
A Continuation Approach Using NCP Function for

Solving Max-Cut Problem∗

Xu Fengmin † Xu Chengxian‡ Ren Jiuquan§

Abstract

A continuous approach using NCP function for approximating the solution of the

max-cut problem is proposed. The max-cut problem is relaxed into an equivalent
nonlinearly constrained continuous optimization problem and a feasible direction
method without line searches is presented for generating an optimal solution of
the relaxed continuous optimization problem. The convergence of the algorithm
is proved. Numerical experiments and comparisons on some max-cut test prob-
lems show that we can get the satisfactory solution of max-cut problems with less
computation time. Furthermore, this is the first time that the feasible direction
method is combined with NCP function for solving max-cut problem, and similar
idea can be generalized to other combinatorial optimization problems.
Keywords: Max-Cut problem, Feasible direction algorithm, NCP function,
Continuation approach, Convergence.
AMS subject classification : 90C22, 90C25

1 Introduction

The max-cut problem is a discrete optimization problem on undirected graphs
with weighed edges. Given a undirected graph, the problem is to find a partition
of the set of nodes into two parts while maximizes the sum of the weighes on the
edges that are cut by the partition. This problem is of fundamental importance

∗This work is supported by National Key Laboratory of Mechanical Systems and National Natural
Key Product Foundations of China 10231060 and 10671152.

†Xu Fengmin, School of Electronic and Information Engineering, Xi’an Jiaotong University, xi’an,
710049, P.R.China, e-mail: fengminxu@mail.xjtu.edu.cn;

‡Xu Chengxian, Department of mathematics of Faculty of Science, Xi’an Jiaotong University, xi’an,
710049, P.R.China, e-mail: mxxu@xjtu.edu.cn.

§Ren Jiuquan, Department of mathematics of Faculty of Science, Xi’an Jiaotong University, xi’an,
710049, P.R.China, e-mail:jqren@mail.xjtu.edu.cn.

1

Algorithm for Max-Cut 2

in combinatorial optimization and has wide applications in network, statistical
physics and VLSI designs.

Let G(V, E) be a given undirected graph with n nodes where V and E are
the sets of nodes and edges in the graph. Let W = (wij)n×n be the symmetric
weighted adjacency matrix of the graph with wij 6= 0 for (i, j) ∈ E and wij = 0
for (i, j) /∈ E. Let L = 1

4(Diag(We)−W) denote the Laplacian matrix associated
with the graph(L º 0), where the linear operator Diag returns a diagonal matrix
with diagonal entry obtained by the corresponding entry in the vector, and e

denotes the vector of all ones. Let the vector x ∈ {±1}n represent any cut in the
graph via the interpretation that the sets {i : xi = 1} and {i : xi = −1} from
a partition of the node set of the graph. It is well known that the formulations
over {0, 1}n and {±1}n are equivalent, see for example Helmberg et al (1995).

Following Mohar and Poljak (1998), we can formulate the max-cut problem
as:

(MC) :

{
µ∗ = Max xT Lx

s.t. xi ∈ {−1, 1}, i = 1, · · · , n.

In this paper µ∗ denotes the optimal value of the max-cut problem. Note that the
following model has the different objective value with no effects on the optimal
solutions of (MC) :

{
Max xT (L + σI)x
s.t. xi ∈ {−1, 1}, i = 1, · · · , n.

Without loss of generality, we will assume, in the rest of the paper, that L =
L + σI is positive definite and Lii > 0, i = 1, · · · , n.

Further we observe that x ∈ {±1}n if and only if x2
i = 1, i = 1, · · · , n. This

immediately yields our second formulation for the max-cut problem:

(MC1) :

{
µ∗ = Max xT Lx

s.t. x2
i = 1, i = 1, · · · , n.

