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Abstract The definitions of θ-ray pattern matrix and θ-ray matrix are firstly
proposed to establish some new results on nonsingularity/singularity and con-
vergence of general H-matrices. Then some conditions on the matrix A ∈ C

n×n

and nonempty α ⊂ 〈n〉 = {1, 2, . . . , n} are proposed such that A is an invertible
H-matrix if A(α) and A/α are both invertible H-matrices. Furthermore, the
important results on Schur complement for general H-matrices are presented
to give the different necessary and sufficient conditions for the matrix A ∈ HM

n

and the subset α ⊂ 〈n〉 such that the Schur complement matrix A/α ∈ H I
n−|α|

or A/α ∈ HM
n−|α| or A/α ∈ HS

n−|α|.
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1 Introduction

It is well known that H-matrices that closely related to M -matrices [2,24] widely
arise in numerical linear algebra, numerical solution of partial differential equa-
tions, modern control theory, dynamic systems, and so on, see [2,8,16,24].

In the research of the convergence of iterative methods for linear and non-
linear systems and spectral theory, Ostrowski [21] firstly introduced the con-
cept of nonsingular M -matrix and nonsingular H-matrix. Later, Fiedler and
Ptak extended this concept to possible singular M -matrices [9] and singular

H-matrices [10]. Recently, the definition for H-matrices has been extended
to encompass a wider set, known as the set of general H-matrices. In some
recent papers, [3–5], a partition of the n × n general H-matrix set, Hn, into
three mutually exclusive classes was obtained: the invertible class, H I

n, where
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all general H-matrices are nonsingular, the singular class, HS
n , formed only by

singular H-matrices, and the mixed class, HM
n , in which singular and nonsin-

gular H-matrices coexist. As is well known, general H-matrices that belong to
the classes HI

n has many beautiful properties such as nonsingularity, eigenvalue
distribution, convergence, structure heredity (i.e., properties on Schur comple-
ment), and so forth. Furthermore, there are still many researcher to study this
class of general H-matrices. For example, [17,23] have proved a theorem that
if A ∈ HI

n, then A(α) ∈ HI
|α| and A/α ∈ HI

n−|α| for all nonempty α ⊂ 〈n〉.
However, the converse conclusion of this theorem is not true in general. What
conditions are such that the converse conclusion of this theorem holds? On
the other hand, little attention is paid to the work on the properties of general
H-matrices that belong to the classes HM

n and HS
n . What properties do the two

classes of general H-matrices have?
Aim at the problem above, some further results on the class of general H-

matrices are proposed in this paper. In particular, some properties including
nonsingularity/singularity, convergence, and Schur complement on general H-
matrices that belong to the classes HM

n and HS
n are studied and presented to

show that general H-matrices that belong to the classes HM
n still have some

beautiful properties.
This paper is organized as follows. Some notations and preliminary re-

sults about special matrices are given in Section 2. Based on the result of
Kolotilina, the nonsingularity/singularity criteria on general H-matrices is pro-
posed in Section 3. Some convergence results on general H-matrices are then
presented in Section 4. The important results on Schur complement for general
H-matrices are given in Section 5, where we give the different conditions for
the matrix A ∈ HM

n and the subset α ⊂ N such that the Schur complement
matrix A/α ∈ HI

n−|α| or A/α ∈ HM
n−|α| or A/α ∈ HS

n−|α|. Conclusions are given

in Section 6.

2 Preliminaries

In this section, we give some notions and preliminary results about special
matrices that are used in this paper.

C
m×n (resp. R

m×n) will be used to denote the set of all m × n complex
(resp. real) matrices. Z denotes the set of all integers. Let |α| denote the
cardinality of the set α ⊆ 〈n〉 = {1, 2, . . . , n} ⊂ Z. For nonempty index sets
α, β ⊆ 〈n〉, A(α, β) is the submatrix of A ∈ C

n×n with row indices in α and
column indices in β. The submatrix A(α, α) is abbreviated to A(α). Let A ∈
C

n×n, α ⊂ 〈n〉, and α′ = 〈n〉 − α. If A(α) is nonsingular, the matrix

A/α = A(α′) − A(α′, α)[A(α)]−1A(α, α′) (1)

is called the Schur complement with respect to A(α), indices in both α and α′ are
arranged with increasing order. We shall confine ourselves to the nonsingular
A(α) as far as A/α is concerned.
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Let
A = (aij) ∈ C

m×n, B = (bij) ∈ C
m×n.

Denote
A ⊗ B = (aijbij) ∈ C

m×n

the Hadamard product of the matrices A and B. A matrix A = (aij) ∈ R
n×n

is called nonnegative if aij > 0 for all i, j ∈ 〈n〉. A matrix A = (aij) ∈ R
n×n is

called a Z-matrix if aij 6 0 for all i 6= j. We will use Zn to denote the set of
all n × n Z-matrices. A matrix A = (aij) ∈ Zn is called an M -matrix if A can
be expressed in the form A = sI −B, where B > 0, and s > ρ(B), the spectral
radius of B. If s > ρ(B), A is called a nonsingular M -matrix ; if s = ρ(B), A is
called a singular M -matrix. Mn, M•

n, and M0
n will be used to denote the set of

all n × n M -matrices, the set of all n × n nonsingular M -matrices, and the set
of all n × n singular M -matrices, respectively. It is easy to see that

M = M•
n ∪ M0

n, M•
n ∩ M0

n = ∅. (2)

The comparison matrix of a given matrix A = (aij) ∈ C
n×n, denoted by

µ(A) = (µij), is defined by

µij =

{
|aii|, i = j,

−|aij |, i 6= j.

It is clear that µ(A) ∈ Zn for a matrix A ∈ C
n×n. The set of equimodular

matrices associated with A, denoted by

ω(A) = {B ∈ C
n×n : µ(B) = µ(A)}.

Note that both A and µ(A) are in ω(A). A matrix A = (aij) ∈ C
n×n is called a

general H-matrix if µ(A) ∈ Mn (see [2]). If µ(A) ∈ M •
n, A is called an invertible

H-matrix ; if µ(A) ∈ M 0
n with aii = 0 for at least one i ∈ 〈n〉, A is called a

singular H-matrix ; if µ(A) ∈ M 0
n with aii 6= 0 for all i ∈ 〈n〉, A is called a mixed

H-matrix. Hn, HI
n, HS

n , and HM
n will denote the set of all n × n general H-

matrices, the set of all n×n invertible H-matrices, the set of all n×n singular
H-matrices, and the set of all n × n mixed H-matrices, respectively (see [3]).
Similar to (2), we have

Hn = HI
n ∪ HS

n ∪ HM
n , HI

n ∩ HS
n ∩ HM

n = ∅. (3)

For n > 2, an n × n complex matrix A is reducible if there exists an n × n
permutation matrix P such that

PAPT =

[
A11 A12

0 A22

]
, (4)

where A11 is an r×r submatrix and A22 is an (n−r)×(n−r) submatrix, where
1 6 r < n. If no such permutation matrix exists, then A is called irreducible. If
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A is a 1× 1 complex matrix, then A is irreducible if its single entry is nonzero,
and reducible otherwise.

Definition 2.1 A matrix A ∈ C
n×n is called diagonally dominant by row if

|aii| >
∑

16j6n, j 6=i

|aij | (5)

holds for all i ∈ 〈n〉. If inequality in (5) holds strictly for all i ∈ 〈n〉, A is called
strictly diagonally dominant by row. If A is irreducible and the inequality in (5)
holds strictly for at least one i ∈ 〈n〉, A is called irreducibly diagonally dominant

by row. If (5) holds with equality for all i ∈ 〈n〉, A is called diagonally equipotent

by row.

Dn (resp. SDn, IDn) and DEn will be used to denote the sets of all n × n
(resp. strictly, irreducibly) diagonally dominant matrices and the set of all n×n
diagonally equipotent matrices, respectively.

Definition 2.2 A matrix A ∈ C
n×n is called generalized diagonally dominant

if there exist positive constants αi, i ∈ 〈n〉, such that

αi|aii| >
∑

16j6n, j 6=i

αj |aij | (6)

holds for all i ∈ 〈n〉. If inequality in (6) holds strictly for all i ∈ 〈n〉, A is
called generalized strictly diagonally dominant. If (6) holds with equality for all
i ∈ 〈n〉, A is called generalized diagonally equipotent.

