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Abstract Index tracking problems are concerned in this paper. A CVaR risk constraint is
introduced into general index tracking model to control the downside risk of tracking port-
folios that consist of a subset of component stocks in given index. Resulting problem is a
mixed 0–1 and non-differentiable linear programming problem, and can be converted into
a mixed 0–1 linear program so that some existing optimization software such as CPLEX
can be used to solve the problem. It is shown that adding the CVaR constraint will have no
impact on the optimal tracking portfolio when the index has good (return increasing) perfor-
mance, but can limit the downside risk of the optimal tracking portfolio when index has bad
(return decreasing) performance. Numerical tests on Hang Seng index tracking and FTSE
100 index tracking show that the proposed index tracking model is effective in controlling
the downside risk of the optimal tracking portfolio.

Keywords Index tracking · CVaR constraints · Cardinality constraints · Mixed 0–1 LP

1 Introduction

Index tracking problems are popular in the field of passive fund management. Passive fund
managers aim to reproduce the performance of a stock market index by investing in a subset
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of the stocks included in the index. Such a portfolio is called a tracking portfolio (Beasley et
al. 2003; Ruiz-Torrubiano and Suárez 2009). Generally speaking, there exist two strategies
to reproduce the index: full replication and optimized replication. The former is to purchase
each component stock as the same proportion as in the index. The resulting tracking portfolio
can track the index well, but incur high transaction frequency and costs in practice. Addi-
tionally, it is impossible to purchase all of the component stocks when the index consists
of a large number of stocks. The strategy of optimized replication is to minimize tracking
errors between the tracking portfolio and the index without purchasing all of the component
stocks. This strategy involves much lower transaction frequency and costs in practice. The
focus of the paper is the strategy of optimized replication.

The performance of a tracking portfolio is measured by the tracking errors between the
tracking portfolio and the index. Different definitions of tracking error have been proposed in
literature. Roll takes the variance of differences between the return of the tracking portfolio
and the return of the index as the tracking error in Roll (1992), and formulates the index
tracking problem by a quadratic programming problem. The same definition is also used in
Kwiatkowski (1992), Shapcott (1992), Coleman et al. (2006). However, Beasley et al. point
out that the definition is irrational since the variance will be zero when the differences are
constants in Beasley et al. (2003). In fact, Roll’s definition ignores the deviation between
the returns of the tracking portfolio and of the index. Then the definition of tracking error
as the mean square difference in the returns of the tracking portfolio and of the index is
used in Beasley et al. (2003), Lobo et al. (2007). Clarke et al. define the tracking error as
the “absolute difference between the managed portfolio return and the benchmark portfolio
return” in Clarke et al. (1994). Sharp emphasizes that linear or absolute deviations between
the return of the tracking portfolio and the return of the index are more relevant in Sharpe
(1971). In view of this, Markus et al. give four alternative definitions of tracking errors in
Markus et al. (1999), and the resulting index tracking problems can be converted into linear
programs. In this paper, the mean absolute deviation between the return of the tracking
portfolio and the return of the index (denoted in Markus et al. 1999) is used to measure
the tracking error. This measure of tracking errors has the advantage of being linearizable.
Furthermore, when the constraints are also linear, the resulting index tracking problem can
be converted into a linear program so that existing sophisticated algorithms such as simplex
algorithms and interior point algorithms can be used (Ross et al. 1986; Ye 1997).

Recently, researchers mainly aim to minimize the tracking error subject to some con-
straints on the number of stocks in the portfolio, short sale and investment share restric-
tion (Beasley et al. 2003; Ruiz-Torrubiano and Suárez 2009; Canakgoz and Beasley 2009;
Krink et al. 2009). In this paper, a CVaR risk constraint on the tracking portfolio is intro-
duced into general index tracking mode to control the downside risk of the optimal tracking
portfolio. In recent years, the shortfall risk measures become more popular and practical in
risk management area. VaR is an important shortfall risk measure, but it has some undesir-
able mathematical characteristics such as lack of subadditivity and convexity. When a risk
measure satisfies the characteristics of subadditivity, positive homogeneity, monotonicity
and translation invariance, it is a coherent risk measure (Artzner et al. 1999). Hence VaR
is not coherent except the case when the return rate of the portfolio is normal distributed.
Furthermore, VaR is difficult to be optimized when it is calculated from scenarios. Recent
researches on the portfolio selection area focus on coherent risk measures, for example the
Conditional Value at Risk (CVaR). Rockafellar and Uryasex (2000) propose the applica-
tion of CVaR in portfolio selection problems. The main advantage of CVaR is that whether
CVaR is used in objective function or in a constraint, the resulting model can be converted
into a linear program so that the optimal solution can be effectively obtained using existing
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optimization software. More details about CVaR can be found in Rockafellar and Uryasex
(2002). Adding CVaR constraint into index tracking problems can control the downside risk
of the optimal tracking portfolio, so as to prevent the investors from large loss. When the
return rate of the tracking portfolio maintains increasing, the introduced CVaR constraint is
inactive and has no impact on the optimal tracking portfolio. However, when the return rate
of the tracking portfolio falls down, the CVaR constraint will limit the downside risk of the
optimal tracking portfolio.