(MC1) is a well-known and commonly used formulation for the max-cut problem.
Let X = xxT , then xT Lx = L ·X, where L ·X denotes the Frobenius inner

product of two matrices. The relaxed semidefinite programming of the max-cut
problem is given by

(SDP) :

Max L ·X,

s.t. diag(X) = e,

X º 0,

where diag(X) denotes the vector in Rn consisting of the diagonal elements of
the matrix X, X º 0 means that X is symmetric and positive semi-definite.
It’s well known that a SDP problem can be solved by using the interior-point

Algorithm for Max-Cut 3

algorithms in polynomial time (Alizadeh et al (1998)) and (Helmberg et al (1996
)). However, the solution of the relaxed semi-definite programming only provides
a suboptimal solution of the max-cut problem with a better upper bound. It is
known that the max-cut problem is NP-hard, and algorithms are available to find
its approximate solutions. Typical approaches to solve such problems are to find
a solution within approximation factor ρ. Sahni and Gonzales (1976) reported an
approximation algorithm with ρ = 1

2 for max-cut problems. Since then, various
approximation algorithms for max-cut problems are proposed. Among them
the most famous is the 0.87856 randomization algorithm proposed by Goemans
and Williamson (Goemans and Williamson (1995)). Their algorithm relaxes the
max-cut problem as a semi-definite programming problem, and the resulting
problem is then solved using any existing semi-definite programming algorithms,
for example, interior algorithms. The strengthened semidefinite programming
relaxation and rank two relaxation of max-cut problems are modifications of
Goemans and Williamson’s work (Goemans and Williamson (1995)), for example
(Anjos and Wolkowicz (1999)) and (Burer and Monteiro (2001)).

In this paper a continuation approach using NCP function for solving max-cut
problems is proposed. Unlike the available relaxation methods, NCP function is
employed to convert the max-cut problem to a continuous nonlinear program-
ming, and then the resulting nonlinear programming problem is solved using
the feasible direction method without line search. The convergence property of
the proposed algorithm is studied, and numerical experiments and comparisons
on some problems generated by rudy are made to show the efficiency of the
proposed algorithm on both the CPU times and solutions.

The rest of the paper is organized as follows. Section 2 gives the continuous
relaxation of max-cut problems by applying the NCP continuation function. The
feasible direction method without line searches for the solution of the resulting
nonlinear programming problem is given in section 3. The convergence property
and the finite termination property of the feasible direction method are also
studied in section 3. In section 4 numerical experiments and comparisons on
some well known test problems are reported. The weighted adjacency matrices
of these test max-cut problems are generated by rudy. Numerical experiments
show that the proposed continuation algorithm generates satisfactory solutions
with less computational times on these test problems.

2 The Continuation Model of the Max-Cut

Problem

In this section, we present the continuation model of the max-cut problem using
NCP function.

Algorithm for Max-Cut 4

The NCP function is given by

φF (a, b) =
√

a2 + b2 − a− b

(See Fischer-Burmeister, 1992). Then

φF (a, b) = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.

Let a = 1−xi, b = 1+xi, then the problem (MC1) can equivalently be described
by the following nonlinear programming problem

(NP) :

{
Max xT Lx

s.t. φF (1− xi, 1 + xi) = 0, i = 1, · · · , n.

Now we focus on the solution of problem (NP). At first, let us consider the
following equivalent nonlinear programming

(NP1) :

µ∗∗ = Max xT Lx

s.t. φF (1− xi, 1 + xi) ≤ 0, i = 1, · · · , n,

‖x‖ =
√

n.

Let
F1 = {x|φF (1− xi, 1 + xi) = 0, i = 1, · · · , n},

F2 = {x|φF (1− xi, 1 + xi) ≤ 0, i = 1, · · · , n, ‖x‖ =
√

n},
be feasible regions of problem (NP) and (NP1), respectively. The following the-
orem gives the equivalence of F1 and F2.

Lemma 2.1 The NCP function φF (1− xi, 1 + xi) =
√

(1− xi)2 + (1 + xi)2− 2
for i = 1, 2, · · · , n is strictly convex for all xi ∈ (−1, 1).
Proof Since the first-order derivative and the second-order derivative of the
function φF (1− xi, 1 + xi), i = 1, 2, · · · , n are given by

φ
′
F (1− xi, 1 + xi) =

2xi√
2x2

i + 2
,

φ
′′
F (1− xi, 1 + xi) =

4

(2x2
i + 2)

√
2x2

i + 2
> 0.