We will denote the sets of all n×n generalized (strictly) diagonally dominant
matrices and the set of all n× n generalized diagonally equipotent matrices by
GDn (GSDn) and GDEn, respectively.

Definition 2.3 A matrix A is called nonstrictly diagonally dominant, if either
(5) or (6) holds with equality for at least one i ∈ 〈n〉.
Remark 2.4 Let A = (aij) ∈ C

n×n be nonstrictly diagonally dominant and
α = 〈n〉 − α′ ⊂ 〈n〉. If A(α) is a (generalized) diagonally equipotent principal
submatrix of A, then the following hold:

• A(α, α′) = 0, which shows that A is reducible;

• A(i1) = (ai1i1) being (generalized) diagonally equipotent implies ai1i1 = 0.

Remark 2.5 Definitions 2.2 and 2.3 show that

Dn ⊂ GDn, GSDn ⊂ GDn.

The following lemma will introduce the relationship of (generalized) diago-
nally dominant matrices and general H-matrices and some properties of general
H-matrices that will be used in the rest of the paper.

Lemma 2.6 [26,28,30,31] Let A ∈ Dn (GDn). Then A ∈ HI
n if and only if A

has no (generalized) diagonally equipotent principal submatrices. Furthermore,
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if A ∈ Dn ∩Zn (GDn ∩Zn), then A ∈ M •
n if and only if A has no (generalized)

diagonally equipotent principal submatrices.

Lemma 2.7 [2] SDn ∪ IDn ⊂ HI
n = GSDn.

Lemma 2.8 [3] GDn ⊂ Hn.

It is interested in whether Hn ⊆ GDn is true or not. The answer is “NOT”.
Some counterexamples are given in [3] to show that Hn ⊆ GDn is not true.
But, under the condition “irreducibility”, the following conclusion holds.

Lemma 2.9 [3] Let A ∈ C
n×n be irreducible. Then A ∈ Hn if and only if

A ∈ GDn.

More importantly, under the condition “reducibility”, we have the following
conclusion.

Lemma 2.10 Let A ∈ C
n×n be reducible. Then A ∈ Hn if and only if in the

Frobenius normal form of A,

PAPT =




R11 R12 · · · R1s

R22 · · · R2s

. . .
...

0 Rss


 , (7)

each irreducible diagonal square block Rii is generalized diagonally dominant,

where P is a permutation matrix, Rii = A(αi) is either 1×1 zero matrices or ir-

reducible square matrices, Rij = A(αi, αj), i 6= j, i, j = 1, 2, . . . , s, furthermore,

αi ∩ αj = ∅ for i 6= j, and ∪s
i=1αi = 〈n〉.

The proof of Lemma 10 follows from Lemma 2.9 and [3, Theorem 5].

Lemma 2.11 A matrix A ∈ HM
n ∪HS

n if and only if in the Frobenius normal

form (7) of A, each irreducible diagonal square block Rii is generalized diago-

nally dominant and has at least one generalized diagonally equipotent principal

submatrix.

Proof It follows from (3), Lemmas 2.6 and 2.10 that the conclusion of this
lemma is obtained immediately. �

3 Nonsingularity/singularity on general H-matrices

As is well known, nonsingularity/singularity of a matrix is a very important
property. On the other hand, the relationship between diagonal dominance
of a matrix and its nonsingularity attracts researchers’ attention. A series of
concepts, such as strictly diagonally dominant matrix, irreducibly diagonally
dominant matrix, diagonally dominant matrix with nonzero-entry chain, and
semi-strictly diagonally dominant matrix, have been proposed for the research
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of nonsingularity of diagonally dominant matrices (see [2,24]). Later, the con-
cept of “diagonal dominance” is extended to the one of “generalized diagonal
dominance”. Furthermore, generalized strictly diagonally dominant matrices,
equivalent to invertible H-matrices, is nonsingular. In recent years, Kolotilina
[13] and Zhang et al. [27–31] have considerable interest in the work on nonsin-
gularity/singularity of nonstrictly diagonally dominant matrices, and obtained
a lot of results as follows.

Theorem 3.1 [13] If an irreducible matrix A = (aij) ∈ C
n×n satisfies that

there exist positive constants αi, i = 1, 2, . . . , n, such that

αi|aii| >
∑

16j6n, j 6=i

αj|aij |, ∀ i ∈ 〈n〉, (8)

then A is singular if and only if all the relations in (8) are equalities and there

exists a unitary diagonal matrix D such that

D−1D−1
A AD = µ(D−1

A A), (9)

where DA = diag(a11, a22, . . . , ann) and µ(D−1
A A) is the comparison matrix for

D−1
A A.

Theorem 3.2 [30,31] A matrix A ∈ Dn(GDn) is singular if and only if the

matrix A has at least either one zero principal submatrix or one irreducible and

(generalized) diagonally equipotent principal submatrix Ak = A(i1, i2, . . . , ik),
1 < k 6 n, which satisfies condition that there exists a k × k unitary diagonal

matrix Uk such that

U−1
k D−1

Ak
AkUk = µ(D−1

Ak
Ak), (10)

where

DAk
= diag(ai1i1 , ai2i2 , . . . , aikik).

Theorem 3.3 [28,30] Let A ∈ Dn (GDn). Then A is singular if and only if

A has at least one singular principal submatrix.

Lemma 2.8 shows that the class of general H-matrices includes the class of
generalized diagonally dominant matrices. Conversely, it is NOT. Therefore,
it is necessary to study nonsingularity/singularity of general H-matrices. In
this section, the definitions of θ-ray pattern matrix and θ-ray matrix are firstly
proposed to establish some new results on nonsingularity/singularity of general
H-matrices.

Definition 3.4 Let E iθ = (eiθrs) ∈ C
n×n, where eiθrs = cos θrs + i sin θrs,

i =
√
−1 and θrs ∈ R for all r, s ∈ 〈n〉. The matrix E iθ = (eiθrs) ∈ C

n×n with
n > 3 is called θ-ray pattern matrix if

(i) θrs + θsr = 2kπ holds for all r, s ∈ 〈n〉, r 6= s, where k ∈ Z;

(ii) both θrs − θrt = θts + (2k + 1)π and θsr − θtr = θst + (2k + 1)π hold for
all r, s, t ∈ 〈n〉 and r 6= s, r 6= t, t 6= s, where k ∈ Z;
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(iii) θrr = θ for all r ∈ 〈n〉, θ ∈ [0, 2π).

The matrix Eiθ = (eiθrs) ∈ C
2×2 is called θ-ray pattern matrix if the first and

third item of three items above both hold.

Remark 3.5 It follows from Definition 3.4 that the matrices with different
arguments θsr of complex entries can belong to the same class of θ-ray pattern
matrices because of the periodicity of trigonometric functions (sine functions
and cosine functions), i.e., E iθ = Ei(θ+2kπ) for all k ∈ Z.

Example 3.6 The matrix

A =

[
eiπ/3 e−iπ/4

eiπ/4 eiπ/3

]
=

1

2

[
1 + i

√
3 −

√
2 − i

√
2√

2 + i
√

2 1 + i
√

3

]

is a θ-ray pattern matrix.

Example 3.7 The matrix

Eiθ =




eiπ/2 e−iπ/3 e−iπ/6

eiπ/3 eiπ/2 e−5iπ/6

eiπ/6 e5iπ/6 eiπ/2




=
1

2




2 i 1 − i
√

3
√

3 − i

1 + i
√

3 2 i −
√

3 − i√
3 + i −

√
3 + i 2 i




is a θ-ray pattern matrix.

Example 3.8 n × n matrices

A = 2diag(1, 1, . . . , 1) −




1 · · · 1
...

...
1 · · · 1




with θii = 0, θij = π, i > j and θij = −π, i < j, i, j = 1, 2, . . . , n is a θ-ray
pattern matrix.

Definition 3.9 Any matrix A = (ars) ∈ C
n×n has the following form:

A = eiη · |A| ⊗ Eiθ = (eiη · |ars|eiθrs) ∈ C
n×n, (11)

where η ∈ R, |A| = (|ars|) ∈ R
n×n and Eiθ = (eiθrs) ∈ C

n×n, θrs ∈ R for
r, s ∈ 〈n〉. The matrix E iθ is called ray pattern matrix of the matrix A. If the
ray pattern matrix E iθ of the matrix A is a θ-ray pattern matrix, then A is
called a θ-ray matrix.