When a CVaR constraint is introduced into general index tracking model, the resulting
index tracking problem can be converted into a mixed 0–1 linear programming problem.
When the number of 0–1 variables is relatively small, the resulting mixed 0–1 linear pro-
gram can be efficiently solved by the standard optimization software CPLEX. However, it
will take long time to solve the problems with high dimension due to the cardinality con-
straints. Krink et al. propose an evolution and combinatorial search method to determine the
subset of the stocks in Krink et al. (2009). Ruiz-Torrubiano et al. design a hybrid optimiza-
tion approach based on RAR crossover operators to solve the constrained index-tracking
problem (a mixed 0–1 quadratic program) in Ruiz-Torrubiano and Suárez (2009). In this pa-
per, a hybrid genetic approach based on the hybrid approach is applied to solve the resulting
mixed 0–1 linear program when the number of 0–1 variables is large. Tests of the proposed
model are performed on the Hang Seng index tracking and FTSE 100 index tracking. Tests
show that adding the CVaR risk constraint can indeed limit the downside risk of the optimal
tracking portfolio and do not significantly affect the performance of the index tracking. Fur-
thermore, the hybrid genetic method can solve the resulting mixed 0–1 linear programming
problems efficiently and adding the CVaR risk constraint does not substantially increase the
solving difficulty.

The rest of the paper is organized as follows. General index tracking problems and re-
lated models are described in Sect. 2. CVaR risk constraints on the tracking portfolio are
introduced in Sect. 3 and modified index tracking model is presented. Numerical tests on
Hang Seng index tracking and FTSE 100 index tracking are reported in Sect. 4. Conclusions
and future researches are given in Sect. 5.

Throughout this paper prime (′) denotes transposition without special declaration. The
notation si or (s)i is used to denote the ith component of the vector s.

2 Index tracking problem

In this section, general index tracking problem will be formulated by a mixed 0–1 linear
program, and constraints on cardinality, investment share restriction and so on will be taken
into account.

Assumed that an investor hopes to construct a portfolio to track the performance of a
stock index which is made up of N component stocks. Historical prices (values) of N com-
ponent stocks and the index over time period 0,1,2, . . . , T will be used. The investor hopes
to construct the portfolio at time T and holds it for period [T + 1, T +L]. Main assumption
here is that the past is a guide to the future (Beasley et al. 2003), that is, the tracking portfolio
obtained from the data sets over time [0, T ] is also suitable for the period [T + 1, T + L].
However, it should be noticed that the optimal tracking portfolio obtained by the data over
time 0,1,2, . . . , T may not be optimal after the time when the index is adjusted. The value
of L depends upon the frequency with which the component stocks of the index are adjusted.
When the component stocks of the index are adjusted, some stocks in the index will be dis-
carded and some new stocks will be added into the index. Nowadays, many stock indices
are adjusted in about six months.
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2.1 Tracking error

Let It be the value of the index and St = {St
1, S

t
2, . . . , S

t
N }′ be the prices of component stocks

at time t (t ∈ {0,1,2, . . . , T }). Then the return rates of the index and component stocks at
time t are calculated by

Rt = It − It−1

It−1
; rt

i = St
i − St−1

i

St−1
i

; t = 1,2, . . . , T

Let x = (x1, x2, . . . , xN)′ be the tracking portfolio, where xi is the investment weight
in the ith component stock. It is assumed that the investment vector x keeps no change in
whole investment period. An alternative strategy for index tracking is to keep the investment
amount of each stock unchanged. It is clear that the later strategy causes lower transaction
costs because no reallocation of capital is needed after the investment amount in each asset is
initially determined. The strategy to keep x unchanged requires actively managing the port-
folio. This may incur high transaction costs, but possible to solve the index tracking problem
effectively. There is no final conclusion that which strategy is better (Ruiz-Torrubiano and
Suárez 2009). The interested readers can do more in-depth studies.

According to Markus et al. (1999), the mean absolute deviation between the return rate
of the tracking portfolio and the return rate of the index

T E = 1

T

T∑

t=1
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t −

N∑

i=1

rt
i xi

∣∣∣∣∣ (1)

is used as the measure of the tracking error. The investor hopes to obtain an optimal tracking
portfolio by minimizing the tracking error subject to some practical constraints.

2.2 Practical constraints

When the optimized replication strategy is applied to generate the optimal tracking portfolio,
K (K < N ) component stocks are generally selected to track the index. 0–1 variables Zi

(i = 1,2, . . . ,N ) are introduced to indicate the stock selection problem with

Zi =
{

1, the ith stock is included in the tracking portfolio,
0, otherwise.

(2)

Then, the following constraint ensures that there are precisely K stocks included in the
tracking portfolio.

N∑

i=1

Zi = K (3)

Due to the limitation of investment amount, diversification requirement and actual trans-
action restriction, the investment proportion on each stock should have a lower bound and
an upper bound.

