
Accepted Manuscript

A Discrete Filled Function Algorithm Embedded with Continuous Approxima�

tion for Solving Max-Cut Problems

Ai-fan Ling, Cheng-xian Xu, Feng-min Xu

PII: S0377-2217(08)00588-2

DOI: 10.1016/j.ejor.2008.07.026

Reference: EOR 9190

To appear in: European Journal of Operational Research

Received Date: 21 July 2007

Revised Date: 22 July 2008

Accepted Date: 22 July 2008

Please cite this article as: Ling, A-f., Xu, C-x., Xu, F-m., A Discrete Filled Function Algorithm Embedded with

Continuous Approximation for Solving Max-Cut Problems, European Journal of Operational Research (2008), doi:

10.1016/j.ejor.2008.07.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ejor.2008.07.026
http://dx.doi.org/10.1016/j.ejor.2008.07.026

ACCEPTED MANUSCRIPT

A Discrete Filled Function Algorithm Embedded

with Continuous Approximation for Solving

Max-Cut Problems ∗

Ai-fan LING†, Cheng-xian XU‡, Feng-min XU§

Department of Scientific Computing & Applied Software,

Xi’an Jiaotong University, Xi’an, 710049, PR China

Abstract

In this paper, a discrete filled function algorithm embedded with continuous approxi-

mation is proposed to solve max-cut problems. A new discrete filled function is defined for

max-cut problems, and properties of the function are studied. In the process of finding an

approximation to the global solution of a max-cut problem, a continuation optimization algo-

rithm is employed to find local solutions of a continuous relaxation of the max-cut problem,

and then global searches are performed by minimizing the proposed filled function. Unlike

general filled function methods, characteristics of max-cut problems are used. The parameters

in the proposed filled function need not to be adjusted and are exactly the same for all max-cut

problems that greatly increases the efficiency of the filled function method. Numerical results

and comparisons on some well known max-cut test problems show that the proposed algorithm

is efficient to get approximate global solutions of max-cut problems.

Keywords Combinatorial optimization, Global optimization, Filled function, Max-

cut, Continuation method, Local search.

MR(2000)Class

∗This work is supported by National Natural Science Foundations of China, No. 10671152. The
main idea of this article has been presented by Professor Xu at the 6th International Conference on
Optimization and Numerical Algebra, Urumqi, Sept. 2007.

†Corresponding author, E-mail: aifanling@yahoo.com.cn
‡This author is a member of SKLMSE Laboratory, E-mail: mxxu@mail.xjtu.edu.cn
§E-mail: fengminxu@mail.xjtu.edu.cn

1

ACCEPTED MANUSCRIPT

1 Introduction

Filled function methods introduced by Ge [8] in 1990 are a class of global optimiza-

tion methods for general nonlinear continuous optimization problems. Because some

good properties of filled function methods, Ge and Huang [9] further extended the filled

function method to solve some small scale nonlinear integer programming problems.

Recently, several authors proposed some new filled function methods to solve discrete

optimization problems with following general form

min f(x)

s.t. x ∈ Ω ⊂ Zn,
(1.1)

where f : Ω → R is a real valued function, and Zn is the space of n-dimensional integer

column vectors. For instance, Ng et al. [16] dealt with discrete optimization problems

using the following filled function,

p(x;x∗; ρ, µ) =

{
µ[f(x)− f(x∗)]2 − ρ ‖ x− x∗‖2

2, when f(x) ≥ f(x∗) ;

f(x∗)− f(x)− ρ‖x− x∗‖2
2, when f(x) ≤ f(x∗),

(1.2)

where µ, ρ are two adjustable parameters, and x∗ is a local solution of (1.1).

Let x∗1 be a local minimizer of problem (1.1), the basic idea of the discrete filled

function method for (1.1) is to construct an auxiliary function, called filled function, at

the point x∗1, which can be further minimized to get a point, say x, in a discrete basin

(see Definition 5 below) of f(x) that is lower than the discrete basin containing x∗1 when

x∗1 is not a global minimizer. Then the minimization of f(x) is restarted from the point

x and another local minimizer x∗2 satisfying f(x∗2) < f(x∗1) can be obtained. If x∗2 is

still not a global minimizer of f(x) on Ω, then the process is repeated until a global

minimizer of f(x) is obtained.

More results and progresses on some new proposed filled functions for discrete op-

timization problems can be found in [5, 14, 15, 17, 19, 21, 22]. However, at the best

of our knowledge, there is very few attempts that have been made for the solution of

max-cut problems or other combinatorial optimization problems using the filled function

methods.

Max-cut problems are a kind of special discrete optimization problems. Given a

graph G(V ; E), with node set V and edge set E, the problem is to find a partition,

S1 ⊂ V and S2 = V \ S1, of the set V such that the sum of the weights on the edges

connecting the two parts is maximized.

2

ACCEPTED MANUSCRIPT

The max-cut problem has long been known to be NP-complete [13], even for any

un-weighted graphs [7], and has wide applications in circuit layout design, statistical

physics and so on [3]. Approximate algorithms [10, 23], heuristic algorithms [4] and

continuous algorithms [18, 20, 21] have been proposed to get approximate solutions of

max-cut problems. Based on a semidefinite programming(SDP) relaxation of the max-

cut problem, Goemans-Williamson in [10] proposed a 0.878-approximation randomized

algorithm for nonnegative weighted graphs. Burer et al. in [4] proposed a rank-2 relax-

ation and developed a continuous optimization heuristic for solving max-cut problems.

Recently, Xu et al. in [20] (also see [18]) proposed a continuous optimization method

to solve max-cut problems, in which a max-cut problem is relaxed into a nonlinear

continuous optimization problem with convex constraints. An obvious advantage of the

continuous method is that it greatly reduces the CPU-time via without using linear

searches and no matrix calculation in each iteration. However, the solution obtained by

the continuous method can not be guaranteed as a global minimizer, which motivates

us to study global optimization method for the solution of max-cut problems. In this

paper, a new filled function is defined and the parameters in the filled function can be

exactly estimated for all max-cut problems. Then a discrete filled function algorithm

embedded with the continuous approximation is designed for the solution of max-cut

problems.

The remainder of the paper is arranged as follows. In section 2, some definitions

and preliminaries about discrete filled functions are recalled; In section 3, the continuous

algorithm proposed by Xu et al. in [20] is briefly introduced; In section 4, a new discrete

filled function for max-cut problems is defined, and properties of the proposed filled

function are studied; The parameters of the new filled function are estimated in section

5; The discrete filled function algorithm embedded with the continuous approximation

is presented in section 6; Numerical experiments and comparisons on some well known

max-cut test problems are reported in section 7.

Throughout the paper, if without special statement, we adopt the following conven-

tions. R, Z, Zn and Rn denote the sets of real numbers, integer numbers, and the spaces

of n-dimensional integer column vectors and n-dimensional real column vectors, respec-

tively. Sn, Sn
+ and Sn

++ denote the spaces of symmetric matrices, semi-definite positive

matrices and positive definite matrices, respectively. I denotes the n-dimensional unit

matrix. Let x ∈ Rn, the lp -norm of x is denoted by ‖x‖p = (
∑n

i=1 |xi|p)
1
p (1 ≤ p < ∞),

3

ACCEPTED MANUSCRIPT

and set S = {−1, 1}n ⊂ Zn. e ∈ Rn is the column vector with all ones. For any ma-

trix W ∈ Sn, Diag (We) is the diagonal matrix with elements of the vector We being

diagonal entries.

2 Definitions and Preliminaries

In this section, we will give some definitions and lemmas without proofs.
Definition 1 A sequence {x(i)}u

i=−1 is called a discrete path in the set S between
two points x∗, x∗∗ in S, if x(i) 6= x(j) for all i 6= j; and ‖x(i) − x(i−1)‖p = 2, for all
i = 0, 1, 2, · · · , u where x(−1) = x∗,x(u) = x∗∗. In addition, if either ‖x(i) − x∗‖p <
‖x(i+1)−x∗‖p, or ‖x(i)−x∗‖p > ‖x(i+1)−x∗‖p holds for all i, then the sequence is called
a strict discrete path in S. If a (strict) discrete path exists for two given points x∗ ∈ S,
x∗∗ ∈ S, x∗ 6= x∗∗, then x∗ and x∗∗ are said to be (strictly) path-wise connected in S.