Rθ
n denotes the set of all n×n θ-ray matrices. Obviously, if a matrix A ∈ R θ

n,
then ξ · A ∈ Rθ

n for all ξ ∈ C.
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Example 3.10 The matrix

A =




3 i
1

2
− i

√
3

2

√
3 − i

2 + 2
√

3 i 2 i −3
√

3 − 3 i
√

3 + i −
√

3

2
+

i

2
4 i




=




3 1 2
4 2 6
2 1 4


 ⊗




eiπ/2 e−iπ/3 e−iπ/6

eiπ/3 eiπ/2 e−5iπ/6

eiπ/6 e5iπ/6 eiπ/2




=e0i · |A| ⊗ Eiθ

is a θ-ray matrix, where E iθ is defined in Example 3.7.

Theorem 3.11 Let a matrix

A = DA − B = (ars) ∈ C
n×n

with

DA = diag(a11, a22, . . . , ann).

Then A ∈ Rθ
n if and only if there exists an n × n unitary diagonal matrix D

such that

D−1AD = eiη · (|DA|eiθ − |B|), η ∈ R.

Proof According to Definition 3.9,

A = eiη · |A| ⊗ Eiθ = (eiη · |ars|eiθrs).

Define a diagonal matrix

Dφ = diag(eiφ1 , eiφ2 , . . . , eiφn)

with
φr = θ1r + φ1 + (2k + 1)π, φ1 ∈ R, r = 2, 3, . . . , n, k ∈ Z.

By Definition 3.4,
D−1AD = eiη · (|DA|eiθ − |B|),

which shows that the necessity is true.
Now, we prove the sufficiency. Assume that there exists an n × n unitary

diagonal matrix Dφ = diag(eiφ1 , . . . , eiφn) such that

D−1
φ ADφ = eiη · (|DA|eiθ − |B|), η ∈ R.

Then the following equalities hold:

θrs = φs − φr + (2k1 + 1)π,

θsr = φr − φs + (2k2 + 1)π,

θrt = φt − φr + (2k3 + 1)π,

θtr = φr − φt + (2k4 + 1)π,

(12)
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where k1, k2, k3, k4 ∈ Z. In (12),

θrs + θsr = 2(k1 + k2 + 1)π = 2kπ

with k = k1 + k2 + 1 ∈ Z and for all r, s ∈ 〈n〉, r 6= s. Following (12),

θts = φs − φt + (2k5 + 1)π.

Hence,
φs − φt = θts − (2k5 + 1)π.

Consequently,

θrs − θrt = φs −φt +2(k1 −k3)π = θts +[2(k1 −k3 −k5 − 1)+1]πθts +(2k +1)π

for all r, s, t ∈ 〈n〉 and r 6= s, r 6= t, t 6= s, where k = k1 − k3 − k5 − 1 ∈ Z.
Using the same method, we can prove that

θsr − θtr = θst + (2k + 1)π

hold for all r, s, t ∈ 〈n〉 and r 6= s, r 6= t, t 6= s, where k ∈ Z. Furthermore, it
is obvious that θrr = θ for all r ∈ 〈n〉. This proves the sufficiency. �

Example 3.12 For the matrix A defined in Example 3.10, there exists an
3 × 3 unitary diagonal matrix D = diag(eiπ, eiπ/3, eiπ/6) such that

D−1AD = ei0 · (|DA|eiπ/2 − |B|),

where

DA = diag(3 i, 2 i, 4 i), B = DA−A = −




0
1

2
− i

√
3

2

√
3 − i

2 + 2
√

3 i 0 −3
√

3 − 3 i
√

3 + i −
√

3

2
+

i

2
0


 .

As a result, A ∈ Rθ
3 .

Corollary 3.13 Let a matrix

A = DA − B = (ars) ∈ C
n×n

with aii 6= 0 for all i ∈ 〈n〉. Then D−1
A A ∈ Rθ

n if A ∈ Rθ
n, where DA =

diag(a11, a22, . . . , ann).

Proof Theorem 3.11 shows that if A ∈ Rθ
n, then there exists an n× n unitary

diagonal matrix D such that

A = eiη · D(|DA|eiθ − |B|)D−1, η ∈ R.
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Hence,

D−1
A A = e−iθ ·(I ·eiθ−D|DA|−1|B|D−1) = e−iθ·(|I|·eiθ−D|D−1

A B|D−1), (13)

where I is the n × n identity matrix. (13) indicates that there exists an n × n
unitary diagonal matrix D such that

D−1D−1
A AD = e−iθ · (|I| · eiθ − |D−1

A B|).

This shows that D−1
A A ∈ Rθ

n. �

In particular, when θ = 0, Corollary 3.13 indicates the following corollary.

Corollary 3.14 Let a matrix A = DA − B = (ars) ∈ C
n×n with aii 6= 0 for

all i ∈ 〈n〉. If A ∈ R0
n, then there exists an n × n unitary diagonal matrix D

such that

D−1(D−1
A A)D = µ(D−1

A A) ∈ Zn,

where DA = diag(a11, a22, . . . , ann).

Theorems 3.1, 3.2, and Corollary 3.14 yield the following conclusions.

Theorem 3.15 Let an irreducible matrix A ∈ Dn (GDn). Then A is singular

if and only if D−1
A A ∈ DEn (GDEn)∩R0

n, where DA = diag(a11, a22, . . . , ann).

Theorem 3.16 A matrix A ∈ Dn (GDn) is singular if and only if the matrix

A has at least either one zero principal submatrix or one irreducible principal

submatrix Ak = A(i1, i2, . . . , ik), 1 < k 6 n, such that D−1
Ak

Ak ∈ DEk (GDEk)∩
R0

k , where DAk
= diag(ai1i1 , ai2i2 , . . . , aikik).

In the rest of this section, we will propose the main theorems to give some
necessary and sufficient conditions on the matrix A ∈ Hn such that A is singular.

Theorem 3.17 Let an irreducible matrix A ∈ Hn. Then A is singular if and

only if D−1
A A ∈ GDEn ∩ R0

n, where DA = diag(a11, a22, . . . , ann).

Proof Since A ∈ Hn is irreducible, Lemma 2.9 shows that Hn = GDn holds
under the condition irreducibility. It then follows from Theorem 3.15 that A is
singular if and only if D−1

A A ∈ GDEn ∩ R0
n. �

Theorem 3.18 A matrix A ∈ Hn is singular if and only if the matrix A has at

least either one zero principal submatrix or one irreducible principal submatrix

Ak = A(i1, i2, . . . , ik), 1 < k 6 n, such that D−1
Ak

Ak ∈ GDEk ∩ R0
k , where

DAk
= diag(ai1i1 , ai2i2 , . . . , aikik).

Proof When the matrix A ∈ Hn is irreducible, Theorem 3.17 shows that the
conclusion is true. Otherwise, following from Lemma 2.10, A ∈ Hn is singular if
and only if in the Frobenius normal form of A (7), there exists at least either one
zero principal submatrix or one irreducible diagonal square block Rkk ∈ GD|αk |

such that Rkk is singular. If there exists an irreducible diagonal square block
Rkk ∈ GD|αk | with αk = {i1, i2, . . . , ik} such that Rkk is singular, it follows
from Theorem 3.15 that Rkk = A(αk) = Ak ∈ GD|αk | is singular if and only
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if D−1
Ak

Ak ∈ GDEk ∩ R0
k , DAk

= diag(ai1i1 , ai2i2 , . . . , aikik). Therefore, A ∈ Hn

is singular if and only if the matrix A has at least either one zero principal
submatrix or one irreducible principal submatrix Ak = A(i1, i2, . . . , ik), 1 <
k 6 n, such that D−1

Ak
Ak ∈ GDEk ∩ R0

k . This completes the proof. �

Corollary 3.19 A matrix A ∈ HM
n is singular if and only if the matrix A

has at least either one irreducible principal submatrix Ak = A(i1, i2, . . . , ik), 1 <
k 6 n, such that D−1

Ak
Ak ∈ GDEk∩R0

k , where DAk
= diag(ai1i1 , ai2i2 , . . . , aikik).

Theorem 3.20 A matrix A ∈ Hn is nonsingular if and only if every successive

principal submatrix of A is nonsingular.

Proof Assume that A is singular. Then there obviously exists a singular suc-
cessive principal submatrix of A for A is a successive principal submatrix of
A.(?????)