LiZi ≤ xi ≤ UiZi, i = 1,2, . . . ,N (4)

with 0 < Li < Ui < 1, where Li and Ui are the lower and upper bounds of the investment
proportion on stock i. (4) shows that if stock i is not selected in the tracking portfolio (i.e.,
Zi = 0), then xi = 0, and if stock i is selected in the tracking portfolio (i.e., Zi = 1), hence
the value of xi is limited in the interval [Li,Ui ].
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Finally, the budget constraint

N∑

i=1

xi = 1 (5)

is included to ensure total investment proportion equal to one.

2.3 General index tracking model

It follows analysis in Sects. 2.1 and 2.2 that the general model for the index tracking problem
is given as follows:

min
x,Z

T E = 1

T

T∑
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i=1

rt
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s.t.
N∑

i=1

Zi = K

LiZi ≤ xi ≤ UiZi, i = 1,2, . . . ,N

N∑

i=1

xi = 1

Zi ∈ {0,1}, i = 1,2, . . . ,N

(6)

Since the objective function in (6) is piecewise linear and not differentiable, variables q+
t ≥

0, q−
t ≥ 0 (t = 1,2, . . . , T ) are introduced such that
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t =
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Then problem (6) can be converted into the following mixed 0–1 integer linear programming
problem

min
x,q+,q−,Z
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t )

s.t. q+
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Zi ∈ {0,1}, i = 1,2, . . . ,N

q+
t ≥ 0, q−

t ≥ 0, t = 1,2, . . . , T

(7)
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Remark In practice, there are transaction costs when the selected stocks are purchased. The
transaction cost can be taken into account by modifying model (7). Let φ(x) be the transac-
tion costs associated with a tracking portfolio x. Then the budget constraint can be modified
as

N∑

i=1

xi + φ(x) = 1 (8)

Generally, the transaction cost function φ(x) is a separable function, i.e.,

φ(x) =
N∑

i=1

φi(xi),

where φi(xi) is the transaction cost function for the ith stock. When the function φi(xi) is
linear with respect to xi , the modified index tracking model can also be converted into a
mixed 0–1 integer linear program.

3 CVaR risk constraints on tracking portfolio

In this section, CVaR risk constraints on the tracking portfolio are included into the index
tracking model, so as to control the downside risk of the tracking portfolio. When the bench-
mark stock index tends to fall down, the optimal tracking portfolio obtained from model (7)
will have large downside risk and cause large loss for the investor. It is important for in-
vestors to have tracking portfolios with risk controled. Various risk measures are available
to control the risk, and it is important to select a proper risk measure to control the downside
risk.

CVaR is a coherent risk measure and becomes more popular in practical risk management
area (Rockafellar and Uryasex 2000, 2002). Pflug (2000), Ogryczak and Ruszczyński (2002)
show that CVaR is stable in the sense of continuity with respect to the confidence level.
Furthermore, whether the CVaR is used in the object function or in a constraint, the resulting
models can be converted into a linear programming problem.

3.1 CVaR risk constraints and corresponding model

Let l(x, r) be the loss function associated with decision vector x (the tracking portfolio) and
the random vector r (the return rate vector). Let p(r) be the density function of the return
rate vector r . Then the probability of l(x, r) not exceeding a threshold w is given by

ψ(x,w) =
∫

l(x,r)≤w

p(r)dr

Definition 1 (VaR). The VaR risk of the loss associated with a decision vector x and a
specified probability level θ in (0,1) is the value

VaRθ (x) = min{w ∈ R : ψ(x,w) ≥ θ} (9)

Definition 2 (CVaR). The CVaR risk of the loss associated with a decision vector x and a
specified probability level θ in (0,1) is given by

CVaRθ (x) = 1

1 − θ

∫

l(x,r)≥VaRθ (x)

l(x, r)p(r)dr (10)
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In order to control the downside risk of a tracking portfolio x, for a given confidence level
θ , the CVaR risk of the portfolio will not exceed a loss tolerance α given by the investor,
that is,

CVaRθ (x) = 1

1 − θ

∫

l(x,r)≥VaRθ (x)

l(x, r)p(r)dr ≤ α (11)

Since the value of VaRθ (x) is unknown, it is difficult to obtain CVaRθ (x) from the equation.
Rockafellar and Uryasex (2000, 2002) propose the following auxiliary function

Fθ(x,w) = w + 1

1 − θ
E{[l(x, r) − w]+}

= w + 1

1 − θ

∫
[l(x, r) − w]+p(r)dr, (12)

and show that for any given confidence level θ and loss tolerance α, the problem

min
(x,w)∈X×R

h(x)

s.t. Fθ(x,w) ≤ α
(13)

is equivalent to the problem

min
x∈X

h(x)

s.t. CVaRθ (x) ≤ α,
(14)

here, E{ξ} denotes the expectation of the random variable ξ , [l(x, r)−w]+ = max{l(x, r)−
w,0}, and h(x) is an objective function with x ∈ X.