For simplicity, we call a (strict) discrete path as a (strict) path. From the definition

of the path, it is clear that any two distinct points x,y ∈ S are (strictly) path-wise

connected, and hence S is a (strictly) path-wise connected domain.

Definition 2 For any x ∈ S, and any positive integer K, 1 ≤ K ≤ n, the K-neighborhood
of the point x under the lp-norm is defined by

N(x, K) = {y ∈ S : ‖y − x‖p ≤ 2 ·K 1
p}.

Particular, if K = 1, we write the 1-neighborhood N(x, 1) of x as N(x). The

boundary of a K-neighborhood N(x, K) is defined as

∂N(x, K) = {y ∈ S : ‖y − x‖p = 2 ·K 1
p}.

It can be verified that |∂N(x, K)| = (
n

K
). Let x be a point in ∂N(x, K), then x differs

from the point x in only K elements. The following Lemma is obvious from Definition

2.

Lemma 2.1 For every K ∈ Z, 1 ≤ K ≤ n, and any x ∈ S, the number of points in

N(x, K) is 1 +
∑K

i=1(
n
i

). Especially, when K = 1, |N(x)| = n + 1. 2

Definition 3 A point x∗ ∈ S is called a local discrete minimizer of the function f over
S, if f(x∗) ≤ f(x) for all x ∈ N(x∗). Furthermore, if f(x∗) ≤ f(x) for all x ∈ S, then
x∗ is called a global discrete minimizer of f over S.

4

ACCEPTED MANUSCRIPT

Let ei ∈ Rn be the ith unit directional vector, and D = {d : d = ±2 · ei, i =

1, · · · , n}. Then for any x ∈ S, there exists a direction d ∈ D such that x + d ∈ N(x) ⊂
S.

Definition 4 For any x ∈ S, a direction d ∈ D is called a descent direction of the
function f at x over S, if x + d ∈ S and f(x + d) < f(x). In addition, d∗ is called the
steepest discrete descent direction of the function f at x over S, if f(x + d∗) ≤ f(x + d)
holds for all the descent directions d of the function f at x over S.

Definition 5 Let x∗ be a local minimizer of the function f over S, B∗ is said to be a
discrete basin of the function f at x∗, if B∗ ⊂ S is a path-wise connected domain which
contains x∗, the steepest discrete descent trajectory from any point in B∗ converges to
x∗, and the steepest discrete descent trajectory from any point in S\B∗ does not converge
to x∗.

Note that Definition 1, 3, 4 and 5 for max-cut problems above are modifications of the

corresponding to definitions in [16].

Definition 6 [19] Let x∗ and x∗∗ be two distinct local minimizers of the function f over
S, the discrete basin B∗∗ of f at x∗∗ is said to be lower (or higher) than the discrete
basin B∗ of f at x∗, if f(x∗∗) < f(x∗) (or f(x∗∗) > f(x∗)).

Definition 7 [16] Let x∗ be a discrete minimizer of the function f over S, and B∗ be
the discrete basin of f at x∗. A function H : S→ R is said to be a discrete filled function
of f at x∗, if it satisfies the following conditions:

1. x∗ is a strict discrete local maximizer of H over S.
2. H has no discrete local minimizers in B∗ and in any discrete basin of f higher than

B∗.

3. if f has a discrete basin , B∗∗ say, lower than B∗, then there is a point x ∈ B∗∗

that minimizes H on the path {x∗, · · · ,x, · · · ,x∗∗} in S, where x∗∗ is a minimizer
of f in B∗∗.

3 The Continuation Method for Max-Cut Problems

Let W = (wij)n×n be the symmetric weighted adjacency matrix for a given graph

G(V, E) with wij 6= 0 for (i, j) ∈ E and wij = 0 for (i, j) 6∈ E. The max-cut problem

can be expressed as the following discrete quadratic optimization problem:

(MC) : mc∗ = max xT L̂x

s.t. x ∈ S

5

ACCEPTED MANUSCRIPT

where L̂ =Diag(We)−W ∈ Sn
+ is the Laplace matrix of the graph. Since L̂ + σI ∈ Sn

++

and xT (L̂ + σI)x = xT L̂x + σxTx = xT L̂x + nσ for any σ > 0 and for any x ∈ S,
without loss of generality, we always assume that the matrix L̂ ∈ Sn

++ with l̂ii > 0 for

all i = 1, · · · , n. Let L = −L̂, then the problem (MC) can be written as

(MMC) : min f(x) = xT Lx

s.t. x ∈ S
where L is a negative definite matrix with diagonal entries lii < 0 for all i = 1, · · · , n.

Xu et al. in [20] proposed a continuous relaxation method to solve problem (MMC),

in which problem (MMC) was relaxed into the following nonlinear optimization problem:

(MX). min f(x) = xT Lx

s.t. B(xi, 1) ≤ 0, i = 1, · · · , n,

‖x‖2
2 ≤ n

where

B(xi, 1) =

{
1+xi

2
log(1+xi

2
) + 1−xi

2
log(1−xi

2
), xi ∈ (−1, 1);

0, xi = −1, or xi = 1.

is strictly convex with respect to xi ∈ (−1, 1) (see [20]). Let x∗ and x∗∗ be global

minimizers of problems (MMC) and (MX), respectively, then f(x∗) ≥ f(x∗∗) or mc∗ ≤
−f(x∗∗), and x =sign(x∗∗) ∈ S is accepted as an approximate solution of (MC), where

sign(·) is the sign function. Furthermore, improvements on x can be made by using local

searches from the point x.

Assume that xk is a feasible solution of (MX), and gk = 2Lxk is the gradient of

f(x) at xk. The continuous algorithm generates a new point by xk+1 = gk‖xk‖2/‖gk‖2.

Define dk = xk+1 − xk = gk‖xk‖2/‖gk‖2 − xk as the search direction at xk. Then dk

and the continuous algorithm have the following properties (see [20]).

1. xk+1 is feasible to problem (MX).

2. Let dk 6= 0, then dk is a feasible descent direction of problem (MX) at xk.

3. If dk = 0, then xk is a KKT-point of problem (MX).

4. If dk 6= 0, for all k > 0, then ‖dk‖2 → 0.

These properties indicate that the continuous algorithm either terminates at a KKT

point in a finite steps or converges to a KKT point. The characteristics of the continuous

algorithm are that the dimension of the relaxed continuous optimization problem is not

6

ACCEPTED MANUSCRIPT

increased, no line searches and no matrix calculations are required in the implementation

of the algorithm. These properties greatly reduce the CPU-time of the algorithm and

save the memory. For simplicity, we denote the continuation algorithm by Algorithm

(CA) in the rest of this paper, and if without special statement, the function f is only

viewed as the objective function in problem (MMC).

Since the function f(x) is concave, the solution obtained by Algorithm (CA) can

not be guaranteed to be a global optimal solution. Therefore, a discrete filled function

algorithm is proposed here to find a global minimizer of problem (MMC), in which the

algorithm (CA) is used to find local minimizers of problem (MMC).

4 A New Discrete Filled Function and Its Properties

In this section, we propose a new discrete filled function that can exploit the special

structure of max-cut problems. The filled function is defined as follows.

Hp(x;x∗; α, β) =

{ −1
a+f(x)−f(x∗) − β‖x− x∗‖p, f(x) ≥ f(x∗);

−α
a+f(x∗)−f(x)

− β‖x− x∗‖p + α−1
a

, f(x) ≤ f(x∗).
(4.1)

where x∗ is a local minimizer of the function f , a > 0 is a constant, and α > 0, β > 0 are

two parameters. The term α−1
a

ensures that the function Hp(x;x∗; α, β) is continuous

in Rn. For simplicity, in the rest of the paper, we only consider the case of p = 1,

and denote H1(x;x∗; α, β) by H(x;x∗; α, β), but it is not hard to extend all results of

this paper to the case of 1 < p < ∞. Two obvious advantages of the filled function

H(x;x∗; α, β) can be obtained from the analysis below.

• In order to minimize the filled function H from a neighbor point x of x∗, we only

need to minimize the function f from x along a direction that is away from the

minimizer x∗ (see subsection 6.4), instead of finding a descent direction of the filled

function H(x;x∗; α, β) at x.

• The values of the parameters α and β in the filled function H can be exactly

confirmed for all max-cut problems (see section 5). This is significant for the

solution of large scale max-cut problems.