Conversely, suppose that A ∈ Hn has a k × k singular successive principal
submatrix Ak ∈ Hk. Then from the necessity of Theorem 3.18, Akk has at
least either one zero principal submatrix or one irreducible principal submatrix
Ak′ = A(i1, i2, . . . , ik′), 1 < k′ 6 n, such that

D−1
Ak′

Ak′ ∈ GDEk′ ∩ R
0
k′ .

Obviously, Ak′ is also a singular principal submatrix of A. Thus, A is singular
from the sufficiency of Theorem 3.18. �

Corollary 3.21 A matrix A ∈ Hn is nonsingular if and only if there exists a

triangular decomposition A = LU, where L and U are lower and upper trian-

gular matrices, respectively. Furthermore, if L is prescribed as a identity lower

triangular matrices, then the triangular decomposition is unique (the triangular

decomposition is called Doolittle decomposition).

Proof According to Theorem 3.20 and [11, Theorem 4.2-1], it is easy to get
the proof. �

Theorem 3.22 Let A ∈ Hn. Then A is nonsingular if and only if every

principal submatrix of A is nonsingular.

Proof The proof can be finished by proving the equivalent statement of this
theorem that A ∈ Hn is singular if and only if there exists a singular principal
submatrix in A. The necessity of the equivalent statement is obvious.

Now, we prove the sufficiency. Suppose that A(i1, i2, . . . , ik), a principal
submatrix of A, is singular. Then there exists an n × n permutation ma-
trix P such that the successive principal submatrix of PAP T with k order
is A(i1, i2, . . . , ik). Since the permutation transformation does not change the
diagonal dominance of matrices, PAP T is still a diagonally dominant matrix.
Thus, PAP T is singular from Theorem 3.20, so is A. �

Corollary 3.23 Let A ∈ Hn. Then A is nonsingular if and only if A/α exists

and is nonsingular for each α ⊂ 〈n〉.
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Proof It is similar to the proof of [28, Lemma 3.13]. �

4 Convergence on general H-matrices

It is well known that convergence on invertible H-matrices (that belong to H I
n)

widely apply in many classical iterative methods like the Jacobi, Gauss-Seidel,
SOR, AOR, etc. (see, e.g., [1,14,24]) for linear and nonlinear systems and linear
complementarity problems. However, little attention on convergence of mixed
H-matrices and singular H-matrices has been paid. In fact, the Jacobi iterative
method for singular H-matrices fails to exist since at least one diagonal entry of
a singular H-matrix is zero. Therefore, we mainly study convergence of mixed
H-matrices.

In this section, some necessary and sufficient conditions on a mixed H-
matrix are proposed such that the associated Jacobi iterative method is con-
vergent.

Let us recall the standard decomposition of the matrix A ∈ C
n×n,

A = DA − L − U, (14)

where DA = diag(a11, a22, . . . , ann) is a diagonal matrix, L and U are strictly
lower and strictly upper triangular matrices, respectively. If aii 6= 0 for all
i ∈ 〈n〉, then the Jacobi iteration matrix associated with the matrix A,

JA = D−1
A (L + U), (15)

and the Jacobi iterative scheme on linear system,

Ax = b, A ∈ C
n×n, detA 6= 0, (16)

can be described as

x(i+1) = JAx(i) + f, i = 0, 1, 2, . . . , (17)

where f = D−1
A b. On the Jacobi iterative method for an invertible H-matrix,

we have the following classical result.

Theorem 4.1 [1] A matrix A ∈ HI
n if and only if

ρ(JA) 6 ρ(Jµ(A)) < 1,

i.e., the sequence {x(i)} generated by the Jacobi iterative scheme (17) con-

verges to the unique solution of (16) for any choice of the initial guess x(0),
where JA (resp. Jµ(A)) is the Jacobi iteration matrix associated with the matrix

A (resp. the comparison matrix µ(A) of A).

Bru et al. [3] presented a result on the Jacobi iteration matrix associated
with a general H-matrix A as follows.
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Theorem 4.2 [3] Let A ∈ C
n×n with aii 6= 0 for all i ∈ 〈n〉. Then the following

statements are equivalent :

(i) A ∈ Hn;

(ii) ρ(Jµ(A)) 6 1;

(iii) for any matrix B ∈ ω(A), ρ(JB) 6 1.

As is shown in [3], if A ∈ HM
n , then

ρ(JA) 6 ρ(Jµ(A)) = 1.

This shows that one does not know whether the matrix A is convergent or not
for the Jacobi iterative method. For example, the matrices

B =




2 −1 −1
1 2 −1
1 1 2


 , C =




2ei·(π/2) 1 −1

1 2ei·(π/2) 1

−1 1 2ei·(π/2)




are both mixed H-matrices and also nonsingular. However, direct computations
show that

ρ(JB) < ρ(Jµ(B)) = 1,

but
ρ(JC) = ρ(Jµ(C)) = 1.

Without direct computations, how do we judge the convergence of Jacobi iter-
ative method for mixed H-matrices?

The following theorem considers the case when A is a (generalized) diago-
nally equipotent matrix.

Theorem 4.3 A 2 × 2 irreducible matrix A = (aij) ∈ GDE2 if and only

if ρ(JA) = 1. Therefore, the sequence {x(i)} generated by the Jacobi iterative

scheme (17) does not converge to the unique solution of (16) for any choice of

the initial guess x(0).

Proof Assume

A =

[
a11 a12

a21 a22

]
∈ GDE2.

By Definition 2.2,

α1|a11| = α2|a12|, α2|a22| = α1|a21|,
with aij 6= 0 and αi > 0 for all i, j = 1, 2. Consequently, A ∈ GDE2 if and only
if

|a12a21|
|a11a11|

= 1.

The Jacobi iteration matrix associated with the matrix A is

JA =




0 −a12

a11

−a21

a22
0


 .
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Let λ be any eigenvalue of JA. Direct computation gives that

λ2 =
a12a21

a11a22
,

and consequently,

ρ(JA) =

√
|a12a21|
|a11a11|

.

Thus, the Jacobi iterative method fails to converge, i.e., ρ(JA) = 1 if and only
if a 2 × 2 irreducible matrix A = (aij) ∈ GDE2. �

Lemma 4.4 Let A = (aij) ∈ DEn (n > 3) be irreducible. Then e−iθ is an

eigenvalue of JA if and only if D−1
A A ∈ Rθ

n, where θ ∈ R.

Proof We prove the sufficiency first. Since A = (aij) ∈ DEn is irreducible,

aii 6= 0 for all i ∈ 〈n〉. Thus, D−1
A exists, where DA = diag(a11, a22, . . . , ann).

Assume D−1
A A ∈ Rθ

n. Theorem 3.11 shows that there exists a unitary diagonal
matrix D such that

D−1(D−1
A A)D = I − e−iθ · |D−1

A B|.

Hence,

JA = D−1
A B = e−iθD(|D−1

A B|)D−1 = e−iθDJµ(D−1

A
A)D

−1. (18)

Using (18), we have

det(e−iθI − JD−1

A
A) = det(e−iθI − e−iθDJµ(D−1

A
A)D

−1)

= e−iθ det(I − Jµ(D−1

A
A))

= e−iθ det µ(D−1
A A). (19)

Since A ∈ DEn is irreducible, so is D−1
A A. Again, µ(D−1

A A) ∈ R0
n, and Theorem

3.15 shows that µ(D−1
A A) is singular. As a result, (19) gives det(e−iθI−JA) = 0

to reveal that e−iθ is an eigenvalue of JA. This proves the sufficiency.
Now, we prove the necessity. Let e−iθ is an eigenvalue of JA. Then

det(e−iθI − JA) = det(e−iθI − D−1
A B) = 0.

Thus, e−iθI − D−1
A B is singular. Since e−iθI − D−1

A B ∈ DEn and irreducible
for A = DA − B ∈ DEn and irreducible, Theorem 3.15 shows that

I − eiθD−1
A B ∈ R

0
n.

It follows from Corollary 3.14 that there exists a unitary diagonal matrix D
such that

D−1(I − eiθD−1
A B)D = I − eiθD−1(D−1

A B)D = I − |D−1
A B|. (20)
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Equality (20) shows
D−1(D−1

A B)D = e−iθ|D−1
A B|.