When the index tracking problem is considered, the loss function l(x, r) = −x ′r , and the
function Fθ(x,w) can be further approximated when the values of return vector r are given
by a collection of discrete vectors {r1, r2, . . . , rT } where rt is the return rate of stocks at
the period t . When the average is used for expectation, an approximation to the function
Fθ(x,w) is given by

F̃θ (x,w) ≈ w + 1

(1 − θ)T

T∑

t=1

[−x ′rt − w]+ (15)

After introducing the downside risk control with CVaR risk measure, the modified index
tracking model is given as follows:

min
x,q+,q−,Z,w

T E = 1

T

T∑

t=1

(q+
t + q−

t )

s.t. w + 1

(1 − θ)T

T∑

t=1

[−x ′rt − w]+ ≤ α

q+
t − q−

t = Rt −
N∑

i=1

rt
i xi, t = 1,2, . . . , T

N∑

i=1

Zi = K

LiZi ≤ xi ≤ UiZi, i = 1,2, . . . ,N

N∑

i=1

xi = 1

Zi ∈ {0,1}, i = 1,2, . . . ,N

(16)
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Since there is [·]+ in the first constraint, the problem is not differentiable. Let

pt = [−x ′rt − w]+, t = 1,2, . . . , T

then we have

pt ≥ −x ′rt − w, pt ≥ 0, t = 1,2, . . . , T

and problem (16) can be converted into:

min
x,q+,q−,Z,w,p

T E = 1

T

T∑

t=1

(q+
t + q−

t )

s.t. w + 1

(1 − θ)T

T∑

t=1

pt ≤ α

pt ≥ −x ′rt − w, t = 1,2, . . . , T

q+
t − q−

t = Rt −
N∑

i=1

rt
i xi, t = 1,2, . . . , T

N∑

i=1

Zi = K

LiZi ≤ xi ≤ UiZi, i = 1,2, . . . ,N

N∑

i=1

xi = 1

pt ≥ 0, q+
t ≥ 0, q−

t ≥ 0, t = 1,2, . . . , T

Zi ∈ {0,1}, i = 1,2, . . . ,N

(17)

Problem (17) is also a mixed 0–1 linear program with N + 3T + 1 continuous variables and
N 0–1 variables.

3.2 Necessity of adding CVaR constraints

The main contribution of this paper is to add CVaR risk constraints into the index track-
ing problem to control the downside risk of tracking portfolios. In the following, we will
show that adding the CVaR constraint will have no impact when the index has good (re-
turn increasing) performance, but can control the downside risk when index has bad (return
decreasing) performance.

Consider the index tracking problem

min
(x,w)∈(X×R)

T E

s.t. CVaRθ (x) ≤ α,
(18)

where X is a feasible region of the tracking portfolio given by general tracking model,
for example, model (7). The confidence level θ is generally given in [0.5,1] and the loss
tolerance α > 0. In the following, we will give some analysis for two cases.

Case 1: loss function l(x, r) ≤ 0 For a given confidence level θ ∈ (0,1), loss tolerance
α > 0 and a feasible portfolio x, we have

CVaRθ (x) = 1

1 − θ

∫

l(x,r)≥VaRθ (x)

l(x, r)p(r)dr

≤ 0

< α.
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This shows that the CVaR constraint is satisfied for any x ∈ X, and hence is inactive
in (18). Thus, we have

x∗ ∈ arg min
x∈X

T E ⇐⇒ x∗ ∈ arg min
x∈X

T E, subject to CVaRθ (x) ≤ α.

Then, the following conclusion can be obtained. When the return keeps positive, the
tracking portfolio obtained from the model with CVaR constraints is the same as the one
obtained from the model without CVaR constraints, that is, the CVaR constraint has no
impact on the optimal tracking portfolio.

Case 2: loss function l(x, r) ≥ 0 For a given confidence level θ ∈ (0,1), loss tolerance
α > 0 and a feasible portfolio x, we have

CVaRθ (x) = 1

1 − θ

∫

l(x,r)≥VaRθ (x)

l(x, r)p(r)dr

≥ 0

Let x∗ be the tracking portfolio obtained from the model without CVaR constraints:

x∗ ∈ arg min
x∈X

T E

If CVaRθ (x
∗) < α, then the CVaR constraint is inactive. When the value of α is not too

large, the CVaR constraint will be active and control the downside risk of the portfolio. Most
investors are risk-averse and their loss tolerance α are generally not too large. So adding the
CVaR constraint into the problem can help risk-averse investors to control the downside risk
efficiently.

Above analysis shows that adding the CVaR constraint into the index tracking problem
is helpful to investors, especially to risk-averse investors. It has no impact on the optimal
tracking portfolio when there is no loss in the market. However, when large loss occurs in
the market, the CVaR constraint offers help to investors in controlling the downside risk.
Of course, the effect of the CVaR constraint in controlling the downside risk depends upon
investor’s selection in the values of α and θ , that is, the attitude of the investor to risk.

