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This paper considers a sparse portfolio rebalancing problem in which rebalancing portfolios with minimum
number of assets are sought. This problem is motivated by the need to understand whether the initial
portfolio is worthwhile to adjust or not, inducing sparsity on the selected rebalancing portfolio to reduce
transaction costs (TCs), out-of-sample performance and small changes in portfolio. We propose a sparse
portfolio rebalancing model by adding an l1 penalty item into the objective function of a general portfolio
rebalancing model. In this way, the model is sparse with low TCs and can decide whether and which assets
to adjust based on inverse optimization. Numerical tests on four typical data sets show that the optimal
adjustment given by the proposed sparse portfolio rebalancing model has the advantage of sparsity and
better out-of-sample performance than the general portfolio rebalancing model.

Keywords: portfolio rebalancing; sparse; inverse optimization; second-order cone program

1. Introduction

Much research in portfolio selection theory and practice has been made in recent six decades, and
most research concentrates on initial investments. However, with the elapse of time, the initial
portfolio may become not optimal. If an investor hopes to hold the investment on the portfolio for
a long time period, it is necessary to adjust the portfolio based on either the maximizing expected
return of the portfolio or minimizing the risk of the portfolio. This is called portfolio rebalancing
(revision or adjusting) problem [12].

From a perspective on supplying additional investment, there exist two kinds of main strategies
in portfolio rebalancing. The first rebalance strategy needs the investor to supply an additional fixed
amount of money. Fang et al. give a mean-absolute deviation model for portfolio rebalancing, in
which linear transaction costs (TCs) and minimal purchase unit are integrated into the rebalancing
model, and an equality constraint is introduced to balance the investment of buying, selling, TCs
and additional investment amount [9]. Wang et al. [20] assume that the return rates of assets satisfy
t-distribution andVaR is selected as the risk measure of portfolios.Another kind of strategy is called
the self-finance strategy [4,13,14]. It is assumed that the investor will not supply any additional
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2 M. Wang et al.

investment amount, and a self-finance constraint is included in the portfolio rebalancing model.
The investor aims either to maximize the expected return of the resulting portfolio after paying
TCs under a given tolerated level of risk, or to minimize the total rebalance TCs subject to a
specified requirement on the expected return of the portfolio, risk and self-finance constraints.
Zhang et al. [23] regard the returns of risky assets as fuzzy variables and then solve the portfolio
rebalancing problem with TCs on the basis of the credibility theory. They propose a sequential
minimal optimization algorithm for calculating the optimal portfolio adjusting strategy in [24].
Multiple criteria such as risk, return, short-selling, skewness and kurtosis are considered and then
five portfolio rebalancing models are constructed in [21].

Recently, statistical regularization approaches have attracted extensive attention and have been
successfully applied to the mean–variance portfolio selection and the portfolio adjustment prob-
lem with only a budget constraint which can promote out-of-sample properties and decrease
TCs [5–8]. Brodie et al. add an l1 penalty to the traditional mean–variance model. This penalty
regularizes the portfolio selection problem, encourages sparse portfolios, and allows to account
for TCs [5]. DeMiguel et al. [6,7] discuss several different regularization techniques for the port-
folio construction problem, including the imposition of constraints on lp (p = 1 or 2) norms of
the portfolio weight vector. The main contribution of Fan et al. is the provision of deep mathe-
matical insights into the utility approximations with the gross-exposure constraint [8]. Moreover,
the regularization parameter has an important impact on the results of the performance, there are
many statistical criteria to use [1,17,19].

However, some important criteria are not considered in the existing general rebalancing model,
such as sparsity, when and whether the initial portfolio is worthwhile to adjust or not. Since the
optimal rebalance portfolio determined by the history data may not be optimal after the rebalance,
these criteria should be considered so as to be prevented from over-adjustment. And it is important
that small changes in portfolio may be a good choice because of the existing of TCs and other
transaction limitations. In this paper, we consider a sparse portfolio rebalancing model by adding
an l1 penalty into the objective function of general portfolio rebalancing model. In this way, the
model is sparse with low TCs and can decide whether and which assets to adjust based on inverse
optimization.

Summarily, the main contribution of our work is to construct a sparse portfolio rebalancing
model and then propose a method to decide whether the initial portfolio is needed to adjust based
on inverse optimization [11,22]. If needed, the optimal adjustment in the portfolio obtained by the
sparse portfolio rebalancing model has the advantage of sparsity, stability and good performance
in the out-of-sample time period and this will be tested in numerical tests.