Therefore,

D−1(D−1
A A)D = I − D−1(D−1

A B)D = I − e−iθ|D−1
A B|,

that is, there exists a unitary diagonal matrix D such that

D−1(D−1
A A)D−1 = e−iθ(eiθI − |D−1

A B|).

Hence, D−1
A A ∈ Rθ

n, and we prove the necessity. �

Theorem 4.5 Let A ∈ DEn (n > 3) be irreducible. Then ρ(JA) < 1, i.e.,

the sequence {x(i)} generated by the Jacobi iterative scheme (17) converges to

the unique solution of (16) for any choice of the initial guess x(0) if and only if

D−1
A A /∈ Rθ

n.

Proof Since A ∈ DEn, A ∈ Hn. It follows from Theorem 4.2 that ρ(JA) 6 1
for A ∈ ω(A). Therefore, the Jacobi iterative method converges, i.e., ρ(JA) < 1
if and only if ρ(JA) 6= 1. Since ρ(JA) 6= 1 is equivalent to that e−iθ is not
an eigenvalue of JA. According to Lemma 4.4, The Jacobi iterative method
converges, i.e., ρ(JA) < 1 if and only if D−1

A A /∈ Rθ
n. �

According to Definitions 2.1, 2.2, and Theorem 4.5, it is easy to generalize
the conclusion of Theorem 4.5 to irreducible generalized diagonally equipotent
matrices.

Theorem 4.6 Let A = (aij) ∈ GDEn (n > 3) be irreducible. Then ρ(JA) < 1,

i.e., the sequence {x(i)} generated by the Jacobi iterative scheme (17) converges

to the unique solution of (16) for any choice of the initial guess x(0) if and only

if D−1
A A /∈ Rθ

n.

Proof According to Definition 2.2, there exists a diagonal matrix

E = diag(e1, e2, . . . , en),

with ek > 0 for all k ∈ 〈n〉, such that

AE = (aijej) ∈ DEn.

Let
AE = F = (fij), fij = aijej , ∀ i, j ∈ 〈n〉.

Then
JF = E−1JAE, D−1

F F = E−1(D−1
A A)E,

with DF = DAE. Theorem 4.5 yields that ρ(JF ) < 1 if and only if D−1
F F /∈ Rθ

n.

Since ρ(JF ) = ρ(JA) and D−1
A A /∈ Rθ

n for D−1
F F = E−1(D−1

A A)E /∈ Rθ
n and

E = diag(e1, e2, . . . , en) with ek > 0 for all k ∈ 〈n〉, the Jacobi iterative method
converges, i.e., ρ(JA) < 1 if and only if D−1

A A /∈ Rθ
n. �
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Theorem 4.7 Let A ∈ GDn with aii 6= 0 for all i ∈ 〈n〉. Then ρ(JA) < 1,
i.e., the sequence {x(i)} generated by the Jacobi iterative scheme (17) converges

to the unique solution of (16) for any choice of the initial guess x(0) if and only

if A has neither 2 × 2 irreducibly generalized diagonally equipotent principal

submatrix nor irreducibly principal submatrix Ak = A(i1, i2, . . . , ik), 3 6 k 6 n,
such that

D−1
Ak

Ak ∈ GDEk ∩ R
θ
k ,

where DAk
= diag(ai1i1 , ai2i2 , . . . , aikik).

Proof The necessity will be proved first. When

ρ(JA) 6 ρ(Jµ(A)) < 1,

it follows from Theorem 4.1 that A ∈ H I
n. Furthermore, Lemma 2.6 indicates

that A does not have any irreducibly generalized diagonally equipotent principal
submatrix. When

ρ(JA) < ρ(Jµ(A)) = 1,

we have A /∈ HI
n, but A ∈ GDn. Lemma 2.6 shows that A ∈ GDn has at least

one irreducibly generalized diagonally equipotent principal submatrix Ak =
A(i1, i2, . . . , ik), 2 6 k 6 n. Theorems 4.3 and 4.6 reveal that A has neither
2 × 2 irreducibly generalized diagonally equipotent principal submatrix nor
irreducibly principal submatrix Ak = A(i1, i2, . . . , ik), 3 6 k 6 n, such that

D−1
Ak

Ak ∈ GDEk ∩ R
θ
k .

Now, we prove the sufficiency. If A does not have any irreducibly generalized
diagonally equipotent principal submatrix, then Theorem 4.1 gives A ∈ H I

n. As
a result, ρ(JA) < 1 follows from Theorem 4.1. If A has neither 2×2 irreducibly
generalized diagonally equipotent principal submatrix nor irreducibly principal
submatrix Ak = A(i1, i2, . . . , ik), 3 6 k 6 n, such that D−1

Ak
Ak ∈ GDEk ∩ Rθ

k ,

it follows from Theorems 4.3 and 4.6 that ρ(JA) < 1. �

Theorem 4.8 Let A ∈ Hn with aii 6= 0 for all i ∈ 〈n〉. Then ρ(JA) < 1, i.e.,

the sequence {x(i)} generated by the Jacobi iterative scheme (17) converges to

the unique solution of (16) for any choice of the initial guess x(0) if and only

if A has neither 2 × 2 irreducibly generalized diagonally equipotent principal

submatrix nor irreducibly principal submatrix Ak = A(i1, i2, . . . , ik), 3 6 k 6 n,
such that

D−1
Ak

Ak ∈ GDEk ∩ R
θ
k ,

where DAk
= diag(ai1i1 , ai2i2 , . . . , aikik).

Proof When A ∈ Hn is irreducible, Lemma 2.9 shows that A ∈ GDn. The-
orems 4.3 and 4.6 indicate that the Jacobi iterative method converges, i.e.,
ρ(JA) < 1 if and only if A is neither a 2 × 2 irreducibly generalized diagonally
equipotent matrix nor an irreducibly matrix such that

D−1
A A ∈ GDEn ∩ R̂

θ
n.
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Otherwise, A ∈ Hn is reducible. Since A ∈ Hn with aii 6= 0 for all i ∈ 〈n〉, it
follows from Theorem 2.10 that in the Frobenius normal form (7) of A, each
diagonal square block Rii is irreducible generalized diagonally dominant for all
i = 1, 2, . . . , s. Let JRii

be the iteration matrix associated with the diagonal
square block Rii for all i = 1, 2, . . . , s. Then

ρ(JA) = max
i

{ρ(JRii
) : i = 1, 2, . . . , s}.

Therefore, the Jacobi iterative method converges, i.e., ρ(JA) < 1 if and only
if A has neither 2 × 2 irreducibly generalized diagonally equipotent principal
submatrix nor irreducibly principal submatrix Ak = A(i1, i2, . . . , ik), 3 6 k 6 n,
such that D−1

Ak
Ak ∈ GDEk ∩ Rθ

k . �

Corollary 4.9 Let A ∈ Hn(GDn) (n > 3) be irreducible. Then ρ(JA) < 1,
i.e., the sequence {x(i)} generated by the Jacobi iterative scheme (17) converges

to the unique solution of (16) for any choice of the initial guess x(0) if and only

if D−1
A A /∈ GDEn ∩ Rθ

k , where DA = diag(a11, a22, . . . , ann).

The research in this section shows that the Jacobi iterative method associ-
ated with the irreducible matrix A ∈ HM

n ∩Rθ
n fails to converge. It is natural to

consider the cases of the block Jacobi iterative method, Gauss-Seidel iterative
method, SOR iterative method, and so on. As some open problems, these cases
need to be studied further.

5 Schur complement of general H-matrices

Recently, considerable interest appears in the work on the Schur complements
of some families of matrices and several significant results are proposed. As is
shown in [4,6,7,15,17–20,27–30,32], the Schur complements of positive semidef-
inite matrices are positive semidefinite (see, e.g., [6]); the same is true for M -
matrices, inverse M -matrices (see, e.g., [12]), invertible H-matrices (see, e.g.,
[17]), diagonally dominant matrices (see, e.g., [6,15]), Dashnic-Zusmanovich
matrices (see, e.g., [7]), and generalized doubly diagonally dominant matrices
(see, e.g., [18]).

