attenuate function a and the length of 

Markov chains L (Maximum iterative times 

K max ). L should make markov chain quasi 
balance on each temperature as a is given. If a is 
close to 1, two temperatures in succession will 
approximate mutually. Therefore, if the quasi 

balance in temperature T" is satisfied, then, just a 

small amount of transformations are enough to reach 

quasi balance on the next temperature �+l' in this 

case, we choose a smaller L. Similarly, if a is 

smaller, L should be larger. Due to IHT costs little 
time in low dimension, to improve the quality of the 

solution, we choose a = 0.5, L = 100 in signal 

reconstruction. However, for image reconstruction 
problem, IHT costs much time and most of the time 
wastes on calculating local minimal points. 
Therefore, n and t in Step 2 of HHT should be 
decreased and increased respectively. At this rate, 
lesser time is spent on computing, yet the quality of 
the solution may be not good enough. To solve this 
problem, a higher precision IHT is taken in the wake 
of obtaining the minimal point of each temperature 
or the point satisfied the predetermined lower 
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precision. At last if the precision to fails to achieve, 

HHT keeps going on, else stop. So L is much 

smaller, so is a. We choose a = 0. 9.L = 20 . 
• Random disturbance f.L . In order to enable algori­

thm to jump out of a local minimal point, current 
point should be caused large enough disturbance. 

Here f.L = 0.5. 
• nand t in IHT. In signal reconstruction they take 

values as 1 e7 , Ie -16 respectively [IS], while in 

image reconstruction n is 500 and t is Ie - 2 . 
B. Signal Reconstruction 

Here A in (2) is a gaussian random matrix, we obtain it 
by using the method proposed in [1]. And X is random 

initial sparse signal (x E RN, N = 512 , 130 - sparse ). 

We compare the sampling ability of IHT and HHT respect­
tively in first step. In second step noisy signal reconstruction 
is considered. 

1) Noiseless Signal Reconstruction: Given the precision 

to = Ie -7, the first experiments we did were to recons­
truct initial signal X via noiseless observation vector b and 
A . The experiments test two algorithms' ability of accurate 

reconstructing X in different sampling number K. "Error" 

stands for II X - ;112, where ; is the constructive signal. 

"Time" is the computational time and is computed by 

second. The initial point is zero vector. 

From TABLE I, we can see when K is 330 or 300, both 
algorithms can accurately reconstruct signal, but time con­

sumed by HHT is shorter than IHT. when K is in range of 
2S0 � 250, HHT still can accurately reconstruct signal while 
IHT can not, and the additional time is acceptable. We can 
conclude from TABLE I that HHT is superior to IHT in the 
effect of noiseless signal reconstruction. 

In addition, we also did the experiments for signal 
reconstruction about HHT with random initial point. For 

each K , operate HHT ten times with different initial points 

which follow N(O, 1) normal distribution, then, take the 

average of Errors and times, and report them in TABLE II, 
which offers the evidence that HHT does not rely on the 
initial point. That is, we may say HHT is a global convergent 
algorithm. 

2) Noisy Signal Reconstruction: In this subsection we 

add the white Gaussian noise E � N (0, (12)((1 = 0.1) in 

observation vector b to compare antinoise ability of both 
algorithms. What we employ comparison criteria is oracle 

mean square error method. The detail of its procedure is to 

TABLE!. 

K 
330 

300 

NOISELESS SIGNAL RECONSTRUCTION WITH ZERO INITIAL 
POINT 

Method 
IHT 
HHT 

IHT 

Error 
3.31e-7 
3.44e-7 
3.87e-7 

Time(s) 
0.18 
0.09 
0.14 



K Method Error Time(s) 
HHT 3.52e-7 0.09 

280 IHT 7.14 0.24 
HHT 4.1ge-7 0.7 

270 IHT 4.041 0.27 
HHT 4.37e-7 0.71 

250 IHT 5.60 0.38 
HHT 5.58e-7 5.61 

TABLE II. NOISELESS SIGNAL RECONSTRUCTION WITH RANDOM 
INITIAL POINT 

K Method Error Time(s) 
270 HHT 4.76e-7 2.253 
260 HHT 5.04e-7 5.955 

compute oracle mean square error(Or) firstly, that is, 

Or = tr((AT ArI )0'2, 
where tr( cD) means trace of matrix cD . Then, calculate 

the error Eo between reconstructive signal and initial signal, 

let p = Eo / Or, For different algorithms, the more p 
approximates to 1, the better antinoise ability of the algori­

thm is. Here we appoint that if p > 1.5, the signal can' t be 

reconstructed successfully in our opinion. 
We now take a look at TABLE III, which records the 

reconstructed results in different sampling numbers with the 
initial point both are zero vector. Those data suggest that 