The rest of the paper is organized as follows. The sparse portfolio rebalancing model with an
l1 penalty and the corresponding solving method are proposed in Section 2. Numerical tests are
stated in Section 3. Conclusions and future research are given in Section 4.

Throughout the paper prime (′) denotes transposition of vectors without special declaration.
The notation si or (s)i is used to denote the ith component of the vector s.

2. Sparse portfolio rebalancing

2.1 General portfolio rebalancing model

In this subsection, we will describe the general portfolio rebalancing model and the relative
optimization method based on the work of Lobo et al. [14] without TCs.

Assumed that the investor holds a given portfolio invested in n risky assets, which is considered
to be adjusted by a number of transactions. Let w = (w1, w2, . . . , wn)

′ be the current holdings in
each asset and

∑n
i=1 wi = 1, where wi denotes the investment weight invested on the ith asset. Let

D
ow

nl
oa

de
d 

by
 [

X
ia

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 1
9:

58
 2

5 
Ju

ne
 2

01
3 



Optimization Methods & Software 3

r = (r1, r2, . . . , rn)
′ be the return rates of the assets and assumed that r ∼ N (μ, V), V � 0 (V is

a symmetric positive matrix), i.e.

Er = μ, E(r − μ)(r − μ)′ = V ,

where E denotes expectation.
Let x = (x1, x2, . . . , xn)

′ be the weight transacted in all assets, with xi > 0 for buying and xi < 0
for selling. After transacting, the final portfolio is w + x. The expected return after rebalance is
μ′(w + x), and the variance is (w + x)′V(w + x).

The investor’s goal is to maximize the expected return of the portfolio, subject to a set of con-
straints. Then the general portfolio rebalancing model without TCs and any additional investment
can be formulated as

max
x

μ′(w + x)

s.t. e′x = 0

(w + x)′V(w + x) ≤ σ 2
max

Ax ≤ b,

(1)

where σ 2
max (σmax > 0) denotes the risk level acceptable to the investor. e denotes the vector with

all entries as one. The constraints Ax ≤ b involve the lower and upper limitations of investments
on different assets l ≤ w + x ≤ u and so on.

To get the optimal solution of problem (1), second-order cone programs (SOCPs) is applied
to solve this problem, which has been the focus of research both in terms of algorithms and
application. So we replace the constraint

(w + x)′V(w + x) ≤ σ 2
max

by

‖ L(w + x) ‖≤ σmax

with ‖ · ‖ is the Euclidean or l2 norm, L is the Cholesky decomposition matrix or the (symmetric)
matrix square root of V (i.e. V = L′L), problem (1) can be converted into an SOCP problem. Then
the general portfolio rebalancing problem can be efficiently solved by a software package such
as SeDuMi [18], which is an efficient tool for handling SOCP problems.

2.2 Sparse and stable portfolio rebalancing model

In this subsection, we will propose a sparse portfolio rebalancing model by adding an l1 penalty
constraint to the rebalance portfolio. In order to avoid frequently transacting, we use some criteria
to decide whether the present portfolio is needed to be adjusted or not.

The sparse portfolio rebalancing model can be given by adding an l1 penalty with a penalty
factor λ > 0 into the objective function of (1). Three reasons are as follows. Firstly, adding an l1
penalty on the general portfolio rebalancing model leads to a sparse and stable problem with low
TCs. Secondly, the corresponding solution achieved by the sparse portfolio rebalancing model
will have good out-of-sample performance in return which is one of the most concerns of the
investor. Finally, the l1 penalty item can be considered as a TC function. Then the sparse portfolio
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4 M. Wang et al.

rebalancing problem can be written as

min
x

− μ′(w + x) + λ ‖ x ‖1

s.t. e′x = 0

‖ L(w + x) ‖≤ σmax

Ax ≤ b.

(2)

To prevent from frequently purchasing or selling the assets, it is necessary to determine that
when the portfolio is needed to rebalance. This is rarely considered in the previous work and we
will deal with such problems from a new perspective based on inverse optimization [11]. The
rebalance will be carried out and the adjustment weight of assets are the optimal solution of (2)
when x̂ = 0 is not a feasible solution for problem (2). Otherwise, the idea of inverse optimization
is introduced to deal with this problem. The rebalance will be carried out only when x̂ = 0 is no
more an optimal solution for the problem (2).