Since the second-order derivative of φF (1−xi, 1+xi), (i = 1, 2, · · · , n) is positive
for all xi ∈ (−1, 1), So φF (1− xi, 1 + xi) for i = 1, 2, · · · , n is strictly convex. ¤

Theorem 2.2 Let F1, F2 be feasible regions of problem (NP) and (NP1), re-
spectively. Then F1 = F2. That is µ∗ = µ∗∗ .

Proof Obviously, F1 ⊆ F2.

Algorithm for Max-Cut 5

On the other hand, Let x ∈ F2, Since the definition of φF (1−xi, 1+xi), then
−1 ≤ xi ≤ 1 and ‖x‖ =

√
n. Suppose x /∈ F1, there exists indices t such that

|xt| < 1. Since ‖x‖ =
√

n, there must exist an index s such that |xs| > 1. This
contradicts the fact that x ∈ F2. Then for all x ∈ F2, there is x ∈ F1. So F2 ⊆ F1.

In conclusion, we have F1 = F2. So µ∗ = µ∗∗. That is problem (NP) and
(NP1) have the same optimal solution. ¤

Theorem 2.2 implies that the optimal solution of the problem (NP) can be
obtained by solving the problem (NP1).

Now we further relax the constraints in problem (NP1) to get the following
continuous nonlinear programming problem

(NP2) :

υ∗ = Max xT Lx

s.t. φn(
√

n− xi,
√

n + xi) ≤ 0, i = 1, · · · , n,

‖x‖ ≤ √
n,

where

φn(
√

n− xi,
√

n + xi) =
√

(
√

n− xi)2 + (
√

n + xi)2 − 2
√

n i = 1, · · · , n.

Let
F3 = {x|φn(

√
n− xi,

√
n + xi) ≤ 0, i = 1, · · · , n. ‖x‖ ≤ √

n}
be the feasible region of problem (NP2). It can be observed that F2 ⊆ F3, and
hence υ∗ ≥ µ∗∗, that is, the solution of the problem (NP2) can provide an upper
bound on the value of the max-cut. Let x be the optimal solution of the problem
(NP2). Then y = sign(x) is a feasible point of the problem (NP1) and hence
the problem (MC1). Even though this feasible solution y can not be guaranteed
to be an optimal solution of the problem (MC1), numerical experiments show
that such a procedure generally generates a satisfactory solution. In order to
generate a tighter lower bound on the optimal value of the max-cut, a local
search procedure at y is employed to either generate an improved local solution
or to ensure that y is already a local solution of the max-cut problem.

The NP2 relaxation is a continuous nonlinear programming problem and
any effective nonlinear optimization algorithm can be employed or modified to
find its solution (See Xu CX and Zhang JZ, 2001 for quasi-Newton methods).
However, unlike the semi-definite programming relaxation (SDP) that is a convex
programming problem, the NP2 relaxation is a concave nonlinear programming
problem, and hence, there exist local solutions. The solution obtained from any
local optimization algorithm can not be guaranteed to be a global solution, and
hence, it is impossible to get a performance guarantee for the solution of max-
cut problems based on the NP2 relaxation. On the other hand, the number
of variables in the NP2 relaxation is the same as that of the original max-cut

Algorithm for Max-Cut 6

problem, while the SDP relaxation increases the problem variables from n to
n2. Also the characters of the NP2 relaxation can be used to design effective
algorithms for the solution of the problem (NP2) so that the computational
time can be greatly reduced (see next sections for the algorithm and numerical
experiments).

3 Feasible Direction Algorithm

In this section, the feasible direction algorithm without linear search is presented
for the solution of problem (NP2). The algorithm employs no line search and
no calculation on matrices, and thus greatly reduces the calculation expenses.
Before we derive the algorithm, some basic properties of problem (NP2) are
discussed in the following lemmas.