HHT is more outstanding in antinoise ability. For K 
between 262 and 280 instance, antinoise performance of 
HHT is better than IHT obviously. And with the decrease of 
the sampling number, though signal is more and more 
difficulty to denoise, HHT's antinoise performance seems 
stable and its disadvantage of computing time is gradual 
shrink too. 

TABLE III. NOISY SIGNAL RECONSTRUCTION 
K Or Method Error p Time(s) 

330 2.50 IHT 2.88 1.15 0.21 
HHT 2.37 0.95 3.26 

300 2.97 IHT 4.22 1.42 0.234 
HHT 3.21 1.08 2.34 

280 3.18 IHT 10.53 3.31 0.203 
HHT 4 08 1.28 1.71 

270 3.51 IHT 9.18 2.62 0.203 
HHT 3.74 1.07 1.41 

266 3.62 IHT 9.77 2.70 0.219 
HHT 4.67 1.29 0.55 

262 3.76 IHT 11.61 2.58 0.203 
HHT 4.5 1.20 0.83 

TABLE IV shows experimental results of reconstructed 
signal in different noise level. Fix sampling number 

K = 330, sparsity T = 130, we take 0' as 0.1, 0. 11, 0.12, 
0. 13 respectively. Experimental results show that with the 
increase of the noise, HHT's antinoise performance is still 
better than IHT's. 

TABLE IV. NOISY SIGNAL RECONSTRUCTION 
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0' Or Method Error p Time(s) 

0.10 2.50 IHT 2.88 1.15 0.21 
HHT 2.37 0.95 3.26 

0.11 3.05 IHT 4.11 1.35 0.42 
HHT 3.94 1.29 2.12 

0.12 3.57 IHT 3.96 1.11 0.36 
HHT 3.37 0.95 3.96 

0.13 4.15 IHT 3.48 0.84 0.31 
HHT 3.82 0.92 1.61 

C. I mage Reconstruction 

Image reconstruction is widely applied in imaging tech­
nology such as radar imaging, medical imaging and so on. 
Take example for magnetic resonance imaging (MRI), an 
MRI scanner in effect takes slices from the two dimensional 
fourier domain of the image. In order to reduce scan time and 
the exposure of the patient to electromagnetic radiation, we' d 
better to take fewer measurements. Therefore, on condition 
that image can be constructed accurately, the smaller 

sampling number K is, the better reconstruction algorithm 
is. By using Standard Shepp-Logan phantom [18] as the 
image, we would like to examine whether HHT is still better 
than IHT in noiseless image construction. 

Given the precision Eo = Ie -6, we did the experiments 

with initial point was zero vector in three different resolu­
tions, part of results were chosen and listed in TABLE V. 

TABLE V shows the results HHT can accurately recons­
truct image of each resolution in less sampling number and 
less time. And with the increase of image size , its superi­
ority is more and more obvious. For the large scale image 
reconstruction, HHT can accurately reconstruct quickly too. 
We can see that in TABLE VI. 

TABLE V. LOW DIMENSION IMAGE RECONSTRUCTION 
Resolution K Method Time(s) Error 
32x32 24 !HT 8.78 0.10 

HHT 845 1.04e-6 

64x64 27 !HT 69.51 1.12 
HHT 36.56 2.22e-6 

128x 128 33 !HT 258.07 135 
HHT 8845 4. 75e-6 

TABLE VI. HIGH DIMENSION IMAGE RECONSTRUCTION 
Resolution K Time(s) Error 

256x256 50 75.99 8.18e-6 

512x512 80 136.87 145e-5 

IV. CONCLUSION AND FUTURE DIRECTIONS 

Results on a series of experiments suggest that HHT 
provides a powerful reconstruction algorithm. It is more 
effective and efficient in signal and image construction than 
IHT, and is a stable, global convergent algorithm. As a 
potential improvement to HHT, SA and ITH parameters can 
be made more adaptively, the local optimizer can be invoked 
with a probability on current temperature, which can save 
some time in searching local minimal point. Similar to hard 
threshold, there are soft and mixed thresholds. So we can 
combine SA with them in next step. 