In typical markets, the expected return rate vector μ varies frequently, but the covariance matrix
V is relatively stable (see [15]). Let μ̄ is the current estimate of vector μ, φ(x̂ = 0) denote the set
of all vectors μ that make x̂ = 0 the optimal solution of problem (2).

φ(x̂ = 0) = {μ | x̂ = 0 is optimal to problem (2)}. (3)

If μ̄ is not in the above set, the rebalance is needed, otherwise not.
Next we consider the following optimization problem:

min
μ

σ(μ) =‖ μ − μ̄ ‖2
V−1

s.t. μ ∈ φ(x̂ = 0),
(4)

where ‖ μ − μ̄ ‖2
V−1= (μ − μ̄)′V−1(μ − μ̄) denotes the weighted norm with a matrix V−1 (the

inverse matrix of covariance matrix V ).
The optimal solution of problem (4) is denoted by μ∗. It can be seen that if the current estimation

μ̄ for μ in problem (2) satisfies μ̄ ∈ φ(x̂ = 0), then σ(μ∗) = 0 and x = 0 is optimal to the
problem (2), that is, we hold the portfolio unchanged. However, if μ̄ 	∈ φ(x̂ = 0), then σ(μ∗) > 0
and the portfolio will be adjusted only when σ(μ∗) ≥ Cθ so as to manage the trade-off between
TCs and higher returns, where the value of Cθ is determined by investor’s confidence level θ . The
value of Cθ can be selected as a fixed number or by any other criteria. According to the idea of
Iyengar and Kang [11], Cθ = χ2

p (θ)/p where χ2
p (θ)/p is the θ -critical value of a χ2-distribution

with p degrees of freedom. We can understand this roughly that x̂ = 0 is nearly optimal to the
problem (2) when μ̄ is not so far away from the set φ(x̂ = 0) and hence rebalance is not needed,
which can be avoid over-adjustment to cause large TCs.

2.3 Reformulation

For convenience of calculation, we will reformulate the problem (2) and simplify the set φ(x̂ = 0)

for entirely solving the portfolio rebalance problem.
Since the l1 penalty in the objective of the problem is non-smooth, then a group of variables

yi(i = 1, 2, . . . , n) are introduced to convert the problem (2) into a continuous and differentiable
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Optimization Methods & Software 5

optimization problem equivalently, that is,

min
x,y

− μ′(w + x) + λe′y

s.t. ‖ L(w + x) ‖≤ σmax

− y ≤ x ≤ y

e′x = 0

Ax ≤ b.

(5)

Clearly, problem (5) is an SOCP problem which is a type of conic programming problem and
can be solved efficiently both in theory [16] and in practice [18]. If (x̂; ŷ) = 0 is not a feasible
solution of problem (5), then the rebalance will be carried out and the adjustment is the optimal
solution of problem (5); otherwise, optimal value σ(μ∗) for the inverse optimization problem (4)
corresponding set φ((x̂; ŷ) = 0) = {μ | (x̂; ŷ) = 0 is optimal to problem (5)}.

Assumption 1 Assumed that there exists at least one point (x0; y0), satisfying e′x0 = 0,
‖ L(w + x0) ‖< σmax, Ax0 < b, x0 − y0 < 0, and x0 + y0 > 0.

Theorem 1 For an optimal solution (x̂; ŷ) of problem (5), the inverse optimization problem

min
μ

σ(μ) =‖ μ − μ̄ ‖2
V−1

s.t. μ ∈ φ((x̂; ŷ)) = {μ | (x̂; ŷ) is optimal to problem (5)}
(6)

can be written as a conic program which can be efficiently solved.