Since M -matrices, Dashnic-Zusmanovich matrices, strictly generalized dou-
bly diagonally dominant matrices, and strictly or irreducibly diagonally dom-
inant matrices are all invertible H-matrices (see, e.g., [2, pp. 132–161], [7,18],
and [24, p. 92]), so are their Schur complements. This very property has been
repeatedly used for the convergence of the Gauss-Seidel iterations and stability
of Gaussian elimination in numerical analysis (see, e.g., [14, p. 58], [11, p. 508],
and [14, pp. 122, 123]). Lately, Zhang et al. [28] and Bru et al. [4] extended this
property to nonstrictly diagonally dominant matrices and general H-matrices
that are not necessarily invertible H-matrices.

Continuing in this direction, in the rest of this paper, we establish new
results on the Schur complements of general H-matrices. These results will not
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only propose some conditions such that A ∈ H I
n if A(α) ∈ HI

|α| and A/α ∈
HI

n−|α| for all nonempty α ⊂ 〈n〉, but also give some different conditions for the

matrix A ∈ HM
n and the subset α ⊆ N such that the Schur complement matrix

A/α ∈ HI
n−|α| or A/α ∈ HM

n−|α| or A/α ∈ HS
n−|α|.

Following, we will improve and complement some classical result on the
Schur complement of invertible H-matrices.

Theorem 5.1 [6,25] Let A ∈ Zn. Then A ∈ M •
n if and only if A(α) ∈ M •

|α|

and A/α ∈ M •
n−|α| for all nonempty subset α ⊂ 〈n〉.

Theorem 5.2 [17,23] Given a matrix A ∈ C
n×n, if A ∈ HI

n, then A(α) ∈ HI
|α|

and A/α ∈ HI
n−|α| for all nonempty α ⊂ 〈n〉.

It is noted that unlike the conclusion in Theorem 5.1, the condition of
Theorem 5.2 “A(α) ∈ HI

|α| and A/α ∈ HI
n−|α| for all nonempty α ⊂ 〈n〉” in

general does not get the conclusion “A ∈ H I
n”.

Example 5.3 Let

A =




3 −1 −1 −2
1 2 −1 0
1 1 3 1
1 0 1 2


 . (21)

Then 〈4〉 = {1, 2, 3, 4}. Direct computations show that for all nonempty α ⊂ 〈4〉,
A(α) and A/α are both invertible H-matrices. But, it is verified that A /∈ H I

4 ,
and thus, the converse proposition of Theorem 5.2 is not true.

The following will propose some conditions such that A ∈ H I
n if A(α) ∈ HI

|α|

and A/α ∈ HI
n−|α| for all nonempty α ⊂ 〈n〉. A sufficient condition will be

proposed first.

Theorem 5.4 Give a matrix A ∈ C
n×n with A(α) ∈ HI

|α| and A/α ∈ HI
n−|α|

for all nonempty α ⊂ 〈n〉. Then A ∈ H I
n if A ∈ R0

n.

Proof Since A ∈ R0
n, it follows from Theorem 3.11 that there exists an n × n

unitary diagonal matrix D = diag(d1, d2, . . . , dn) ∈ C
n×n such that D−1AD =

eiη · µ(A) for η ∈ R. Furthermore, there exists a permutation matrix Pα such
that

Aα = PT
α APα =

[
A(α) A(α, α′)

A(α′, α) A(α′)

]

and

PT
α DPα =

[
D(α) 0

0 D(α′)

]
,
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where α′ = 〈n〉 − α ⊂ 〈n〉. Then

PT
α (D−1AD)Pα

= (PT
α DPα)−1(PT

α APα)(PT
α DPα)

=

[
[D(α)]−1 0

0 [D(α′)]−1

] [
A(α) A(α, α′)

A(α′, α) A(α′)

] [
D(α) 0

0 D(α′)

]

= eiη

[
µ[A(α)] −|A(α, α′)|

−|A(α′, α)| µ[A(α′)]

]
. (22)

(22) implies that

µ[A(α)] = e−iη[D(α)]−1A(α)D(α),

|A(α, α′)| = −e−iη[D(α)]−1A(α, α′)D(α′),

|A(α′, α)| = −e−iη[D(α′)]−1A(α′, α)D(α),

µ[A(α′)] = e−iη[D(α′)]−1A(α′)D(α′).

(23)

Thus,

µ(A)/α = |A(α′, α)[µ[A(α)]]−1 |A(α, α′)

= e−iη[D(α′)]−1A(α′)D(α′) − e−iη[D(α′)]−1A(α′, α)D(α)

×{[D(α)]−1A(α)D(α)}−1 [D(α)]−1A(α, α′)D(α′)

= e−iη[D(α′)]−1 [A(α′) − A(α′, α)[A(α)]−1A(α, α′)]D(α′)

= e−iη[D(α′)]−1 [A/α]D(α′)

= µ[A/α]. (24)

Since A(α) ∈ HI
|α| and A/α ∈ HI

n−|α|, we have

µ[A(α)] ∈ M •
|α|, µ[A/α] ∈ M •

n−|α|.

It then follows from Theorem 5.1 that µ(A) ∈ M •
n. Therefore, A ∈ HI

n. This
completes the proof. �

Now, we propose a necessary and sufficient condition such that A ∈ H I
n if

A(α) ∈ HI
|α| and A/α ∈ HI

n−|α| for all nonempty α ⊂ 〈n〉. A lemma will be used

in this section.

Lemma 5.5 [22,25] Let A ∈ Zn. Then A ∈ M •
n if and only if there exists a

matrix B ∈ Zn such that

B−1 > 0, B > A, B−1A ∈ M•
n.

Theorem 5.6 Give a matrix A ∈ C
n×n with A(α) ∈ HI

|α| and A/α ∈ HI
n−|α|

for all nonempty α ⊂ 〈n〉. Then A ∈ H I
n if and only if

[µ(A/α)]−1[µ(A)/α] ∈ M •
n−|α|.
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Proof Assume that there exists a permutation matrix Pα such that

Aα = PT
α APα =

[
A(α) A(α, α′)

A(α′, α) A(α′)

]
,

where α′ = 〈n〉 − α ⊂ 〈n〉. Let

Lα =

[
I|α| 0

−|A(α′, α)|[µ(A(α))]−1 I|α′|

]
,

Uα =

[
I|α| −[µ(A(α))]−1|A(α, α′)|
0 I|α′|

]
.

(25)

Then

Bα = Lα

[
µ(A(α)) 0

0 µ(A/α)

]
Uα =

[
µ(A(α)) −|A(α, α′)|

−|A(α′, α)| Z

]
, (26)

where
Z = µ(A/α) + |A(α′, α)|[µ(A(α))]−1 |A(α, α′)|.

Since A(α) ∈ HI
|α|, we have

µ(A(α)) ∈ M •
|α|, [µ(A(α))]−1

> 0.

The same argument shows that [µ(A/α)]−1 > 0 since A/α ∈ HI
n−|α|. Hence,

|A(α′, α)|[µ(A(α))]−1 > 0, [µ(A(α))]−1|A(α, α′)| > 0.

It is easy to get that
Lα ∈ M•

n, Uα ∈ M•
n,

and consequently,
L

−1
α > 0, U

−1
α > 0.

As a result,

B−1
α = U

−1
α

[
[µ(A(α))]−1 0

0 [µ(A/α)]−1

]
L

−1
α > 0,

which shows that Bα is inverse-positive. Again,

Z = µ(A/α) + |A(α′, α)|[µ(A(α))]−1 |A(α, α′)|
= µ[A(α′) − A(α′, α)(A(α))−1A(α, α′)]

+|A(α′, α)|[µ(A(α))]−1 |A(α, α′)|
> µ[A(α′)] − |A(α′, α)|[µ(A(α))]−1 |A(α, α′)|

+|A(α′, α)|[µ(A(α))]−1 |A(α, α′)|
= µ[A(α′)]. (27)
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Following (26) and (27), we have

Bα =

[
µ(A(α)) −|A(α, α′)|

−|A(α′, α)| Z

]
>

[
µ(A(α)) −|A(α, α′)|

−|A(α′, α)| µ[A(α′)]

]
> µ(A). (28)

Furthermore,

B−1
α µ(A) = I −

[
µ(A(α)) −|A(α, α′)|

−|A(α′, α)| Z

]−1 [
0 0
0 Z − µ[A(α′)]

]

=

[
I −[µ(A(α))]−1|A(α, α′)|[µ(A/α)]−1(Z − µ[A(α′)])

0 I − [µ(A/α)]−1(Z − µ[A(α′)])

]
. (29)

Since

[µ(A/α)]−1(Z − µ[A(α′)])

= [µ(A/α)]−1(µ(A/α) + |A(α′, α)|[µ(A(α))]−1 |A(α, α′)| − µ[A(α′)])

= [µ(A/α)]−1(µ(A/α) − µ(A)/α)

= I − [µ(A/α)]−1[µ(A)/α], (30)

we have

B−1
α µ(A) =

[
I −[µ(A(α))]−1|A(α, α′)|[µ(A/α)]−1(µ(A/α) − µ(A)/α))

0 [µ(A/α)]−1[µ(A)/α]

]
.