Now we will show that the function H(x;x∗; α, β) is a desired discrete filled function

of f at point x∗. The following lemma plays an important role in the analysis of this

section.

7

ACCEPTED MANUSCRIPT

Lemma 4.1 Let matrix L be given and x ∈ S, then for any y ∈ N(x), we have

|f(y)− f(x)| ≤ 4qM + l0 ,

where q = max{qi : i = 1, · · · , n} ≤ n and M = max{‖li‖1 : i = 1, · · · , n}, li is the
ith column of the matrix L, qi (i = 1, · · · , n) is the number of nonzero elements in the
vector li (i = 1, · · · , n), and l0 = max{−4lii : i = 1, · · · , n} > 0.

Proof. Let xm ∈ N(x) (m = 1, 2, · · · , n), where the superscript m denotes that only

the mth element of xm differs from the mth element of x, i.e.

xm
i =

{
xi, i = 1, 2, · · · , n, i 6= m;

−xi, i = m.

Since lmm < 0,m = 1, 2, · · · , n, we have

|f(xm)− f(x)| = |(xm)T Lxm − xT Lx|
= |

n∑
i6=m

n∑
j 6=m

xilijxj + xmlmmxm − 2
n∑

i6=m

xilimxm −
n∑
i,j

xilijxj|

= 4|
n∑

i=1,i6=m

xilimxm|

= 4|xm · xT lm − xmlmmxm|
≤ 4|xT lm| − 4lmm ≤ 4qm‖lm‖1 − 4lmm

≤ 4qM + l0, m = 1, 2, · · · , n.

This completes the proof. 2

Lemma 4.2 Let x ∈ S, then there exist an integer K(1 ≤ K ≤ n) such that

|f(y)− f(x)| ≤ K(4qM + l0)

holds for all y ∈ S \ {x}, where constants q, M, and l0 are given in Lemma 4.1.

Proof. Let y ∈ S, y 6= x, then there exists an integer K(1 ≤ K ≤ n) such that

y ∈ ∂N(x, K). Hence, there must exist at least one path {xj}K
j=0 from x to y satisfying

x0 = x, xK = y and xj ∈ N(xj−1), j = 1, · · · , K. Since

|f(y)− f(x)| = |f(xK)− f(xK−1) + f(xK−1)− f(xK−2) + · · · f(x1)− f(x0)|
≤

K∑
j=1

|f(xj)− f(xj−1)|,

it then follows from Lemma 4.1 that

|f(y)− f(x)| ≤
K∑

j=1

(4qM + l0) = K(4qM + l0). 2

8

ACCEPTED MANUSCRIPT

Theorem 4.3 Let x∗ be a local minimizer of the function f on S and α > 0. If

β >
4qM + l0

2a(a + 4qM + l0)
, (4.2)

then the function H(x;x∗; α, β) satisfies the first condition of Definition 7, i.e. x∗ is a
strict local maximizer of H(x;x∗; α, β) on S. Furthermore, if x∗ is a global minimizer of
f on S, then H(x;x∗; α, β) < −1/a for all x ∈ S\{x∗}, that is, x∗ is a global maximizer
of H(x;x∗; α, β) on S.

Proof. Let x∗ be a local minimizer of f on S. Since f(x) ≥ f(x∗) and ‖x − x∗‖1 = 2

for any x ∈ N(x∗) \ {x∗}. It follows from Lemma 4.1 that

H(x;x∗; α, β) = −1
a+f(x)−f(x∗) − β‖x− x∗‖1

≤ −1
a+4qM+l0

− 2β.
(4.3)

Since β satisfies (4.2), the right hand side of (4.3) is strictly less than −1/a, that is

H(x;x∗; α, β) < −1

a
= H(x∗;x∗; α, β)

Hence, x∗ is a strict local maximizer of H(x;x∗; α, β) on S.
If x∗ is a global minimizer of f on S, then for any given x ∈ S \ {x∗}, there exists

an integer K(1 ≤ K ≤ n) depending on the x , such that x ∈ ∂N(x∗, K). Hence, from

Lemma 4.2,

H(x;x∗; α, β) = −1
a+f(x)−f(x∗) − β‖x− x∗‖1

≤ −1
a+K(4qM+l0)

− 2βK.
(4.4)

Since

β >
4qM + l0

2a(a + 4qM + l0)
≥ (4qM + l0)

2a[a + K(4qM + l0)]
.

Hence the right hand side of (4.4) satisfies

−1
a+K(4qM+l0)

− 2βK < −1
a+K(4qM+l0)

− K(4qM+l0)
a[a+K(4qM+l0)]

= −1
a+K(4qM+l0)

− (1
a
− 1

a+K(4qM+l0)
)

= − 1
a

= H(x∗;x∗; α, β).

This completes the proof. 2

Lemma 4.4 Let x∗ be a local minimizer of the function f on S, x ∈ S, and f(x) ≥
f(x∗). If there exists d ∈ D, such that x+d ∈ S, f(x+d) ≥ f(x∗) and ‖x+d−x∗‖1 >
‖x− x∗‖1, and if β satisfies (4.2), then we have

H(x + d;x∗; α, β) < H(x;x∗; α, β) < H(x∗;x∗; α, β) = −1

a
, (4.5)

9

ACCEPTED MANUSCRIPT

Proof. Since ‖x+d−x∗‖1 > ‖x−x∗‖1, f(x) ≥ f(x∗), and f(x+d) ≥ f(x∗). It follows

that ‖x + d− x∗‖1 − ‖x− x∗‖1 = 2, and

H(x + d;x∗; α, β)−H(x;x∗; α, β)

= −1
a+f(x+d)−f(x∗) + 1

a+f(x)−f(x∗) − 2β

= f(x+d)−f(x)

[a+f(x+d)−f(x∗)][a+f(x)−f(x∗)] − 2β.

(4.6)

If f(x+d) ≤ f(x), then H(x+d;x∗; α, β) < H(x;x∗; α, β) for any β > 0. If f(x+d) ≥
f(x), since f(x) ≥ f(x∗), we have

[a + f(x + d)− f(x∗)][a + f(x)− f(x∗)]

≥ a2 + a[f(x + d)− f(x∗) + f(x)− f(x∗)]

= a2 + a[f(x + d)− f(x) + 2(f(x)− f(x∗))]

≥ a2 + a[f(x + d)− f(x)] > 0.

Hence

H(x + d;x∗; α, β)−H(x;x∗; α, β) ≤ f(x + d)− f(x)

a2 + a[f(x + d)− f(x)]
− 2β.

Let g(t) = t
a2+at

, t ≥ 0, then it can be verified that g(t) is a monotonically increasing

function with respect to t in the interval [0,∞). Thus from Lemma 4.1

H(x + d;x∗; α, β)−H(x;x∗; α, β) ≤ g(f(x + d)− f(x))− 2β

≤ g(4qM + l0)− 2β

= 4qM+l0
a2+a(4qM+l0)

− 2β.

When β satisfies (4.2),

H(x + d;x∗; α, β) < H(x;x∗; α, β)

holds. The first inequality in (4.5) is proved. The second inequality in (4.5) directly

follows from Theorem 4.3. 2

For any given point x ∈ S with f(x) ≥ f(x∗), let

Dx = {d ∈ D : x + d ∈ S, f(x + d) ≥ f(x∗), ‖x + d− x∗‖1 > ‖x− x∗‖1}.

Lemma 4.4 indicates that if Dx is nonempty, then x is not a local minimizer of the

function H when β satisfies (4.2). Especially, we have the following result.

10

ACCEPTED MANUSCRIPT

Theorem 4.5 Let x∗ be a local minimizer of the function f on S, and B∗ be the discrete
basin of f at x∗. If β satisfies (4.2), then H(x;x∗; α, β) has no any local minimizer in
B∗ and in any basin higher than B∗.

Proof. Let U∗ denote the union of all basins of f higher than B∗, it is clear from

definition 6 that f(x) > f(x∗) holds for any point x ∈ U∗. Note that −x∗ 6∈ U∗ via

f(−x∗) = f(x∗) and −x∗ 6∈ B∗ via the fact that −x∗ oneself is a minimizer of f . Hence

for any x ∈ B∗ or x ∈ U∗, it follows that x 6= −x∗. Thus, there exists at least a direction

d ∈ D at x, such that x+d ∈ S and ‖x+d−x∗‖1 > ‖x−x∗‖1. If f(x+d) < f(x∗), then

we can obtain a point, x∗∗ say, satisfying f(x∗∗) < f(x∗) by minimizing the function

f from x. It means x is in a basin of f lower than the basin B∗. This contradicts

with x ∈ B∗ or x ∈ U∗. Thus we have f(x + d) ≥ f(x∗) and the set Dx is nonempty.