First we recall that Lemma 2.1 implies that function φn(
√

n−xi,
√

n+xi), (i =
1, 2, · · · , n) is also convex for all xi ∈ [−√n,

√
n], So the feasible region F3 of

problem (NP2) is convex.
Let xk be a feasible point of problem (NP2) and f(x) = xT Lx. gk = 2Lxk

is the gradient of objective function f(x) at point xk. Let xk+1 = gk‖xk‖
‖gk‖ , then

xk+1 ∈ F3. Define dk = gk‖xk‖
‖gk‖ − xk as a search direction, the next lemmas show

that if dk = 0, then xk is a KKT point of problem (NP2), and if dk 6= 0 , then
dk is a feasible ascent direction of problem (NP2) at point xk.

Lemma 3.1 Suppose x∗ is an optimal solution of problem (NP2), then x∗ is
an eigenvector of the matrix L that satisfies the constraints of problem (NP2),
that is, there exists an eigenvalue λ1, such Lx∗ = λ1x

∗.

Proof Let x∗ is an optimal solution of problem (NP2), then x∗ ∈ F3. It is clear
that Lx∗ 6= 0, otherwise, x∗ can not be the optimal solution of the problem.

At first, we prove that all the first n constraints in (NP2) are inactive and
only last constraint is active at point x∗.

The convexity of the feasible region and the convexity of the objective function
imply that the optimal solution of the problem will be achieved at some extreme
points of the feasible region, that is, some constraints will be active at the solution
x∗.

Now, we prove that all the first n constraints in (NP2) are inactive and only
the last constraint is active at point x∗.

Suppose that there exists an index, t say, satisfying x∗t = ±√n and x∗i =
0, i 6= t, i = 1, · · · , n, that is, the constraint φn(

√
n−xt,

√
n+xt) ≤ 0 is active

Algorithm for Max-Cut 7

at point x∗. Define d =
√

n g∗
‖g∗‖ − x∗, then d is feasible and

∇f(x∗)T d = 2n

√
n∑

i=1
L2

ti − 2nLtt.

It is clear that there exists at least one index i 6= t such that Lti 6= 0, otherwise,
node t is an isolated point of the graph. Hence ∇f(x∗)T d > 0, and d is a feasible
ascent direction of problem (NP2) at x∗. This gives a contradiction to the fact
that x∗ is the optimal solution of (NP2)

It then follows from the inactivity of the first n constraints of problem (NP2)
at x∗ that the last constraint is active at x∗. Applying the KKT condition to
problem (NP2), there exists Lagrange multiplier λ1 (replacing the constraint
‖x‖ =

√
n by ‖x‖2 = n gives no any effect to the problem) such that

g∗ − 2λ1x
∗ = 0

holds at x∗. Then
g∗ − 2λ1x

∗ = 0 ⇔ Lx∗ − λ1x
∗ = 0.

This indicates that x∗ is an eigenvector of the matrix L. The proof is completed.¤

Lemma 3.1 shows that optimal solutions of problem (NP2) can be found
from the eigenvectors of the matrix L that satisfies the constraints of problem
(NP2). The algorithm proposed in this section either terminates or converges
to an eigenvector of the matrix L satisfying constraints in (NP2). It can also
be observed from the proof of Lemma 3.1 that the optimal solution of problem
(NP2) will not change if we replace the matrix L by a positive definite matrix
L+σI where σ > 0 is a constant. Therefore, in the following we will assume that
the matrix L is positive definite by adding a matrix σI, and hence gk = 2Lxk

will not be zero for all k ≥ 0.

Lemma 3.2 Let xk ∈ F3. If dk = 0, then xk is an eigenvector of the matrix
L that satisfies the constraints of problem (NP2), that is, xk is a KKT point of
problem (NP2).

Proof From the definition of dk, we have

dk =
√

ngk

‖gk‖ − xk = 0,

that is

Lxk − ‖gk‖
2
√

n
xk = 0.