ACKNOWLEDGMENT 

This author' s work is supported partly by theNSFC 
project (10231060) and Chinese Postdoctoral Fund. 

REFERENCES 

[1] D. Donoho, Compressed sensing, IEEE Transactions on Information 
Theory, Vol 52, pp. 1289-1306,2006. 

[2] R.-Baraniuk, Compressive sensing, IEEE Signal Processing Magazi­
ne, Vol 24(4), pp. 118-121,2007. 

[3] S. Mallat and Z. Zhang, Matching pursuits with time frequency 
dictionaries, IEEE Transactions on Signal Processing, Vol 41, pp. 
3397-3415,1993. 

[4] J. Tropp and A. Gilbert, Signal recovery from random measurements 
via orthogonal matching pursuit, Transactions on Information Theory, 
Vol 53(12), pp. 4655-4666, 2007. 

[5] D. Needell and R. Vershynin, Signal recovery from incomplete and 
inaccurate measurements via regularized orthogonal matching pursuit, 
IEEE Journal of Selected Topics in Signal Processing, Vol 4(2), pp. 
310-316, 2007. 

[6] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from 
incomplete and inaccurate samples, Applied and Computational 
Harmonic Analysis, Vol 26(3), pp. 301-321 ,2009. 

[7] J. A. Tropp, Greed is good: algorithmic results for sparse approxi-
mation, IEEE Transactions on Information Theory, vol 50(10), pp. 
2231-2242, 2004. 

[8] R. Gribonval and P. Vandergheynst, On the exponential convergence 
of matching pursuits in quasi-incoherent dictionaries, IEEE Trans­
actions on Information Theory, vol 52(1), pp. 255-261, 2006. 

196 

[9] S. S. Chen, D. L. Donoho and M. A. Saunders, Atomic decom­
position by basis pursuit, SIAM Journal of Scientific Computing, vol 
20(1), pp. 33-61, 1998. 

[10] S. J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky. A method for 
large-scale ll-regularized least squares, IEEE Journal on Selected 
Topics in Signal Processing, Vol 4, pp. 606-617, 2007. 

[11] M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, Gradient proje­
ction for sparse reconstruction :Application to compressed sensing 
and other inverse problems, Journal of Selected Topics in Signal 
Processing: Special Issue on Convex Optimization Methods for 
Signal Processing Vol 1(4), pp. 586-598, 2007. 

[12] T. Blumensath and M. Davies, Iterative hard thresholding for compr­
essed sensing, Applied and Computational Harmonic Analysis, 2009. 

[13] T. Blumensath and M. Davies, Iterative thresholding for sparse app­
roximations, Journal of Fourier Analysis and Applications, Vol 10, pp. 
629-654, 2008. 

[14] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simu­
lated Annealing, Science, New Series, Vol 220, pp. 671-680,1983. 

[15] Lishan Kang, Yun Xie, Shiyong You, Zuhua Luo, Non-numerical 
parallel algorithms-simulated annealing algorithm, Science Press, 
1994. 

[16] Dingwei Wang, Junwei Wang, Hongfeng Wang, Intelligent optimiza­
tion methods, Higher Education Press, 2007. 

[17] Jinshan Jiang, Chunxiong He, Shaohua Pan, Optimization algorithm, 
South China University of Technology Press, 2007. 

[18] T. Blumensath and M. E. Davies, Matlab code: "hard 10 Mterm.m", 
http://www.persona1.soton.ac.uk/tblm08/sparsify/sparsitylttml 

[19] E. CandO s, J. Romberg and T. Tao, Robust uncertainty principles : 
Exact signal reconstruction from highly incomplete frequency infor­
mation, IEEE Trans on Information Theory , Vol 52 (2), pp. 489-509, 
2006. 