It then follows from Lemma 4.4 that x is not a local minimizer of the filled function

H(x;x∗; α, β).2

From Lemma 4.4 and Theorem 4.5, we obtain that when β satisfies (4.2), for any

x ∈ U∗ or x ∈ B∗,x 6= x∗, if d satisfies ‖x+d−x∗‖1 > ‖x−x∗‖1 and f(x+d) ≥ f(x∗),

then d is a descent direction of H at x and H(x;x∗; α, β) satisfies the second condition

of definition 7. In addition, Lemma 4.4 indicates that when x lies in a basin of the

function f lower than the current basin B∗, if the set Dx is nonempty, then x can not be

a minimizer of the function H(x;x∗; α, β), which arises a question whether the function

H(x;x∗; α, β) has local minimizer on S. The following result gives the answer.

Theorem 4.6 Let x∗, x∗∗ be two distinct minimizers of function f satisfying f(x∗) >
f(x∗∗), and B∗, B∗∗ be two neighboring basins of the function f at x∗, x∗∗ in S, respec-
tively. Then the following conclusions hold.

1. There exists a point x ∈ B∗∗ and a descent direction d of f at x satisfying

f(x + d) < f(x∗) ≤ f(x). (4.7)

and a strict path {x(i)}u
i=0 in S between x∗(= x(0)) and x(= x(u)), such that

f(x(i)) ≥ f(x∗) (4.8)

holds for all i = 1, · · · , u.

2. Furthermore, if β satisfies (4.2) and

α >
2aβM1M2 + M1[f(x)− f(x∗)]

M2[f(x∗)− f(x + d)]
, (4.9)

11

ACCEPTED MANUSCRIPT

then x is a minimizer of H(x;x∗; α, β) on the path {x(i)}u+v
i=0 in S, where x(u+1) =

x + d, x(u+v) = x∗∗, and

M1 = a + f(x∗)− f(x + d),M2 = a + f(x)− f(x∗). (4.10)

Proof. Let x∗∗ ∈ ∂N(x∗, K) for some integer K(1 < K < n), then there exists a strict

path {x(i)}K
i=0 with x(0) = x∗,x(K) = x∗∗ satisfying ‖x(i) − x∗‖1 < ‖x(i+1) − x∗‖1, i =

0, 1, · · · , K − 1. Since f(x∗∗) < f(x∗), there exists a point, x(u)(1 < u < K) say, on the

path {x(i)}K
i=0 such that

f(x(u)) ≥ f(x∗), f(x(u+1)) < f(x∗).

Hence, if we take x = x(u) and d = x(u+1)−x(u), then point x and the direction d satisfy

(4.7). The strict path {x(i)}u
i=0 with x∗ = x(0) and x = x(u) satisfies (4.8). This proves

the first conclusion.

To prove the second conclusion, it is sufficient to show H(x;x∗; α, β) < H(x(u+1);x∗; α, β),

and H(x;x∗; α, β) < H(x(u−1);x∗; α, β) hold on the path. Since x∗ is a local mini-

mizer of f on S and x(1) ∈ B∗, it follows from Theorem 4.3 that H(x(1);x∗; α, β) <

H(x∗;x∗; α, β) = −1/a holds when β satisfies (4.2).

Since {x(i)}u
i=0 is a strict path starting from x∗, and ‖x(i−1) − x∗‖1 < ‖x(i) − x∗‖1

holds for all i = 1, · · · , u. In view of (4.8) and Lemma 4.4, for all the points {x(i)}, i =

0, · · · , u on the strict path, we have

H(x(i);x∗; α, β) < H(x(i−1);x∗; α, β) ≤ −1/a, i = 1, · · · , u,

when β satisfies (4.2). Especially,

H(x;x∗; α, β) < H(x(u−1);x∗; α, β) < H(x(u−j);x∗; α, β), j = 2, · · · , u (4.11)

On the other hand, since x ∈ B∗∗, x + d ∈ B∗∗ and d satisfies (4.7), it follows from the

definition of the function H that

H(x + d;x∗; α, β)−H(x;x∗; α, β)

= −α
a+f(x∗)−f(x+d)

+ 1
a+f(x)−f(x∗) + α−1

a
− 2β

= [a+f(x∗)−f(x+d)]−α[a+f(x)−f(x∗)]
[a+f(x∗)−f(x+d)][a+f(x)−f(x∗)] + α−1

a
− 2β

= αM2[f(x∗)−f(x+d)]−M1[f(x)−f(x∗)]−2aβM1M2

aM1M2
.

(4.12)

It can be verified that the right hand side of (4.12) is strict positive when α satisfies

(4.9) and β satisfies (4.2), that is

H(x;x∗; α, β) < H(x + d;x∗; α, β). (4.13)

12

ACCEPTED MANUSCRIPT

Therefore, x minimizes H(x;x∗; α, β) on the path {x(i)}u+1
i=0 in S between x∗ and x(u+1) =

x+d. If x+d = x∗∗, then the conclusion of the theorem holds. If x+d 6= x∗∗, the path

can be extended by the steepest descent trajectory {x(i)}u+v
i=u+1 of f in S from x + d to

x∗∗ = x(u+v), where u + v = K. Hence x is a minimizer of H(x;x∗; α, β) on the path

{x(i)}u+v
i=−1.2

Theorem 4.6 indicates that the function H(x;x∗; α, β) satisfies the third condition

of definition 7 when β satisfies (4.2) and α satisfying (4.9). From the analysis above, we

can conclude that when β and α satisfy (4.2) and (4.9), H(x;x∗; α, β) is a discrete filled

function of the function f at the local minimizer x∗ on S.

5 Estimation of parameters α, β

The parameter values play important role in general filled function algorithms for

global optimization, and generally are adjustable. A typical approach to select the

parameter values in literature is to first give initial estimations of parameters, and then

adjust the values of the parameters step by step in the process of implementing an

algorithm to ensure the desired properties of filled functions. However, analyzing the

characteristic of max-cut problems indicates that the values of the parameters α and β

in the filled function H is independent of the variable x ∈ S and need not to be adjusted

in the implementation of the algorithm. It follows from Theorems 4.3 and 4.6 that when

β and α satisfy (4.2) and (4.9), H(x;x∗; α, β) is a desired filled function of f at x∗ on

S, where x∗ is a local minimizer of function f .

By (4.2), the value (4qM + l0)/(2a(a+4qM + l0)) increases and converges to 1/(2a)

as (4qM + l0) increases and tends to ∞. Clearly, when β = 1/(2a),

β =
1

2a
>

4qM + l0
2a2 + 2a(4qM + l0)

holds for all max-cut problems. In the rest of this section, we discuss the estimation for

the value of the parameter α.

Since 0 < f(x) − f(x + d) ≤ 4qM + l0, from inequality (4.7) and equation (4.10),

we have

a + f(x)− f(x + d)− f(x∗) ≤ a + 4qM + l0 − f(x∗).

and

0 < M2 ≤ 2a + 4qM + l0 −M1. (5.1)

13

ACCEPTED MANUSCRIPT

Replacing f(x)−f(x∗) and f(x∗)−f(x+d) in (4.9) with M2−a and M1−a, respectively,

and using (5.1) generate

2aβM1M2+M1[f(x)−f(x∗)]
M2[f(x∗)−f(x+d)]

= (2aβ+1)M1M2−aM1

M1M2−aM2
=

2aβ+1− a
M2

1− a
M1

≤ 2aβ+1− a
2a+4qM+l0−M1

1− a
M1

.
(5.2)

Let

µ(t) =
2aβ + 1− a

2a+4qM+l0−t

1− a
t

, a < t ≤ a + 4qM + l0.

It can be verified that µ(t) is a monotonically decreasing function with respect to t in

the interval (a, a + 4qM + l0].