This shows that xk is an eigenvector of the matrix L satisfying constraints of prob-
lem (NP2). This completes the proof of the lemma. ¤

Algorithm for Max-Cut 8

Lemma 3.3 Let xk ∈ F3. Suppose dk 6= 0, then dk is a feasible ascent direction
of problem (NP2) at xk.

Proof The feasibility of the direction dk comes from the feasibility of points xk

and the convexity of the feasible region F3.

(∇f(xk))T dk = (gk)T (gk‖xk‖
‖gk‖ − xk)

= ‖gk‖‖ xk‖ − (gk)T xk ≥ 0

If (∇f(xk))T dk > 0, then dk is an ascent direction. If (∇f(xk))T dk = 0, then

f(xk + αdk) = f(xk) + α(∇f(xk))T dk + α2(dk)T Ldk, (3.1)

and the positive definiteness of the matrix L also shows that dk is ascent. The
proof is completed. ¤

Lemma 3.3 implies that α = 1 is the best choice for the step length in the
direction dk. It is the reason why we adopt the above iterative format without
line searches. No line search in iterations greatly reduces the computational cost,
and increase the speed of the algorithm to achieve the solution.

The following theorem gives the convergence of the algorithm to KKT points
of problem (NP2).

Theorem 3.4 Suppose dk → 0. Then any accumulation point x∗ of the se-
quence {xk} is an eigenvector of the matrix L that satisfies the constraints of
problem (NP2), that is, x∗ is a KKT point of (NP2).

Proof Let x∗ be an accumulation point of the sequence {xk}. Without loss of
generality, assume that xk → x∗. It follows from the definition of dk, and the
continuity of g(x), we have

lim dk = lim
gk√n

‖gk‖ − xk =
g∗
√

n

‖g∗‖ − x∗ = 0.

That is,

Lx∗ − ‖g∗‖
2‖x∗‖x∗ = 0.

This shows that x∗ is an eigenvector of the matrix L satisfying constraints of
(NP2), and the proof is completed. ¤

The rest of this section is devoted to the proof of the convergence of the in-
finite sequence {dk}, generated by the proposed algorithm, to zero vector.

Algorithm for Max-Cut 9

Lemma 3.5 Let dk 6= 0, then the following inequalities hold

λmin(L)‖dk‖2
2 ≤ f(xk+1)− f(xk) ≤ ‖gk‖2‖dk‖2 + λmax(L)‖dk‖2

2.

Proof Since f(x) is a quadratic function, we have

f(xk+1)− f(xk) = (gk)T dk + (dk)T Ldk. (3.2)

From (gk)T dk ≤ ‖gk‖2‖dk‖2 and the positive definiteness of the matrix L, we
obtain

f(xk+1)− f(xk) ≤ ‖gk‖2‖dk‖2 + λmax(L)‖dk‖2
2, (3.3)

where λmax(L) is the largest eigenvalue of the matrix L. Furthermore, since(gk)T dk ≥
0 and the property of matrix L, we have

f(xk+1)− f(xk) ≥ λmin(L)‖dk‖2
2, (3.4)

where λmin(L) is the smallest eigenvalue of the matrix L. Inequalities (3.3) and
(3.4) give the conclusion of the Lemma. ¤

Theorem 3.6 If dk 6= 0 for any k > 0, then ‖dk‖2 → 0.

Proof From Lemma 3.5, for any m > 0 we have

m∑
i=0

‖dk‖2
2 ≤ 1

λmin(L)

m∑
i=0

(f(xk+1)− f(xk))

= 1
λmin(L) [f(xm)− f(x0)]

≤ 1
λmin(L)(x

∗)T Lx∗

≤ λmax(L)
λmin(L) ‖x∗‖2

2

≤ λmax(L)
λmin(L) n.

That is,
+∞∑
i=0

‖dk‖2
2 is convergent, and hence ‖dk‖2 → 0 holds. ¤

When the algorithm is implemented to solve problem (NP2), the condition
‖dk‖ ≤ ε or f(xk+1)− f(xk) ≤ ε is used to terminate the iteration.