Problems (7) and (17) are mixed 0–1 linear programs and can be effectively solved by
some available optimization software such as CPLEX and Lingo when the number of 0–1
variables Zi is small. However, CPLEX and Lingo can not solve the problem in short time on
a personal computer, when the number of 0–1 variables is large. In this case, a hybrid genetic
method based on the method proposed in Ruiz-Torrubiano and Suárez (2009) is applied to
solve these problems to obtain the optimal tracking portfolio. A brief description of the
hybrid genetic method is given in Appendix. More detailed description and performance
about the hybrid genetic method can be found in Ruiz-Torrubiano and Suárez (2009).

4 Numerical tests

In this section, the proposed index tracking model with the CVaR risk constraint is tested on
practical data sets. Comparison results between the performance of optimal tracking portfo-
lios with and without the CVaR risk constraint are reported. Moreover, results for different
values of parameters in the models are also presented. These results show the effectiveness
of the proposed model and the necessity of introducing CVaR risk constraint into index
tracking problems.
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Table 1 In-sample: “No CVaR constraint” versus “With CVaR constraint (HS)”

Card. No CVaR constraints With CVaR risk
tolerance α = 0.1

With CVaR risk
tolerance α = 0.06

TE CVaR Time (s) TE CVaR Time (s) TE CVaR Time (s)

K = 5 5.012e-3 0.0734 3.19 5.012e-3 0.0734 4.78 9.047e-3 0.0600 1.64

K = 6 4.160e-3 0.0742 3.97 4.160e-3 0.0742 5.21 8.173e-3 0.0600 1.55

K = 7 3.736e-3 0.0737 6.48 3.736e-3 0.0737 8.73 7.822e-3 0.0600 1.65

K = 8 3.386e-3 0.0750 7.52 3.386e-3 0.0750 11.36 7.331e-3 0.0600 0.86

K = 9 3.095e-3 0.0745 8.64 3.095e-3 0.0745 11.61 7.196e-3 0.0600 1.45

K = 10 2.807e-3 0.0756 8.81 2.807e-3 0.0756 11.78 6.974e-3 0.0600 0.65

Tests will be performed on the data from the OR-Library (see Beasley et al. 2003) which
is a publicly available collection of test data sets for a variety of operations research prob-
lems. Two generally used data sets: Hang Seng Index (Hong Kong) and FTSE 100 (UK)
are selected for test in this section. Stocks with missing values are dropped, and hence 31
stocks for Hang Seng and 89 stocks for FTSE are used in tests, respectively. Weekly closing
prices of these stocks from 1992 to 1997 are selected as test samples. The data sets include
291 history weekly prices and hence 290 weekly return rates for each stock and each index.
The data sets of weekly return rates are then divided into two parts. The first 145 return
rates are used as in-sample data to obtain the optimal tracking portfolios, and the remaining
return rates are used as out-of-sample data to test the performance of the optimal tracking
portfolios. Then the experiments are conducted in the following two stages:

Stage 1 (in-sample calculations): Problems (7) and (17) are solved to obtain the optimal
tracking portfolios from the in-sample data. The optimization software “CPLEX” is used to
solve the problems when N = 31 (Hang Seng Index), and the hybrid genetic approach is
applied to solve the problems for N = 89 (FTSE 100 Index), since the tests are performed
on a personal computer with Intel CPU 2.66 GHz and 2 GB memory.

Stage 2 (out-of-sample calculation): The performance of the optimal tracking portfolios
obtained in Stage 1 are tested using the out-of-sample data.

The following parameter values are used in tests: lower bound Li = 1% and upper bound
Ui = 50% for investment proportion on each stock, The cardinality K in tests is varied
from 5 to 10 for both models and confidence level θ = 95% for the model with the CVaR
constraint.

4.1 Results for Hang Seng index

Tables 1, 2 and Figures 1–6 give the in-sample and out-of-sample results for Hang Seng
Index with α = 0.1 and α = 0.06 (the risk tolerance of investors) in the model (17), where
TE denotes the tracking error between the resulting optimal tracking portfolio and the actual
index, CVaR denotes the CVaR risk of the resulting portfolio, and Time(s) is the CPU time
in seconds.

Results in in-sample The CPLEX solves the Hang Seng index tracking problems effec-
tively. It can be observed from Table 1 that the results for the model without the CVaR
constraint and the model with the CVaR constraint are the same in the case α = 0.1 and
difference appears when the value of α reduces to 0.06. It coincides the analysis in Sect. 3.2,
and shows that adding CVaR constraint into the model has no impact when the tolerance
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Table 2 Out-of-sample: “No
CVaR constraint” versus “With
CVaR constraint” (HS)