Let ε (0 < ε ≤ 1) denote the precision of the entries of the matrix L, then

M1 = a + f(x∗)− f(x + d) ≥ a + ε > a > 0. (5.3)

Hence, from (5.2), (5.3) and β = 1/(2a),

2aβ+1− a
M2

1− a
M1

≤ µ(M1) ≤ µ(a + ε) =
2aβ+1− a

2a+4qM+l0−(a+ε)

1− a
a+ε

=
2(a+ε)− a(a+ε)

4qM+l0+(a−ε)

ε

(5.4)

The value of the right hand side in (5.4) increases and converges to 2(a + ε)/ε as the

value (4qM + l0) increases and tends to ∞. Especially, if α = 2(a + ε)/ε, we have

α =
2(a + ε)

ε
>

2(a + ε)− a(a+ε)
4qM+l0+(a−ε)

ε
,

and inequality (4.9) holds for all max-cut problems when the precision of the entries in

the matrix L is within ε.

6 The Algorithm

In this section, we describe the discrete filled function algorithm embedded with

the continuous relaxation algorithm (CA) for the solution of max-cut problems. The

steps of the proposed algorithm and the details of implementing the algorithm will be

presented in the following subsections.

14

ACCEPTED MANUSCRIPT

6.1 Minimizing f Using Algorithm 1-NLS

Let x = (x1, · · · , xn)T ∈ S be a feasible point of problem (MMC), the 1-neighborhood

search (1-NLS) staring from the point x will be implemented to either find a local min-

imizer of function f(x) on S, or confirm that x already is a local minimizer. Denote the

n neighbor points of x in N(x) by x1, · · · ,xp, · · · ,xn, where the superscript p means

that only the pth element of xp differs from the pth element of x. The point xi∗ ∈ N(x)

satisfying f(xi∗) = min{f(xp) : p = 1, · · · , n} is determined. If f(xi∗) < f(x), then

replace x with xi∗ and repeat the process until a point x∗ satisfying f(x∗) = min{f(x) :

x ∈ N(x∗)} is found. Formally, the 1-neighborhood local search (1-NLS) for problem

(MMC) can be presented as follows.

Algorithm (1-NLS):

Step 1. Input a feasible point x0 ∈ S, f0 = f(x0) and set k = 0.

Step 2. Calculate f i = f(xi
k) for all i = 1, · · · , n and f i∗ = f(xi∗

k) := min
i
{f i}.

Step 3. If f i∗ ≥ fk = f(xk), then return xk as a local minimizer of f and stop;

Otherwise set xk+1 = xi∗
k , fk+1 = f i∗ , k = k + 1, goto Step 2.

6.2 The Statement of the Algorithm

Let xCA be a local solution of the problem (MX) obtained by using the continuous

relaxation algorithm (CA) from an initial point x0 ∈ [−1, 1]n. Then x(1) =sign(xCA)

is a feasible point of the problem (MMC). Since x(1) may not be a local minimizer

of problem (MMC), local searches from x(1) are implemented to either obtain a local

minimizer of problem (MMC) or confirm that x(1) is already a local minimizer. We use

x∗ to denote the minimizer. After the local minimizer x∗ is obtained, initial points are

successively and randomly generated in the neighborhood N(x∗) to minimize the filled

function H(x;x∗; α, β) until that either a point, x(2) say, in a basin of f lower than the

basin containing x∗ is obtained, or no progress in the function value can be obtained. In

the case of obtaining x(2), the process will be repeated until a point, x(k) say, is obtained

at which no progress in the function value can be obtained. Then x(k) will be accepted

as an approximate solution of problem (MMC). We denote the algorithm that generates

a local minimizer of (MMC) using Algorithm CA + 1-NLS by discrete filled function

embedded with continuous relaxation (DFFEC) algorithm. The algorithm (DFFEC)

can be stated as follows.

15

ACCEPTED MANUSCRIPT

Algorithm (DFFEC).

Step 0. (Initialization)

(1). Input the matrix W , the value of ε, constant a, an initial point x0 ∈ [−1, 1]n,

an integer n1(≤ n) and set k := 0;

(2). Calculate β = 1/2a, α = 2(a + ε)/ε;

Step 1. Find a local minimizer xCA
k of problem (MX) from xk using Algorithm CA,

and set x̄CA
k =sign(xCA

k);

Step 2. Find a local minimizer x∗k of problem (MMC) from x̄CA
k using Algorithm

1-NLS. Set I = 1, and Ñ = {x∗k};
Step 3. Randomly generate an initial point xi

k in N(x∗k) \ Ñ ;

Step 4. Minimize the filled function H(x;x∗k; α, β) starting from the point xi
k. If a point

x is obtained such that either x satisfies f(x) < f(x∗k) or x lies in a basin of f

lower than the current basin, then set xk+1 = x, k = k + 1 and goto Step 1;

Step 5. If I < n1, set Ñ = Ñ
⋃{xi

k}, I = I + 1, and goto Step 3; Otherwise, return x∗k
and stop.

Remark 1. The index i of xi
k in step 3 means that only the ith element of xi

k differs

from that of x∗k. Note that the index i is distinct from but dependent on the counter I

(see subsection 6.3 below).

Remark 2. The termination condition I = n1 indicates that we can not get a better

solution than the current x∗k after randomly n1 points out of n points in N(x∗k) have

been used as initial points to minimize the filled function H(x;x∗k; α, β).

We can also use only the 1-NLS algorithm in subsection 6.1 to generate a local

minimizer of problem (MMC) from a given feasible point. Then the minimization of

the filled function can be implemented from the neighbor points of the local minimizer.

We denote this algorithm that obtains a local minimizer of f using only 1-NLS by pure

discrete filled function (PDFF) algorithm. The steps of the algorithm (PDFF are

described as follows.

Algorithm (PDFF).

Step 0. (Initialization)

Given an initial x0 ∈ [−1, 1]n, other parameters are the same as

Algorithm DFFEC.

Step 1. Find a local minimizer x∗k of problem (MMC) from xk using 1-NLS,

Set I = 1, and Ñ = {x∗k}.

16

ACCEPTED MANUSCRIPT

The rest steps of Algorithm PDFF are the same as Step 3 to Step 5 of Algorithm DFFEC.

6.3 Generating Initial Points to Minimize H

Let x∗k be a local minimizer of function f(x) in [−1, 1]n. Then the minimization

of the filled function H will be implemented from the neighbor points of x∗k in N(x∗k).

These points are randomly generated in N(x∗k). Now, we state the process of randomly

generating n1(< n) (in case necessary) initial points from n points in N(x∗k) \ {x∗k}.
Let I1 = [n/n1], where [a] denotes the integer part of the real number a. If n/n1 is an

integer, then we can partition the set N = {1, · · · , n} into n1 disjoint subsets, and each

subset has I1 integers, that is, N = N1

⋃
N2

⋃ · · ·⋃ Nn1 and N1 = {1, · · · , I1}, N2 =

{I1 +1, · · · , 2I1}, · · · , Nn1 = {(n1− 1)I1 +1, · · · , n1I1}. Then xi
k is selected as an initial

point to minimize the filled function H(x;x∗; α, β), where i = (I − 1) · I1 + [c · I1] + 1 ∈
NI , I = 1, 2, · · · , n1 and c is a random number generated in (0, 1) and may be different

for different I. Note that the superscript i in xi
k means that only the ith element of xi

k

differs from that of x∗k.

If n/n1 is a fraction, then set n0 = n− n1I1 (n0 < n1). The set N = {1, · · · , n} is

also partitioned into n1 disjoint subsets, where each subset of the first n1−n0 subsets has

I1 integers and each subset of last n0 subsets has I1 + 1 integers. Then the superscript

i in initial point xi
k is determined by

i = (I − 1) · I1 + [c · I1] + 1;

for I = 1, 2, · · · , n1 − n0, or

i = (n1 − n0)I1 + [(I1 + 1) · c] + 1 + (I1 + 1)(I − (n1 − n0)− 1)

= [(I1 + 1) · c] + 1 + (I1 + 1)(I − 1)− (n1 − n0),

for I = n1 − n0 + 1, · · · , n1 − n0 + j, · · · , n1, where c ∈ (0, 1) is still a random number

generated in (0, 1).

6.4 Minimizing the Filled Function H

In this subsection, we describe the process of minimizing the filled function H. Let

x∗k = (x∗k1, · · · , x∗km, · · · , x∗kn)T ∈ S be the current local minimizer of problem (MMC)

and x = (x1, · · · , xn)T ∈ ∂N(x∗k, K), 1 ≤ K ≤ n. Denote XK = {y ∈ S : y ∈
N(x), ‖y−x∗k‖1 > ‖x−x∗k‖1}, then the following result is clear and its proofs is omitted.