4 Numerical Experiments

In this section we report numerical results and comparisons to show the effec-
tiveness and efficiency of the proposed feasible direction method. The algorithm
is programmed in Matlab 6.0, and experiments are implemented on a 1.6GHz
Pentium IV personal computer with 256Mb of Ram. The value ε = 0.0001 is
used in the termination conditions ‖dk‖ ≤ ε or f(xk+1) − f(xk) ≤ ε. The value
σ = 10 is selected to make sure L + σI is positive definite, but the objective

Algorithm for Max-Cut 10

function value at the termination point is still calculated as (xk)T Lxk in the
implementation. The initial points for all test problems are randomly generated
by x0 = sign(rand(n, 1)) which satisfies ‖x0‖ =

√
n, and is feasible to problem

(NP2).
The set of test problems are randomly created using the procedure rudy, a

machine independent graph generator written by Ginaldi, that generates middle
or large scale test problems for max-cut (Helmberg and Rendl (2000)). Table 4.1
gives the results on 6 test problems, where Size gives the number of nodes in test
graphs, Bsol and Btime that cited in Helmberg and Rendl (2000) give an upper
bound of the optimal value of these max-cut problems and computation time that
is generated using spectral bundle method(SB) , and GW-cut gives the results
generated using Goemans and Willianson’s 0.87856 randomized approximation
algorithm, which generates a lower bound to the optimal value of test problems by
using interior point software SDPpack (Alizadeh, Haeberly, Nayakkankuppam,
Overton and Schmieta (1997), and f∗ and Time(Sec) are results generated by the
continuation feasible direction method. It can be observed from Table 4.1 that
the proposed algorithm (FA) provides better solutions than the method GW for
all this set of test problems.

Table 4.1: Comparison of solution quality

Problem size SB GW-cut FA
Bsol Btime f∗ Time(Sec)

G03 800 12084 4:38 10610 11368 0.341
G14 800 3192 14:30 2803 2941 1.331
G38 2000 8015 4:03:53 7037 7341 1.843
G44 1000 7028 5:06:31 6170 6423 1.332
G50 3000 5988 5:17:51 5257 5803 12.76
G52 1000 4009 5:09:02 3520 3698 0.49

Table 4.2 shows a comparison of time and result among these three algorithms,
that are Rank-2 heuristic, GRASP-VNS method and random primal sampling
SRP with sample size(Hernn Alperin , Ivo Nowak (2002)). The results and the
time of these algorithms in Table 4.2 are copied from Hernn Alperin , Ivo Nowak
(2002). The CPU time is presented in ss seconds or ss.ddd seconds.

From the table 4.2 it can be observed that the continuous feasible direction
method has similar performance on these large scale test problems as the rank-2
algorithm, and is better than GRASP-VNS and SRP method.

Algorithm for Max-Cut 11

Table 4.2: Comparison with other algorithm

Problem size RSP GRASP-VNS rank-2 FA
ss f∗ ss.dd f∗ ss.dd f∗ f∗ Time

G11 800 4 550 10.00 552 0.06 524 542 0.33
G12 800 3 542 9.36 532 0.06 512 532 0.34
G13 800 4 570 12.41 564 0.06 536 554 0.48
G14 800 4 3006 12.89 3040 0.09 3016 2955 0.55
G15 800 5 3002 18.09 3017 0.09 3011 2944 0.8
G22 2000 21 13193 56.98 13087 0.37 13148 13148 1.74
G24 2000 25 13165 192.81 13209 0.30 131954 13236 2.45
G32 2000 144 1346 99.91 1368 0.18 1306 1338 5.43
G34 2000 14 1334 55.22 1340 0.12 1276 1292 2.32

Table 4.3 gives comparisons of the proposed method on 4 large scale test
max-cut problems with negative weights that are also generated using rudy.
The value of σ = 100 is selected to ensure the matrix L + σI is positive definite.
The efficiency of the proposed continuous feasible direction method can also be
observed from Table 4.3.