Card. No CVaR constraint With CVaR risk
tolerance α = 0.06

TE CVaR TE CVaR

K = 5 6.498e-3 0.0587 8.953e-3 0.0524

K = 6 5.280e-3 0.0584 8.612e-3 0.0485

K = 7 4.341e-3 0.0567 8.246e-3 0.0513

K = 8 4.234e-3 0.0560 7.695e-3 0.0512

K = 9 3.712e-3 0.0547 7.718e-3 0.0511

K = 10 3.544e-3 0.0553 7.506e-3 0.0505

Fig. 1 In-sample TE and CVaR for various risk tolerance levels α in CVaR constraint (HS)

value is set to relatively large while the CVaR risk of portfolios are small. Observations for
the case K = 8 are made and it is found that the CVaR constraint in (17) is inactive, when
risk tolerance α = 0.1, while the CVaR constraint is active, when α = 0.06. If an investor
holds the optimal tracking portfolio obtained with α = 0.1, he will endure CVaR risk of
0.0750. On the contrary, if he holds the optimal tracking portfolio obtained with α = 0.06,
he only endures CVaR risk of 0.06. In the index tracking problems, CVaR constraints can
really reduce the risk of optimal tracking portfolios when risk tolerance is properly set.

Figure 1 gives the curves of tracking errors, CVaR risk of the optimal tracking portfolios
when the values of risk tolerance α are changed from 0.055 to 0.1 for the in-sample case
with K = 8. This figure reveals that the reducing the value of risk tolerance α causes the
increase of tracking error and the decrease of CVaR risk. This is an evident consequence
of the fact that reducing the value of risk tolerance α diminishes the feasible region of the
problem. Figures 2 and 3 give return rates of the index and the optimal tracking portfolio
obtained at different time in the in-sample for the cases α = 0.1 (the CVaR constraint is
inactive) and α = 0.06 (the CVaR constraint is active), respectively. These figures show that
the optimal tracking portfolio with the CVaR constraint inactive fits the index better, but the
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Fig. 2 In-sample return rates of index and tracking portfolio, CVaR constraint is active (α = 0.06) (HS)

corresponding downside risk is larger than the case of the CVaR constraint active. This fact
can also be observed from Table 1.

Results in out-of-sample The optimal tracking portfolio obtained from in-sample data is
used to track the HS index in the out-of-sample. Table 2 presents the tracking errors and
CVaR risks of the optimal tracking portfolio obtained from the models with and without the
CVaR constraint for different values of the cardinality K and two values of risk tolerance α.
Since the optimal portfolios are the same obtained from both the model without the CVaR
constraint and with the CVaR constraint when α = 0.1, the results for both the cases are the
same, and then the results with α = 0.1 are not given. The results for the optimal portfolios
obtained from the model (17) with α = 0.1 and α = 0.06 are similar to the results of in-
sample, that is, the tracking errors with α = 0.1 is smaller than the tracking errors with
α = 0.06, while the CVaR risk with α = 0.1 is larger than the CVaR risk with α = 0.06. The
results from both the in-sample and out-of-sample show that the CVaR constraint controls
the downside risk of tracking portfolios effectively.

Figure 4 gives curves of tracking errors, CVaR risks of the optimal tracking portfolio
with the changes of risk tolerance α and K = 8 for the out-of-sample data. Since optimal
tracking portfolios in in-sample data will not be always optimal in out-of-sample data, it
happens that CVaR risk of tracking portfolio with large risk tolerance is smaller than the
one with small risk tolerance in out-of-sample data. Figures 5 and 6 give return rates of the
index and the optimal tracking portfolio obtained at different time in the out-of-sample for
the cases α = 0.1 (the CVaR constraint is inactive) and α = 0.06 (the CVaR constraint is
active), respectively. The same conclusions as those in Figs. 1, 2 and 3 can be obtained, and
the detailed discussion is omitted.
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Fig. 3 In-sample return rates of index and tracking portfolio, CVaR constraint is inactive (α = 0.1) (HS)

Fig. 4 Out-of-sample TE, CVaR for various risk tolerance levels α in CVaR constraint (HS)

4.2 Results for FTSE index

As described in the last paragraph, problems (7) and (17) for FTSE index tracking are solved
using the hybrid genetic method based on the approach in Ruiz-Torrubiano and Suárez
(2009). For each problem, results are obtained over 10 executions with different random
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Fig. 5 Out-of-sample return rates of index and tracking portfolio, CVaR constraint is active (α = 0.06) (HS)

Table 3 In-sample: “No CVaR constraint” versus “With CVaR constraint” (FTSE)

Card. No CVaR constraint With CVaR risk
tolerance α = 0.1

With CVaR risk
tolerance α = 0.03

TE CVaR Time (s) TE CVaR Time (s) TE CVaR Time (s)

K = 5 6.176e-3 0.0375 118.27 6.176e-3 0.0375 140.91 8.193e-3 0.0300 244.36

K = 6 5.380e-3 0.0337 135.37 5.380e-3 0.0337 168.86 7.674e-3 0.0300 234.19

K = 7 4.803e-3 0.0361 184.82 4.803e-3 0.0361 185.76 6.962e-3 0.0300 271.15

K = 8 4.234e-3 0.0354 222.76 4.234e-3 0.0354 230.75 6.335e-3 0.0300 292.65

K = 9 3.863e-3 0.0363 258.91 3.863e-3 0.0363 266.42 6.027e-3 0.0300 312.86

K = 10 3.573e-3 0.0359 259.13 3.573e-3 0.0359 257.84 5.905e-3 0.0300 335.82

initial populations, and the best solution is used as the optimal tracking portfolio. The hy-
brid genetic method is also used to solve problems (7) and (17) for Hang Seng index tracking
with the same initial values as used in CPLEX. The same results are obtained by the two
methods when parameter values in the models are the same.