17

ACCEPTED MANUSCRIPT

Lemma 6.1 There exist (n−K) elements in the set XK. 2

Let xi
k = (xi

k1, · · · , xi
km, · · · , xi

kn)T be a point that is randomly generated in N(x∗k)\{x∗k}
using the method given in subsection 6.3. Since xi

k ∈ ∂N(x∗k, 1), |X1| = n − 1, where

X1 = {x ∈ S : x ∈ N(xi
k), ‖x− x∗k‖1 > ‖xi

k − x∗k‖1}, and

X1 = {xi1
k , · · · ,xi,i−1

k ,xi,i+1
k , · · · ,xij

k , · · · ,xin
k },

xij
k = (xij

k1, · · · , xij
km, · · · , xij

kn)T ∈ X1 with xij
km = xi

km, (m = 1, 2, · · · , n, m 6= j), and

xij
kj = −xi

kj .

Now, we present the process of minimizing the filled function H starting from

the initial point xi
k ∈ N(x∗k). Assume that f(xij

k) ≥ f(x∗k) holds for all points xij
k ∈

X1, (j = 1, · · · , n, j 6= i) (If there exists xij
k ∈ X1 such that f(xij

k) < f(x∗k), then

xij
k is in a basin lower than the current basin containing x∗k). Since f(xi

k) ≥ f(x∗k),

‖xij
k − x∗k‖1 > |xi

k − x∗k‖1, and α, β are given in algorithm (DFFEC), it follows from

Lemma 4.4 that

δH(j) = H(xij
k ;x∗k; α, β)−H(xi

k;x
∗
k; α, β) < 0, j = 1, · · · , n, j 6= i.

On the other hand,

δH(j) =
f(xij

k)−f(xi
k)

[a+f(xij
k)−f(x∗)][a+f(xi

k)−f(x∗)]
− 2β

=
δf (j)

[δf (j)+a+f(xi
k)−f(x∗)][a+f(xi

k)−f(x∗)] − 2β, j = 1, · · · , n, j 6= i.

where δf (j) = f(xij
k) − f(xi

k). It can be verified that, for the fixed point xi
k, δH(j) is

monotonically increasing with respect to the value of δf (j). Let

j∗ = arg min
j
{δf (j) : j ∈ {1, 2, · · · , n} \ {i}}

then for all xij
k ∈ X1, we have

H(xij∗
k ;x∗k; α, β) ≤ H(xij

k ;x∗k; α, β),

and hence xij∗
k is accepted as the next iterate point for minimizing H(x;x∗k; α, β).

After xij∗
k ∈ ∂N(x∗k, 2) is found, the process above will be repeated in the set

X2 = {x ∈ S : x ∈ N(xij∗
k), ‖x − x∗k‖1 > ‖xij∗

k − x∗k‖1} with |X2| = n − 2 until either a

point in a lower basin is found or the minimization of H from the point xi
k is terminated

when K reaches [n/2]. Formally, the minimization of filled function H can be described

18

ACCEPTED MANUSCRIPT

as follows.

Algorithm (MF): Minimizing the Filled Function H

Step 1. Let xi
k ∈ N(x∗k) \ Ñ be a randomly generated point, set x̃i

k = xi
k. Calculate

δ0(j∗) = f(x̃i
k)− f(x∗k) = −4

n∑

m=1,m 6=i

x∗kmlmix
∗
ki,

set K = 1 and Ĩ = {i}.
Step 2. If K = [n

2
], go to step 2 of Algorithm (DFFEC). Otherwise, calculate

δf (j) = f(xij
k)− f(x̃i

k) = −4
n∑

m=1,m 6=j

x̃i
kmlmjx̃

i
kj

= −4x̃i
kj(x̃)T lj + 4ljj, j = 1, · · · , n, j 6∈ Ĩ ,

(6.1)

for all xij
k ∈ XK = {x ∈ N(x̃i

k) : ‖x− x∗k‖1 > ‖x̃i
k − x∗k‖1}, and

j∗ = arg min{δf (j) : j ∈ {1, 2, · · · , n} \ Ĩ}, (6.2)

δK(j∗) = f(xij∗
k)− f(x∗k) = δK−1(j∗) + δf (j∗),

Step 3. If δK(j∗) = f(xij∗
k)− f(x∗k) < 0, then go to Step 1 in algorithm (DFFEC) to

find a better local minimizer of problem (MX) starting from xij∗
k .

Step 4. Set x̃i
k = xij∗

k , K = K + 1, Ĩ = Ĩ ∪ {j∗}, goto step 2.

Remark 3. By the symmetrical structure of the set S, if x ∈ ∂N(x∗k, K) for any integer

K with [n
2
] < K ≤ n, then −x ∈ ∂N(x∗k, n−K) and f(−x) = f(x). Thus if we can not

find a point x, that will be in a basin of f lower than the current basin, along the steepest

descent path of H(x;x∗k; α, β) from the point xi
k ∈ N(x∗k) to a point in ∂N(x∗k, [

n
2
]), then

it is not necessary to continue the search in ∂N(x∗k, [
n
2
] + 1). Hence, when K reaches

[n
2
] in step 2, the minimization of filled function H(x;x∗k; α, β) need to be restarted by

generating another initial point in N(x∗k).

Remark 4. In order to obtain the next iterate point xij∗
k from previous point x̃i

k in

minimizing H, instead of directly calculating the value f(xij
k) (j ∈ {1, 2, · · · , n} \ Ĩ),

inner products of two vectors in (6.1) (at most (n − |Ĩ| inner products) need to be

calculated.

19

ACCEPTED MANUSCRIPT

7 Numerical Results

In this section, some numerical results and comparisons are reported on some typical

max-cut test problems. The proposed algorithm in this paper is coded using Matlab

6.5 and is implemented in a PC with 1.43GHz Pentium IV and 256Mb of RAM. The

following notations are used in this section.

DF-x: The best max-cut value obtained by running Algorithm DFFEC x times.

For instance, DF-1 means that the max-cut value is obtained by running Algorithm

DFFEC once.

PDF-x: The best max-cut value obtained by running Algorithm PDFF x times.

VNS-x: The best max-cut value obtained by running VNS heuristic x times.

Cn-m: The best max-cut value obtained by running CirCut with parameters (n,m).

UB: An upper bound of the max-cut value obtained by the SDP relaxation.

ρ-x: The ratio of DF-x and UB when running Algorithm DFFEC x times.

T-x: The average time of CPU (in seconds) in running certain algorithm x times.

N-x: The average numbers of local minimizers of problem (MC) returned by running

Algorithm DFFEC x times;

NH-x: The average times of minimizing the filled function H when running Algo-

rithm DFFEC x times.

All the entries wij in the matrix W for all max-cut test problems are integers, and

hence the precision of entries is ε = 1, and parameter values a = 0.5, β = 1, α = 3 satisfy

the conditions when running Algorithm DFFEC (see Step 0 in algorithm DFFEC).

The first set of test problems consists of 45 max-cut problems. These problems,

denoted by Pi, (i = 1, · · · , 45), are randomly generated by the following way. Let

u ∈ (0, 1) be a given constant and i, j be two nodes. Then generating a random fraction

v ∈ (0, 1). If v ≤ u, then there is an edge between the nodes i and j, and the weight

is wij = 1 for n = 100 and n = 150, and wij is a random integer between 1 and 50 for

n = 200. If v > u, then wij = 0, that is, there is no edge between nodes i and j. The

second set of test problems consists of 15 G-set graphs, G1, G2, G3, G11, G12, G13,

G14, G15, G16, G22, G23, G24, G43, G44 and G45. These problems are created using

a graph generator, rudy, written by Pro. Rinaldi.

Numerical comparisons by running both the Algorithm DFFEC and Algorithm

PDFF once on test problems Pi, (i = 1, · · · , 9 and i = 31, · · · , 45) are given in Table

1. It can be observed from Table 1 that PDFF can get almost the same solution as

20

ACCEPTED MANUSCRIPT

DFFEC when the problem size and the value of u are small. However, DFFEC obviously

generates better solutions than PDFF does when either the problem size or the value

of u increases. Based on these numerical results, in the remainder of this section, we

only give the comparison of the Algorithm DFFEC with other available approximation

algorithms.