Table 4.3: Max-cut problems with negative weights

Problem size SB rank-2 FA
Bsol Btime f∗ Time f∗ Time

G23 2000 14146 38:11 13197 0.37 13148 4.8230
G30 2000 4215 1:02:39 3234 0.32 3338 1.840
G31 2000 4117 26:11 3146 0.33 3221 2.56
G33 2000 1544 6:04:22 1290 0.14 1325 2.54

5 Conclusion and Discussion

A new continuation relaxation model for max-cut problems are proposed. NCP
function is employed to relax the discrete maximum cut problem into a con-
tinuous nonlinear programming problem. Then a feasible direction method is
proposed to find the solution of the resulting nonlinear programming problem.
The algorithm employs only the gradient values of the objective function in the
resulting programming problem and no matrix calculation, and no line searches.
This greatly reduces the computational cost to achieve the solution. The con-
vergence of the proposed algorithm to a KKT point of the nonlinear program-
ming is proved. Numerical experiments and comparisons with Goemans and
Williamson’s algorithm and rank-2 algorithm on some test max-cut problems
are performed to show that the proposed algorithm is efficient to get satisfactory
solutions of max-cut problems.

Acknowledgments The authors wish to express their gratitude to the
referee for very helpful and detailed comments.

Algorithm for Max-Cut 12

References

[1] Alizadeh, F, Haeberly, J P and Overton, M (1998), Primal dual inte-
rior point methods for Semidefinite Programming:convergence rates,stability
and numerical results, SIAM Journal of Optimization, 8, 746-768.

[2] Alizadeh, F, Haeberly, J P, Nayakkankuppam, M V, Overton M L and
Schmieta, S (1997), SDPpack user’s guide -version 0.9Beta.Technical Report
TR1997-737, Courant Institute of Mathematical Science, NYU, New York,
NY, June.

[3] Anjos, W and Wolkowicz, H (1999), A strengthened SDP relaxation via a
second lifting for the Max Cut problem, Technical Report Research Report
CORR 95-55, University of Waterloo, Waterloo, Onratio.

[4] Burer, S, Monteiro, R D C and Zhang, Y (2001), Rank-two relax-
ation heuristics for MAX-CUT and other binary quadratic programs,
SIAM Journal on Optimization, 12, 503-521.

[5] Fischer, A (1992), A special Newton-type optimization method,
Optimization, 24, 269-284.

[6] Goemans, M X, and Williamson, D P (1995), Improved approximation al-
gorithms for maximum cut and satifiablity problems using semidefinite pro-
gramming, Journal of ACM, 42, 1115-1145.

[7] Helmberg, C and Rendl, F (2000), A spectral bundle method for semidefinite
programming, SIAM Journal of Optimization, 10, 673-695.

[8] Helmberg, C, Rendl, F, Vanderbei, R J and Wolkowicz, H
(1996), An interior point methods for semidefinite programming,
SIAM Journal of Optimization, 6, 342-361.

[9] Helmberg, C, Poljak, S and Wolkowicz, W (1995), Combining semidefinite
and polyhedral realxations for interger programs, In Interger Programming
and Combinatorial optimization, pages 124-134, Springer, Berlin.

[10] Hernan Alperin , Ivo Nowak (2002), Lagrangian smoothing heuristic for
Max-Cut , Humboldt Universitt zu Berlin, Institut fr Mathematik, technical
report NR-2002-6.

[11] Mohar, B and Poljak, S(1998), Gigenvalue in combinatorial optimization,
In combinatorial and graph theoretical problems in linear algebra, pages
107-151, Springer, New York.

[12] Sahni, S and Gonzalez, T (1976), P-Complete approximation problem,
Journal of ACM , 23, 555-565.

[13] Xu CX and Zhang JZ (2001), Survey of quasi-Newton equations and quasi-
Newton methods for optimization, Annals of Operations Research, 103,
213-234.