Table 3 presents the results for the cases of “No CVaR constraint” and “With CVaR con-
straint” for in-sample calculations. It can be observed from Table 3 that the performance of
the optimal tracking portfolios obtained from the models (7) and (17) for FTSE index are
similar to those obtained from models (7) and (17) for Hang Seng index, that is, the results
for both the model (7) and the model (17) with α = 0.1 are the same, and difference occurs
when the value of α in model (17) is set to 0.03. For the case of “With CVaR constraint”
when risk tolerance α = 0.1, the CVaR constraint is inactive, and the optimal tracking port-
folio is identical to the one obtained from model (7). When risk tolerance is α = 0.03, the
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Fig. 6 Out-of-sample return rates of index and tracking portfolio, CVaR constraint is inactive (α = 0.1) (HS)

Table 4 Out-of-sample: “No
CVaR constraint” versus “With
CVaR constraints” (FTSE)

Card. No CVaR constraints With CVaR risk
tolerance α = 0.03

TE CVaR TE CVaR

K = 5 8.678e-3 0.0270 8.490e-3 0.0252

K = 6 8.248e-3 0.0241 6.911e-3 0.0307

K = 7 7.123e-3 0.0274 6.745e-3 0.0290

K = 8 6.955e-3 0.0249 6.832e-3 0.0274

K = 9 6.950e-3 0.0261 6.708e-3 0.0260

K = 10 6.632e-3 0.0259 6.866e-3 0.0243

CVaR constraint is active. Due to the reduction of the feasible region, the value of tracking
error has an increase, but the CVaR risk of the optimal tracking portfolio is reduced.

Table 4 gives the performance of the optimal tracking portfolios obtained from the
model (7) and the model (17) with α = 0.03. Since the optimal tracking portfolio ob-
tained from the model (17) with α = 0.1 is same as the optimal tracking portfolio obtained
from model (7), the results of the optimal tracking portfolio obtained from model (17) with
α = 0.1 are not given. It should be noticed that although the values of tracking errors in the
case of “No CVaR constraint” are smaller than the those in the case of “CVaR constraints ac-
tive” (α = 0.03) for in-sample data (Table 3), the values of tracking errors for out-of-sample
data are not in the same position. For K = 5,9, both the values of tracking errors and CVaR
risks in the CVaR constraint active case (α = 0.03) are smaller than those in the “No CVaR
constraint” (also the CVaR constraint inactive case). Thus, introducing a CVaR constraint
into the index tracking problem is prone to have good performance in out-of-sample data
sets for FSTE index. Figure 7 gives the return rates of the index and the optimal tracking
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portfolio with K = 10 when the CVaR constraints is active (α = 0.03) and inactive (α = 0.1)
over the whole time period.

The index tracking problems can be efficiently solved by either CPLEX when the number
of 0–1 variables is small or the hybrid genetic approach. It shows from the tests of both the
Hang Seng index tracking and FTSE 100 index tracking that adding the CVaR constraint into
the index tracking problems is helpful, and does not increase the difficulty and complexity
to solve the resulting index tracking models. When the CVaR constraint is added into the
general index tracking problems and the parameter values are properly set, the downside
risk of the resulting optimal tracking portfolio can be controlled. Of course, adding the
CVaR constraint may cause the increase of tracking errors. Thus, the trade-off between the
increase of tracking error and the decrease of the downside risk of the optimal tracking
portfolio should be carefully considered in practical application.

5 Conclusions and future researches

The index tracking problem is considered in this paper. A CVaR risk constraint is introduced
into general index tracking model to limit the downside risk of the resulting optimal tracking
portfolio. The aim of the proposed index tracking model is to minimize the tracking error
between the tracking portfolio and a specified stock market index with a CVaR risk con-
straint and other practical market constraints. The tracking portfolio consists of a subset of
component stocks in index, and the number of component stocks in the subset is specified
by investors. The main contribution of this work is to formulate the index tracking problem
with the CVaR constraint in a mixed 0–1 linear programming problem that can be effec-
tively solved by a standard 0–1 LP solver such as CPLEX. Analysis shows that adding a
CVaR constraint into the general index tracking model is helpful in the sense that adding the
CVaR constraint will have no impact on the optimal tracking portfolio when the index has
good (return increasing) performance, but can limit the downside risk of the optimal tracking
portfolio when index has bad (return decreasing) performance. The software CPLEX is used
to solve the resulting mixed 0–1 linear programming problem when the number of 0–1 vari-
ables is small, and a hybrid genetic approach is suggested to solve the resulting mixed 0–1
linear programming problem when the number of 0–1 variables is relatively large. The ap-
proach has shown good performance in index tracking and portfolio optimization problems
in previous work.