(31)
From (27), we get

µ(A/α) > µ(A)/α).

Thus,

−[µ(A(α))]−1|A(α, α′)|[µ(A/α)]−1(µ(A/α) − µ(A)/α)) 6 0. (32)

Assume that
[µ(A/α)]−1[µ(A)/α] ∈ M •

n−|α|.

Then (31) and (32) give B−1
α µ(A) ∈ M •

n. With (28) and Lemma 5.5, µ(A) ∈ M •
n,

and thus, A ∈ HI
n. Conversely, if A ∈ HI

n, then µ(A) ∈ M •
n and Theorem 5.1

gives µ(A)/α ∈ M •
n−|α|. Since A/α ∈ HI

n−|α|, µ(A/α) ∈ M •
n−|α|. Again, (26)

implies
µ(A/α) > µ(A)/α.

Lemma 5.5 shows that

[µ(A/α)]−1[µ(A)/α] ∈ M •
n−|α|. �

Now, we consider the matrix A in Example 5.3. Although A(α) ∈ H I
2 and

A/α ∈ HI
2 for all nonempty α ⊂ 〈n〉, Theorem 5.6 still shows that A is not

an H-matrix since direct computations yield that [µ(A/α)]−1[µ(A)/α] is not
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a nonsingular M -matrix. In fact, Example 5.3 has verified that A is not an
H-matrix. This shows that Theorem 5.6 is effective.

Example 5.7 Let

A =




4 −1 −1 −1
1 2 −1 0
1 1 3 1
1 0 1 2


 (33)

and 〈4〉 = {1, 2, 3, 4}. Then for all nonempty α ⊂ 〈4〉, both A(α) and A/α are
invertible H-matrices. Furthermore, [µ(A/α)]−1[µ(A)/α] is nonsingular M -
matrices. Therefore, it follows from Theorem 5.6 that A ∈ H I

4 . In fact, direct
computations have verified A ∈ ID4 ⊂ HI

4 . This also shows that Theorem 5.6
is valid.

Bru et al. [4] extend the result of Theorem 5.2 to general H-matrices.

Theorem 5.8 [4] Let A ∈ Hn, and let α ⊂ 〈n〉 such that A(α) ∈ H I
|α|. Then

the Schur complement matrix A/α ∈ Hn−|α|.

In fact, Theorem 5.8 still holds if the condition “A(α) ∈ H I
|α|” is weakened

to “A(α) is nonsingular”.

Theorem 5.9 Let A ∈ Hn, and let α ⊂ 〈n〉 such that A(α) is nonsingular.

Then the Schur complement matrix A/α ∈ Hn−|α|.

Proof It follows from Theorem 5.8 that the conclusion of this theorem holds
if A(α) ∈ HI

|α|. We need only to consider the case that A(α) is nonsingular

but A(α) /∈ HI
|α|. In this case, A(α) ∈ HM

|α| since A(α) ∈ H|α| for A ∈ Hn.

By Lemma 2.11, it is easy to get that A(α) is either an irreducible diagonal
block in the Frobenius normal form (7) of A if A(α) is irreducible or a block
triangular matrix whose diagonal blocks come from some irreducible diagonal
blocks of the Frobenius normal form (7) if A(α) is reducible. If A(α) is an
irreducible diagonal block in the Frobenius normal form (7) of A, it follows
from the Frobenius normal form (7) of A that A/α = A(α′) ∈ Hn−|α| for
A(α′) is a principal submatrix of the matrix A ∈ Hn, where α′ = 〈n〉 − α.
Otherwise, A(α) is a block triangular matrix whose diagonal blocks come from
some irreducible diagonal blocks of the Frobenius normal form (7). Let

α =

s⋃

j=1

βj , ∅ ⊆ βj ⊆ αj, j = 1, 2, . . . , s,

and let the number of nonempty set βj be at least equal to 2, such that

A(α) =




A(β1) A(β1, β2) · · · A(β1, βs)
. . .

. . .
...

. . . A(βs−1, βs)

0 A(βs)


 , (34)
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where A(βi) is irreducible generalized diagonally dominant for i = 1, 2, . . . , s.
Let γj = αj − βj for j = 1, 2, . . . , s. Then

α′ = 〈n〉 − α =
s⋃

j=1

αj −
s⋃

j=1

βj =
s⋃

j=1

γj .

Furthermore, there exists an n × n permutation matrix P1 such that

C = P1PAPTPT
1

= P1




A11 A12 · · · A1s

. . .
. . .

...
. . . A(s−1)s

0 Ass


PT

1

=




A′(α1) A′(α1, α2) · · · A′(α1, αs)
. . .

. . .
...

. . . A′(αs−1, αs)

0 A′(αs)


 , (35)

where

A′(αi) =

[
A(γi) A(γi, βi)

A(βi, γi) A(βi)

]
, A′(αi, αj) =

[
A(γi, γj) A(γi, βj)
A(βi, γj) A(βi, βj)

]
,

for 1 6 i < j 6 s. Therefore, there exists an n × n permutation matrix Q such
that

QCQT = QP1PAPTPT
1 QT =

[
A(α) A(α, α′)

A(α′, α) A(α′)

]
, (36)

where A(α) is given in (34), and

A(α′) =




A(γ1) A(γ1, γ2) · · · A(γ1, γs)
. . .

. . .
...

. . . A(γs−1, γs)

0 A(γs)


 , (37)

A(α, α′) =




A(β1, γ1) A(β1, γ2) · · · A(β1, γs)
. . .

. . .
...

. . . A(βs−1, γs)

0 A(βs, γs)


 ,

A(α′, α) =




A(γ1, β1) A(γ1, β2) · · · A(γ1, βs)
. . .

. . .
...

. . . A(γs−1, βs)

0 A(γs, βs)


 .

(38)
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Direct computation yields

A/α = A(α′) − A(α′, α)[A(α)]−1A(α, α′)

= diag
( [A(α1)]

β1
, . . . ,

[A(αs)]

βs

)
+ ∗, (39)

where ∗ denotes some unknown strictly upper triangular matrix. By Lemma
2.10, A(αi) = Rii is either 1 × 1 zero matrices or irreducible generalized diag-
onally dominant matrices for i = 1, 2, . . . , s. Furthermore, βi ⊆ αi. As a result,
[A(αi)]/βi is either 1× 1 zero matrices or generalized diagonally dominant ma-
trices for i = 1, 2, . . . , s. Again, Lemma 2.10 shows that A/α ∈ Hn−|α|. We
complete the proof. �

On the Schur complement of an irreducible matrix A ∈ HM
n , some equivalent

conditions will be revealed such that the Schur complement of an irreducible
mixed H-matrix still is an invertible H-matrix.

Theorem 5.10 Let A ∈ HM
n be an irreducible matrix. Then, for all α ⊂ 〈n〉,

the following conclusions are equivalent :

(i) A is nonsingular;

(ii) A/α ∈ HI
n−|α|;

(iii) [µ(A)]/α < µ(A/α);

(iv) A/α is nonsingular.

Proof Similar to the proof Lemma 3.12 or Theorem 4.1 in [28], it is obvious
to get that (i) ⇐⇒ (ii). Corollary 3.23 shows that (i) ⇐⇒ (iv). [4, Corollary
3] shows (iii) ⇐⇒ (i). As a result, (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv). �

The following corollary is a direct consequence of Theorem 5.10.

Corollary 5.11 Let A ∈ HM
n be an irreducible matrix. Then, for all α ⊂ 〈n〉,

the following conclusions are equivalent :

(i) A is singular;

(ii) A/α ∈ HM
n−|α| if 1 6 |α| 6 n− 2 and A/α = [0] ∈ HS

n−|α| if |α| = n− 1;

(iii) [µ(A)]/α = µ(A/α);

(iv) A/α is singular.