The first comparison is given between the Algorithm DFFEC and VNS heuristic for

problems Pi, (i = 1, · · · , 45) and 10 out of 15 G-set problems. Variable Neighborhood

Search (VNS) heuristic is a local search algorithm and is one of the algorithms considered

by Festa et al. [6] in finding the solution of max-cut problems. The numerical results in

[6] show that VNS heuristic is one of promising algorithms with high performance. For

all problems Pi(i = 1, · · · , 45), Both the Algorithm (DFFEC) with n1 = [n/2] and the

VNS heuristic with kmax = [n/2] (see [6], [1], [2]) are running 5 times for each problem

of the first set test problems (see Table 2) and one time for each problem of the second

test problems (see Table 3). The results of VNS heuristic on the 10 G-set problems are

completely quoted from Table I in [6]. It can be observed from Table 2 and Table 3

that Algorithm DFFEC generates better max-cut values than VNS heuristic for most of

these test problems with only the exception of G2.

The Second comparison is given between the algorithm (DFFEC) and the CirCut

heuristic. Based on the Goemans-Williamson randomized algorithm, Burer et al. [4]

proposed a rank-two relaxation for max-cut problems and developed a specialized version

of the Goemans-Williamson technique. Burer et al. [4] implemented their approach by

a Fortran 90 code named ”CirCut”. It is one of the most popular heuristics for solving

max-cut problems. In this comparison, the algorithm (DFFEC) is running one time and

10 times, respectively, on 8 G-set problems, G11, G12, G13, G14, G15, G22, G23, and

G24. The algorithm CirCut Heuristic is running with parameter values (n,m)=(0,1) and

(n,m)=(5,10), respectively. The results are given in Table 4, where results of Cn-m is

completely cited from Burer et al. [4]. It can be seen from Table 4 that the results of

DF-1 are better than those of C0-1 with the exception of G23. When the parameter

values (n,m)=(5,10) are used in running CirCut heuristic, only the results of problems

G22, G23 are better than those of DF-10.

Finally, we report results on third class of test problems, the benchmark problem set

of the 7th DIMACS Implementation Challenge (see http://dimacs. rutgers.edu/ Chal-

lenges/ Seventh/). Two problems, pm3-8-50 and g3-8 are chosen. These two problems

21

ACCEPTED MANUSCRIPT

Table 1: The Comparisons of the value DF-1 and PDF-1 for test problems P1 - P9,
and P31 - P45, where DF-1 and PDF-1 mean the objective value obtained by running
DFFEC and PDFF only one time, respectively.

Max-cut value Time
Name n u DF-1 PDF-1 DF-1 PDF-1

P1 100 0.1 138 138 6.21 12.32
P2 128 126 6.08 12.01
P3 130 130 6.32 11.52
P4 100 0.3 294 292 5.81 11.86
P5 323 321 5.43 10.97
P6 335 330 5.60 11.05
P7 100 0.5 455 452 4.87 10.16
P8 500 500 5.91 9.79
P9 469 465 8.10 15.21
P31 200 0.1 12684 12676 96.35 137.39
P32 13135 13123 96.76 112.63
P33 12370 12354 96.52 134.46
P34 200 0.3 30842 30832 115.67 141.23
P35 30589 30573 71.78 132.19
P36 29702 29670 73.53 125.36
P37 200 0.5 43830 43812 61.98 130.32
P38 44809 44795 81.63 101.42
P39 45323 45311 68.62 92.13
P40 200 0.7 58496 58482 95.79 103.20
P41 60085 60070 92.51 101.87
P42 57444 57430 61.86 101.36
P43 200 0.9 69145 69131 95.13 115.78
P44 68489 68473 105.61 124.79
P45 67481 67469 95.19 112.47

were generated by Jünger and Liers using the Ising model of spin glasses. The sizes of

both the problems are the same with 512 nodes and 1536 edges. Experiments show that

the algorithm CirCut needs to run 100 times to generate the objective values 452 for

pm-3-8-50 and 4.13946e+7 for g3-8, while the Algorithm DFFEC only needs to run 10

times to generate better objective values 456 for pm-3-8-50 and 4.16738e+7 for g3-8.

For large scale max-cut problems, the computational time of the proposed algorithm

DFFEC is high. Table 5 gives the calculation costs of the proposed algorithm in the

minimization of the problem (MC) and the minimization of filled functions, respectively.

It can be seen from Table 5 that most of the calculation costs are in the minimization

of filled functions, and that larger NH-x is, more CPU-time is. It is clear that NH-x

increases as the preset integer n1 and the problem dimension n.

The following observations can be obtained based on the results in Table 2, Table

22

ACCEPTED MANUSCRIPT

3 and Table 4.

(1) The ratio ρ in Table 2 and % of UB in the last row of Table 3 indicate that the

solutions obtained by the proposed algorithm DFFEC are very close to global solutions

for all test problems and show that Algorithm DFFEC is efficient in finding satisfactory

solutions of max-cut problems.

(2) Although we employ the continuous relaxation algorithm (CA) to find local

minimizers of problem (MX) and avoid parameters adjusting to reduce the computation

cost, the CPU-time is still expensive. This is because N , the number of the local

minimizers of the function f , and NH, the times of minimizing the filled function H,

are large. That is, larger N and NH are, more CPU-time is.

(3) It is important to note that the costs of running VNS and CirCut heuristic

were obtained on a SGI Challenge computer (with 28 196-Mhz MIPS R10000 processors

and 7.6 Gb of memory) [6] and a SGI Original 2000 machine [4], respectively, while

our results in costs are obtained on a PC with 1.43GHz and 256Mb of RAM. It can be

understood that the PC with 1.43GHz Pentium and 256Mb of RAM is not comparable

with their machines.

8 Conclusions and remarks

Based on the continuous relaxation algorithm in [20] and the new filled function, a

discrete filled function algorithm in finding approximation to global solutions of max-cut

problems is proposed. Since the parameters of the new filled function are exactly the

same for all max-cut problems that avoids the adjusting of parameters, and the skill

of randomly generating initial points for the minimization of the new filled function is

adopted, the efficiency of the proposed algorithm is greatly increased.

Further works on the proposed algorithm are required to refine the algorithm in

theory and implementation. As mentioned by one reviewer, when the VNS heuristic is

combined into the discrete filled function algorithm, whether the performance of solu-

tions can be further improved or not. We hope that the answer is positive, that is, the

numerical results generated by such an algorithn would be better than the current case,

but still needs to be tested and verified.

23

ACCEPTED MANUSCRIPT

Acknowledgments

The authors are indebted to three anonymous referees whose comments helped

considerably to improve this paper. We thank the second referee to provide us the

literatures [5, 15, 22] on discrete filled function methods.

References

[1] D. Abraham, S.Ángel, F.Felipe and C. Raúl, A Low-Level Hybridization between

Memetic Algorithm and VNS for the Max-Cut Problem. (2005)999-1006.

[2] S.M. Antonio, D. Abraham, J.P.Juan and C.Raúl, High-Performance VNS for the

Max-Cut Problem using Commodity Graphics Hardware. (2005), Manuscript.

[3] F.Barahona, Grötschel. and G. Reinelt,(1988), An application of combinotiorial

optimization to statistical physics and circuit layout design. Oper.Res.36,493-513.

[4] S.Burer, R.D.C. Monteiro , and Y.Zhang, (2001), Rank-two Relaxation Heuristics

for Max-cut and Other Binary Quadratic Programs. SIAM J.Opt. 12, 503-521.

[5] Z.-G. Feng and K.-L.Teo, A discrete filled function method for the design of

FIR filters with signed-powers-of-two coefficients, IEEE Transactions on Signal

Processing, Available On-Line and Accepted for Inclusion in a future Issue, 2007.

[6] P. Festa, P. M. Pardalos, M. G. C.Resende, and C. C. Ribeiro, (2002), Random-

ized Heuristics for the Max-Cut Problem, Optimization Methods and Software,

17:1033-1058.

[7] M. Garey, D. Johnson and L. Stochmeter, (1976), Some simplified NP-complete

graph problems. Theoret. Comput. Sci. 1,237-267.

[8] R. P. Ge, (1990), A filled function method for finding a global minimizer of a

function of several variables, Mathematical Programming 46, 191-204.