Proof We first simplify the set φ((x̂; ŷ)) for an optimal solution (x̂; ŷ) to problem (5). From
Assumption 1, it follows that the point (x̂; ŷ) is optimal for problem (5) iff (x̂; ŷ) satisfies Karush–
Kuhn–Tucker conditions [11]: ∃p1, p3, p4 ∈ Rn, p2 ∈ Rm, p0, p5 ∈ R, such that p0, p2, p3, p4 ≥ 0,
p0 ≥ ‖p1‖,

[−μ

λe

]
−

[
L′

0n×n

]
p1 −

[ −A′
0n×m

]
p2 −

[−In

In

]
p3 −

[
In

In

]
p4 −

[
e

0n×1

]
p5 = 0, (7)

p0σmax + [p1]′L(w + x̂) = 0, (8)

[p2]′(Ax̂ − b) = 0, (9)

[p3]′(−x̂ + ŷ) = 0, (10)

[p4]′(x̂ + ŷ) = 0. (11)

Then the relative problem (6) can be converter into a conic program:

min
μ,p0,p1,p2,p3,p4,p5

σ(μ) = (μ − μ̄)′V−1(μ − μ̄)

s.t. − μ − L′p1 + A′p2 + p3 − p4 − p5 = 0

λe − p3 − p4 = 0
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6 M. Wang et al.

p0σmax + [p1]′L(w + x̂) = 0 (12)

[p2]′(Ax̂ − b) = 0

[p3]′(−x̂ + ŷ) = 0

[p4]′(x̂ + ŷ) = 0

p0 ≥ ‖p1‖
p0, p2, p3, p4 ≥ 0.

This problem can be efficiently solved [3]. �

Lemma 1 [2,11] Fix z ∈ K . Let U ⊂ K∗ (K∗ is the dual cone of a cone K) denote the set of
vectors q ∈ K∗ such that q′z = 0. Then for a second-order cone K = Kso = {(q0; q) ∈ Rn+1 :
q0 ≥ √

q′q} ⊂ Rn+1 :

U =

⎧⎪⎪⎨
⎪⎪⎩

Kso, z = 0{
(q0; q) : q = −q0

z0
z, q0 ≥ 0

}
, z ∈ bd(Kso)\{0}

0, z ∈ int(Kso)

(13)

For an optimal solution (x̂; ŷ) of problem (5), we get from Lemma 1 that: if ‖L(w + x̂)‖ = σmax,
then

p1 = − p0

σmax
L(w + x̂);

otherwise ‖L(w + x̂)‖ < σmax, then

p0 = 0; p1 = 0.

Let (x̂; ŷ) = 0, then problem (6) for determining whether to adjust or not can be reformulated as

min
μ,p0,p2,p3,p4,p5

σ(μ) = (μ − μ̄)′V−1(μ − μ̄)

s.t. − μ + p0

σmax
Vw + A′p2 + p3 − p4 + p5 = 0

λen − p3 − p4 = 0

[p2]′b = 0

p0, p3, p4 ≥ 0

(14)

for ‖Lw‖ = σmax, or

min
μ,p2,p3,p4,p5

σ(μ) = (μ − μ̄)′V−1(μ − μ̄)

s.t. − μ + A′p2 + p3 − p4 + p5 = 0

λen − p3 − p4 = 0

[p2]′b = 0

p3, p4 ≥ 0

(15)

for ‖Lw‖ < σmax. These two problems are quadratic programs which can be efficiently solved.
Assumed that μ∗ is the corresponding item of μ in the optimal solution for problem (14) or (15), if
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Optimization Methods & Software 7

σ(μ∗) < Cθ , we continue to hold the portfolio w; otherwise σ(μ∗) ≥ Cθ , we solve the problem (5)
to get an optimal adjustment x∗ and finally we hold the portfolio w + x∗.

3. Numerical tests

In this section, we will test the proposed sparse portfolio rebalancing model with practical data.

3.1 Test data sets and steps

The model will be tested on the data described in [10]. The authors give four data sets taken from
the German Stock Exchange Market (XETRA). Each data set includes daily return rates of 100
securities which compose the XETRA DAX 100 index at the date of 1 April 2005. Each data
set consists of 6 months of in-sample daily observations and 6 months of out-of-sample ones. In
order to consider all possible market trends they have constructed four data sets corresponding to
different performance in-sample and out-of-sample time periods. The first data set is characterized
by a market trend going up in the in-sample period as well as in the out-of-sample period (up–up
data set), the second data set by a market increasing in the in-sample period and decreasing in the
out-of-sample one (up–down data set), the third data set by a market going down in the in-sample
period and going up in the out-of-sample period (down–up data set) and the last set by a market
going down in both the in-sample and the out-of-sample periods (down–down data set). More
details about the four data sets can be found in [10].