Numerical tests on Hang Seng index and FTSE 100 index show that the proposed model
is effective, and the introduced CVaR constraint does limit the downside risk of the resulting
optimal tracking portfolios. However, it should be noticed that adding the CVaR constraint
will relatively increase the tracking error of the optimal portfolio. Thus the trade-off between
reducing the downside risk and increasing the tracking error of the optimal tracking portfolio
should be considered by investors when the proposed index tracking model is applied. This
can be done by setting proper parameter values in adding the CVaR constraint.

Additionally, theoretical analysis and performance tests show that the optimal tracking
portfolio obtained from in-sample data may not be optimal for out-of-sample data. It is
meaningful to design an approach to find a tracking portfolio which performs well also in
out-of-sample data, since the main concern for the investor is the performance of the tracking
portfolio in future. This is under our current investigation.
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Appendix: A hybrid genetic method for index tracking problem

Ruiz-Torrubiano and Suárez (2009) propose a hybrid optimization approach for index track-
ing problem, where the tracking error is measured by mean square deviation between the
returns of the tracking portfolio and of the index. The resulting problem is a mixed 0–1
quadratic programming problem. The approach has been tested on different practical data
sets. It can effectively solve index tracking problems. A hybrid genetic method based on the
approach is applied to solve the mixed 0–1 linear programming problem generated from the
index tracking problem with CVaR constraint. In the following, we summarize the hybrid
genetic method:

1. Initialization.
Generate initial population of P individuals (candidate solutions), where each individual
is a portfolio containing K randomly selected stocks. When the stocks in the tracking
portfolio is fixed, the problems (7) and (17) with cardinality constraint deleted are linear
programs which can be easily solved to obtain an optimal portfolio with K specified
component stocks by optimization software such as CPLEX and Matlab. Then the fitness
of the optimal portfolio is calculated. The choice of the fitness function is crucial in the
design of a genetic algorithm. In the proposed hybrid genetic method, the fitness is set as
the negative value of the tracking error (i.e., −T E in problem (7) or (17)).

2. Evaluation.
Evaluate the fitness of individuals in the population. If the population satisfy stop crite-
rion, stop. Else, goto Step 3;

3. Selection.
Select individuals for parents from the population;

4. Recombination.
Recombine parents to produce new generation (children);

5. Mutation.
Mutate the children with a given mutation probability and obtain a new child, then goto
step 2.

The crossover operator (RAR operator) given in Moral-Escudero et al. (2006) is applied
in the recombination step. This strategy choice results in a genetic algorithm with high
evolutionary pressure which has shown good performance in index tracking and portfolio
optimization problems.
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Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean-risk models. SIAM
Journal on Optimization, 13, 60–78.

Pflug, G. (2000). Some remarks on the value-at-risk and conditional value-at-risk. In S. Uryasev (Ed.), Pro-
bilistic constrained optimization: methodology and application. Dordrecht: Kluwer Academic.

Rockafellar, R. T., & Uryasex, S. (2000). Optimization of conditional value-at-risk. The Journal of Risk, 2,
21–41.

Rockafellar, T. R., & Uryasex, S. (2002). Conditional value-at-risk for general loss distributions. Journal of
Banking & Finance, 26, 1443–1471.

Roll, R. (1992). A mean-variance analysis of tracking error. Journal of Portfolio Management, 18, 13–22.
Ross, C., Terlaky, T., & Vial, J. Ph. (1986). Theory and algorithm for linear optimization: an interior point

approach. Chichester: Wiley.
Ruiz-Torrubiano, R., & Suárez, A. (2009). A hybrid optimization approach to index tracking. Annals of

Operational Research, 166, 57–71.
Shapcott, J. (1992). Index tracking: genetic algorithms for investment portfolio selection (Technical report,

EPCC-SS92-24). Edinburgh, Parallel Computing Centre.
Sharpe, W. F. (1971). A linear programming approximation for the general portfolio analysis problem. Jour-

nal of Financial and Quantitative Analysis, 6, 1263–1275.
Ye, Y.Y. (1997). Interior point algorithms: theory and analysis. New York: Wiley.


	A mixed 0-1 LP for index tracking problem with CVaR risk constraints
	Abstract
	Introduction
	Index tracking problem
	Tracking error
	Practical constraints
	General index tracking model

	CVaR risk constraints on tracking portfolio
	CVaR risk constraints and corresponding model
	Necessity of adding CVaR constraints
	Case 1: loss function l(x,r) <=0
	Case 2: loss function l(x,r) >=0


	Numerical tests
	Results for Hang Seng index
	Results in in-sample
	Results in out-of-sample

	 Results for FTSE index

	Conclusions and future researches
	Acknowledgements
	Appendix: A hybrid genetic method for index tracking problem
	References