Note that Theorem 3, Corollaries 3 and 5 in [4] are some corollaries of
Theorem 5.10 and Corollary 5.11.

It follows that we need only to consider the reducible HM
n matrix. We will

propose a theorem that is much easier to judge A/α ∈ H I
n−|α| than the one in

[4].

Theorem 5.12 Let A ∈ HM
n be a reducible matrix. If A is nonsingular, then

A/α ∈ HI
n−|α| if and only if A(α′) ∈ HI

n−|α| for nonempty α = 〈n〉 − α′ ⊂ 〈n〉.
Proof Assume that A is nonsingular. Theorems 3.22 and 2.10 show that in the
Frobenius normal form (7) of A, each diagonal square block Rii is irreducible
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and nonsihgular generalized diagonally dominant for all i = 1, 2, . . . , s. Let

α′ =

s⋃

j=1

γj , ∅ ⊆ γj ⊆ αj , j = 1, 2, . . . , s,

and the number of nonempty set γj is at least equal to 2, such that A(α′) ∈
HI

n−|α|. Again, let βj = αj − γj for j = 1, 2, . . . , s. Then

α = N − α′ =
s⋃

j=1

αj −
s⋃

j=1

γj =
s⋃

j=1

βj . (40)

Then there exists an n× n permutation matrix P1 such that (35) holds. What
is more, there exists an n×n permutation matrix Q such that (36) holds, where
A(α) and A(α′) are given in (34) and (37), respectively, A(α, α′) and A(α′, α)
are given in (38). Direct computation yields (39). Since A(αi) is irreducible
generalized and nonsingular diagonally dominant for i = 1, 2, . . . , s, it follows
from Theorems 5.2 and 5.10 that

[A(αi)]/βi ∈ HI
|γi|

, i = 1, 2, . . . , s.

As a consequence, A/α ∈ HI
n−|α| for all α = 〈n〉 − α′ ⊂ 〈n〉. This proves the

sufficiency.
Now, we prove the necessity by contradiction. Assume that A(α′) /∈ HI

n−|α|.

Since A ∈ Hn, A(α′) ∈ Hn−|α|. If A(α′) is irreducible, Lemmas 2.6, 2.9, and
2.10 indicate that A(α′) ∈ GDEn−|α| is an irreducible diagonal square block in
the Frobenius normal form (7) of A. It is easy to get

A/α = A(α′) /∈ HI
n−|α|,

which contradicts A/α ∈ Hn−|α|. A contradiction arises to illustrate A(α′) ∈
HI

n−|α|. If A(α′) /∈ Hn−|α| is reducible, Lemma 2.11 indicates that A(α′) has at

least one irreducible generalized diagonally equipotent principal submatrix, say
A(θ) for θ ⊂ α′. Furthermore, Lemma 2.10 shows that A(θ) is an irreducible
diagonal square block in the Frobenius normal form (7) of A. As a result, assume
θ = αk = γk, where αk and γk are in (40) for 1 6 k 6 s. Then βk = αk−γk = ∅.
Therefore,

[A(αk)]/βk = [A(αk)]/∅ = A(αk) = A(θ)

is irreducible generalized diagonally equipotent. This shows that A/α in (39)
has at least an irreducible diagonal square block that is generalized diagonally
equipotent. It follows from Lemma 2.11 that

A/α ∈ HM
n−|α| ∪ HS

n−|α|,

but A/α /∈ HI
n−|α|. This contradicts A/α ∈ HI

n−|α| which demonstrate that the

assumption is incorrect. Therefore, A(α′) ∈ Hn−|α|. This completes the proof.
�
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Theorem 5.13 Let A ∈ HM
n be a reducible matrix, and let α = 〈n〉−α′ ⊂ 〈n〉

such that A(α) is nonsingular. Then A/α ∈ HM
n−|α| if and only if one of the

following two conclusions holds :

(i) A(α′) ∈ HM
|α′| when A is nonsingular;

(ii) A does not have any irreducible submatrix A(β) such that A(β) is

singular with |β ∩ α| = |β| − 1 when A is singular.

Proof When A is nonsingular, Theorem 5.12 shows that the conclusion of this
theorem is true.

When A is singular, since A(α) is nonsingular, it follows form Corollary 3.23
that A/α is singular, and hence, A/α /∈ H I

n−|α|. Again, since A does not have

any irreducible submatrix A(β) such that A(β) is singular with |β∩α| = |β|−1,
the 2(a) conclusion of [4, Theorem 7] demonstrate that A/α /∈ HS

n−|α|. However,

Theorem ????? gives A/α ∈ Hn−|α|. As a result, A/α ∈ HM
n−|α|. We proves the

sufficiency. Using the 2(a) conclusion of [4, Theorem 7], the necessity is obvious.
�

Theorem 5.14 Let A ∈ HM
n be a reducible matrix, and let α ⊂ 〈n〉 such

that A(α) is nonsingular. Then A/α ∈ HS
|α| if and only if A has at least one

irreducible submatrix A(β) such that A(β) is singular with |β ∩ α| = |β| − 1.

Proof It is obvious from the second conclusion of Theorem 5.13 that the con-
clusion is true. �

In the end, a result on the Schur complement for a singular H-matrix is
given. This result is similar to [4, Theorem 8].

Theorem 5.15 Let A ∈ HS
n be a reducible matrix, and let α ⊂ 〈n〉 such that

A(α) is nonsingular. Then A/α ∈ HS
|α|.

6 Conclusions

This paper studies some properties on general H-matrices and their Schur com-
plements. Above all, the definitions of θ-ray pattern matrix and θ-ray matrix
are firstly proposed to establish some new results on nonsingularity/singularity
and convergence of general H-matrices. Following, some conditions on the ma-
trix A ∈ C

n×n and nonempty α ⊂ 〈1, 2, . . . , n〉 are proposed such that A is an
invertible H-matrix if A(α) and A/α are both invertible H-matrices. In the
end, the important results on Schur complement for general H-matrices are
presented to give the different necessary and sufficient conditions for the ma-
trix A ∈ HM

n and the subset α ⊆ 〈n〉 such that the Schur complement matrix
A/α ∈ HI

n−|α| or A/α ∈ HM
n−|α| or A/α ∈ HS

n−|α|.
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7. Cvetković L, Kostić V, Kovac̆ević M, Szulc T. Further results on H-matrices and their
Schur complements. Linear Algebra Appl, 2008, 198: 506–510

8. Elman H, Silvester D, Wathen A. Finite Elements and Fast Iterative Solvers with
Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific
Computation. Oxford: Oxford University Press, 2005

9. Fiedler M, Ptak V. On matrices with nonpositive offdiagonal elements and positive
principal minors. Czechoslovak Math J, 1962, 12(87): 382–400

10. Fiedler M, Ptak V. Diagonally dominant matrices. Czechoslovak Math J, 1967, 17(92):
420–433

11. Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins
University Press, 1996

12. Johnson C R. Inverse M -matrices. Linear Algebra Appl, 1982, 47: 195–216

13. Kolotilina L Yu. Nonsingularity/singularity criteria for nonstrictly block diagonally
dominant matrices. Linear Algebra Appl, 2003, 359: 133–159

14. Kress R. Numerical Analysis. New York: Springer, 1998

15. Lei T G, Woo C W, Liu J Z, Zhang F. On the Schur complements of diagonally
dominant matrices. In: Proceedings of the SIAM Conference on Applied Linear
Algebra. 2003, ???–???

16. Liao X. The Stability Theory and Application of Dynamic System. Beijing: National
Defence industry Press, 2000 (in Chinese)

17. Liu Jianzhou, Huang Yunqing. Some properties on Schur complements of H-matrix
and diagonally dominant matrices. Linear Algebra Appl, 2004, 389: 365–380

18. Liu Jianzhou, Huang Yunqing, Zhang Fuzhen. The Schur complements of generalized
doubly diagonally dominant matrices. Linear Algebra Appl, 2004, 378: 231–244

19. Liu Jianzhou, Li Jicheng, Huang Zhuohong, Kong Xu. Some properties of Schur
complements and diagonal-Schur complements of diagonally dominant matrices.
Linear Algebra Appl, 2008, 428: 1009–1030

20. Liu Jianzhou, Zhang Fuzhen. Disc separation of the Schur complement of diagonally
dominant matrices and determinantal bounds. SIAM J Matrix Anal Appl, 2005, 27(3):
665–674
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