To show the superiority of the proposed sparse portfolio rebalancing method, general portfolio
rebalancing model are also applied to solve the problem. Initial investment is assumed to be one
unit of amount (such as dollar or euro) so as to show the results obviously. For each data sets, test
experiments will be conducted in the following three stages:

Stage 1: The 6 months of in-sample daily observations are applied to construct the initial
portfolio by the traditional mean-variance portfolio selection model (maximization the expected
return of the portfolio, subject to different levels of risk tolerance σ 2

max). Here, the matrix V is
estimated by the entire data of the time period and expected return vector μ is estimated by the
data of 6 months before the estimation time. The initial capital is assumed as one dollar. Then we
hold it over 3 months.

Stage 2: At the end of the third month in out-of-sample period, the portfolio the investor held
may not be optimal along with the new information or changes of return rate. General and the
proposed sparse portfolio rebalancing models are used to get optimal adjustment portfolios. For
sparse models, we solve the corresponding problem for different values of the penalty factor λ

and confidence level θ . The portfolios after rebalance will be held until the end of out-of-sample
time period.

Stage 3: According to the daily data in the data set, the wealth of the investor at the end of the
out-of-sample time period is shown in figures for different rebalance methods.

All the problems are coded in Matlab and the SOCP problems can be efficiently solved by
a matlab toolbox SeDuMi [18]. The computational tests are run on a personal computer with
Pentium Pro 2.6 GHZ and a 2 GB memory.

3.2 Results and analysis

In the tests, the following setting is used: short-sales are permitted, no limitation on the lower
and upper bound for each asset (There is no doubt that our proposed method can be applied to
solve the portfolio rebalancing problem with any other convex constraints on portfolio.). For each

D
ow

nl
oa

de
d 

by
 [

X
ia

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 1
9:

58
 2

5 
Ju

ne
 2

01
3 
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Figure 1. Final wealth determined by general and sparse models for up–up data set (σ 2
max = 0.1).

data set, we show the results for the confidence level θ = 0.1, θ = 0.5 and θ = 0.9 for a general
model and a sparse model with different values of penalty factor λ. To show the results more
clearly, the point with λ = 0 denote the value computed by a general portfolio rebalancing model.
Figures 1–6 plot the curve of the final wealth the investor holds at the end of the out-of-sample
time period. Among these, the curves are plots for different value of σ 2

max and Cθ .
Figure 1 shows the results of the final wealth for up–up data sets with the risk tolerance σ 2

max =
0.1. For σ 2

max = 0.1, the investment will be invested in a portfolio according to the description of
Stage 1 at the end of the in-sample period. Then the investor will hold the portfolio for the next
3 months. Since the unchanged portfolio x = 0 is not a feasible solution of the portfolio rebalancing
model at the third month of the out-of-sample time, the rebalance must be conducted. We plot
the curves of final wealth along with various values of λ. As can be seen, final wealth computed
by our proposed sparse portfolio rebalancing model for various values of λ (λ > 0) is larger than
that by the general portfolio rebalancing model (λ = 0). In Figure 2, when risk level σ 2

max = 0.2,
the unchanged portfolio x = 0 is a feasible solution of the portfolio rebalancing model at the third
month of the out-of-sample time. Then the idea of inverse optimization is applied to solve the
portfolio rebalancing problem. Figure 2 shows different cases for the selection methods of Cθ ,
respectively, the fixed valued Cθ = 0.1, 0.2, 0.3 and Cθ = χ2

p (θ)/p [11] for different confidence
levels θ = 0.1, 0.5, 0.9. In addition, we also give the results for Cθ = 0 or θ = 0 (In fact, this is
the case of the sparse portfolio rebalanicng model without considering whether to adjust). The
conclusion can be obtained from two subfigures in Figure 2: the proposed sparse portfolio model
has a superiority than do the general portfolio rebalancing model in the value of final wealth (That
is to say, final wealth for λ > 0 is all larger than that for λ = 0). Furthermore, whether to adjust
is decided by the the value of Cθ . More larger the value of Cθ is, more less the possibility of
rebalance is. For the second subfigure in Figure 2, rebalance is not needed when Cθ = 0.2 and 0.3
for λ = 0.05; otherwise, rebalance is needed when Cθ = 0.1 for λ = 0.05. This can be seen as a
support of the above conclusion. Finally, comparing Figures 1 and 2, the higher the risk tolerance
is, the higher the return of the portfolio is. When the investor wants a higher return, he must have
a larger risk tolerance.
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Figure 2. Final wealth determined by general and sparse models for up–up data set(σ 2
max = 0.2).
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Figure 3. Final wealth determined by general and sparse models for up–down data set (σ 2
max = 0.2).

As can be seen, the final wealth for initial investment(one dollar) determined by the proposed
sparse model for different values of λ > 0 are always larger than the wealth determined by the
general model for the up–up data set. The sparse model will solve the portfolio rebalancing
problem better than the general model for this up–up data set. However, different data sets may
lead to different results. So the results for the other three data sets are also shown in Figures 3–6.
It can be seen that the final wealth determined by the sparse model is not always better than the
value determined by the general model for different values of λ > 0. Especially for the down–
down data set, the value computed by the sparse model without TC is slightly less than the value
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Figure 4. Final wealth determined by general and sparse models for up–down data set (σ 2
max = 0.5).
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Figure 5. Final wealth determined by general and sparse models for down–up data set (σ 2
max = 0.2).

computed by general model, but the former is larger than the latter after paying the linear TCs (the
ratio of transaction cots is 0.005) in most cases. This is because the superiority of the sparse model
is to control the number and amount of the rebalance portfolio so as to decrease the TCs. This can
be also seen from Figures 7 and 8. However, we can find some points for the the sparse model
better than the general model. We can get better results by adjusting the value of λ. It is highlighted
that the sparse portfolio rebalancing model with TCs will have a much larger superiority than the
general portfolio rebalancing model.

The value of penalty factor λ and Cθ is important for the investor to obtain large returns. In fact,
this can be tuned according to the character of data sets or other considerations . This is not our
main focus and the existing sparsity research [1,17,19] can help us determine the proper value of
λ so as to obtain a high return. Our main contribution in this paper is to propose a new method
to solve the portfolio rebalancing problem. For the four representative types of data sets, all or
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Figure 6. Final wealth determined by general and sparse models for down–down data set (σ 2
max = 0.2).
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Figure 7. Number of assets adjusted determined by general and sparse models.

part of the results solved by the sparse portfolio rebalancing model are better than the one by the
general model.

Additionally, we also show the changes of the number of assets adjusted and the total transaction
weight e′|x| = ∑n

i=1 |xi| along with the changes of the values of λ in Figures 7 and 8. Similarly,
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Figure 8. Total transaction weight determined by general and sparse models.

the points λ = 0 denotes the results determined by the general portfolio rebalancing model. Both
of the two values have decreasing trends with an increase of the value of λ. More lager the value
of penalty factor λ is, more sparser the optimal rebalance portfolio is. Introducing an l1 penalty
does have an effect on promoting the sparse solution. In addition to good performance on final
wealth shown in Figures 1–6, if TCs are considered, the proposed the sparse portfolio rebalancing
model will cause less costs as shown in Figure 8.

4. Conclusions and future research

We have proposed a sparse portfolio rebalancing model based on adding an l1 penalty to rebalance
the portfolio and the inverse optimization method. It becomes possible for the investor to decide
whether the initial portfolio is worthwhile to adjust or not. Additionally, it can help us decide
which assets are adjusted and prompt the performance of the portfolio after rebalance by smaller
changes in number and weight in the rebalancing portfolio.

Numerical tests on four representative data sets described in [10] show that the proposed model
is effective. It is better than the general portfolio rebalancing model in the aspects of out-of-
sample performance, number of transaction assets and total transaction weight. Additionally, the
l1 penalty can be regarded as a function of TCs. This has good guidance in the practical investment
area. Especially, the value of penalty factor λ is a key parameter to influence the performance of
the portfolio rebalancing. The research results in the sparsity modelling area can be applied to
determine the value of λ based on the data sets or other considerations.

In this paper, the risk of a portfolio is measured as variance. It is an interesting study to solve
the sparse portfolio rebalancing problem with other risk measurements like MAD, CVaR and so
on. Furthermore, other lp (such as p = 0 or p = 1

2 ) penalty can be considered to regularize the
portfolio rebalancing problem. Finally more complicated functions of TCs or other limitations
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can be included into the model. Then the design of the algorithms seems more interesting and
challenging. Some of these are under our current investigation.
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