[9] R.P. Ge and C.B. Huang, (1989), A continuous approach to nonlinear integer

programming, Appl. Math. Computat. 34 (1) 39-60.

[10] M.X. Goemans, D.P. Williamson, (1995), Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming, J.

Assoc. Comput. Mach. 42 (6) 1115-1145.

[11] C. Helmberg, F. Rendl, (2000), A spectral bundle method for semidefinite pro-

gramming, SIAM J. Optim. 10 (3) 673-696.

[12] M. Jünger and F.Liers, private communication, Universität Köln, Cologne, Ger-

many, 2000.

24

ACCEPTED MANUSCRIPT

[13] R. M. Karp, (1972), Reducibility among combinatorial problems. In Complexity

of Computer Computations, R. Miller and J. Thatcher, eds. Plenum Press, New

York, pp85-103.

[14] X. Liu, (2006) A Class of Augmented Filled Functions, Computational Optimiza-

tion and Applications, 33, 333-347,

[15] C.-K. Ng, D.Li and L.-S. Zhang,(2007) Discrete global descent method for dis-

crete global optimization and nonlinear integer programming, Journal of Global

optimization, 37, pp.357-379.

[16] Chi-kong Ng, L.-S. Zhang, D. Li and W.-W. Tian, (2005), Discrete Filled Func-

tion Method for Discrete Global Optimization, Computational Optimization and

Applications, 31, 87-115.

[17] Y.-L. Shang, L.-S. Zhang, (2005), A filled function method for finding a global

minimizer on global integer optimization, Journal of Computational and Applied

Mathematics 181 200-210

[18] C.-X Xu, X.-L. He and F.-M. Xu, (2006), An Effective Continuous Algorithm for

Approximate Solutions of Large Scale Max-Cut Problems. Journal of Computa-

tional Mathematics, Vol. 24(6), 749-760.

[19] Z. Xu, H.-X. Huang, Panos M. Pardalos and C.-X. Xu, (2001), Filled functions

forunconstr ained global optimization, Journal of Global Optimization 20, 49-65.

[20] F.-M. Xu, C.X. Xu, H.-G. Xue, (2005), A Feasible Direction Algorithm With-

out Line Search for Solving Max-Bisection Problem, Journal of Computational

Mathematics,23, 619-634.

[21] C.-X. Xu, J.-Z. Zhang, (2001), Survey of quasi-Newton equations and quasi-

Newton methods for optimization, Annals of Operations Reseach, 103: 213-234.

[22] Y.-J. Yang and Y.-M. Ling, (2007) A new discrete filled function algorithm for

discrete global optimization, Journal of Computational and Applied Math emat-

ics, 202, No.2, pp.280-291.

[23] U. Zwick, (1999), Outward Rotations: A Tool for Rounding Solutions of Semidef-

inite Programming Relaxations, with Applications to Max cut and Other Prob-

lems, In Proc. of 31th STOC, pp. 679-687.

25

ACCEPTED MANUSCRIPT

Table 2: The Numerical Comparisons of VNS Heuristic with Algorithm (DFFEC) on
45 random generated test problems at the same PC. The best solution found in running
the two algorithms 5 times, respectively.

VNS DFFEC
Name n u UB VNS-5 T-5 DF-5 T-5 ρ-5

P1 100 0.1 145 136 1.04 140 6.19 0.9655
P2 133 128 0.94 128 6.10 0.9624
P3 136 128 1.00 131 6.47 0.9632
P4 100 0.3 308 292 0.72 294 6.02 0.9545
P5 340 321 0.87 323 5.68 0.9500
P6 354 337 0.98 337 5.55 0.9520
P7 100 0.5 475 455 0.77 455 4.92 0.9579
P8 521 500 0.80 500 5.75 0.9597
P9 489 469 0.87 471 8.27 0.9632
P10 100 0.7 636 610 0.83 612 5.72 0.9623
P11 624 598 0.89 599 9.60 0.9599
P12 649 624 0.95 624 5.97 0.9615
P13 100 0.9 779 750 1.85 752 13.68 0.9653
P14 765 737 1.70 740 12.74 0.9673
P15 738 711 1.11 712 7.65 0.9648
P16 150 0.1 301 282 5.15 284 39.90 0.9435
P17 309 291 4.26 295 34.43 0.9547
P18 280 267 4.06 271 30.92 0.9679
P19 150 0.3 734 691 3.48 697 24.72 0.9496
P20 742 703 2.90 705 23.07 0.9501
P21 725 683 3.28 690 28.40 0.9517
P22 150 0.5 1071 1019 2.42 1026 26.29 0.9580
P23 1086 1032 2.75 1040 23.21 0.9576
P24 1091 1042 2.83 1047 23.60 0.9596
P25 150 0.7 1354 1304 2.50 1308 25.30 0.9660
P26 1380 1321 2.88 1331 30.67 0.9645
P27 1372 1318 2.68 1322 30.12 0.9636
P28 150 0.9 1633 1573 2.51 1582 29.03 0.9688
P29 1616 1562 2.46 1567 29.92 0.9697
P30 1651 1591 2.64 1598 25.92 0.9679
P31 200 0.1 13332 12624 15.59 12687 97.39 0.9516
P32 13871 13067 15.58 13135 94.56 0.9469
P33 13031 12286 17.15 12372 98.62 0.9494
P34 200 0.3 32423 30759 10.77 30844 121.77 0.9513
P35 32190 30466 7.87 30593 71.78 0.9504
P36 31165 29656 11.15 29702 73.48 0.9531
P37 200 0.5 45907 43527 6.57 43834 67.38 0.9548
P38 46840 44685 6.60 44811 86.19 0.9567
P39 47416 45282 9.00 45323 69.37 0.9559
P40 200 0.7 60660 58001 7.69 58498 94.48 0.9644
P41 62492 59873 7.48 60089 91.06 0.9615
P42 59790 56982 5.04 57446 68.75 0.9608
P43 200 0.9 71657 69014 7.05 69149 103.04 0.9650
P44 70911 68489 7.72 68489 113.72 0.9658
P45 69948 67443 7.77 67485 98.00 0.9649

26

ACCEPTED MANUSCRIPT

Table 3: The Numerical Comparison with VNS Heuristic on 10 Helmberg and Rendl [11] G-set
graph instances. Here, we only run Algorithm (DFFEC) one time. UB, and VNS Heuristic
are completely borrowed from the TABLE I in Festa et al. [6]. The last two rows of this table
list sum of obtained max-cut objective value and sum of the optimal value of SDP relaxation
over the 10 instances, and the ratios of both sums

VNS Heuristic DFFEC
Name n density UB VNS-1 T-1 DF-1 T-1
G1 800 6.12% 12078 11549 40.95 11570 993.30
G2 12084 11575 37.32 11571 922.12
G3 12077 11577 16.98 11577 977.83
G14 800 0.63% 3187 3040 12.89 3045 1125.64
G15 3169 3017 18.09 3032 1165.29
G16 3172 3017 10.30 3028 1032.37
G43 1000 2.10% 7027 6599 36.78 6607 1558.85
G44 7022 6559 40.55 6591 1504.36
G45 7020 6555 24.30 6574 1230.65
G22 2000 1.05% 14123 13087 56.98 13185 7582.29

sum 80959 76575 76780
% of UB 100 94.58 94.84

Table 4: The Numerical Comparison with CirCut code on 8 Helmberg and Rendl [11] G-set
graph instances. Here, we run Algorithm (DFFEC) once and 5 times, respectively. The CirCut
column cited from Burer et al. [4] using parameters (n;m) = (0; 1) and (n;m) = (5; 10).

CirCut DFFEC
Name n density UB C0-1 C5-10 T-10 DF-1 DF-10 T-10
G11 800 0.63% 627 524 554 3.88 552 560 964.71
G12 621 512 552 3.76 550 554 1326.24
G13 645 536 572 3.45 572 578 1072.17
G14 800 1.58% 3187 3016 3053 5.53 3038 3055 1043.61
G15 3169 3011 3039 5.91 3027 3041 1146.13
G22 2000 1.05% 14123 13148 13331 22.31 13185 13329 3551.27
G23 14129 13197 13269 18.85 13181 13257 3269.09
G24 14131 13195 13287 27.30 13211 13313 3253.15

Table 5: The average number of Minimizing the Filled Function H and the average number
of local minimizers of the function f obtained by the Algorithm (DFFEC) for part of test
problems.

Name N-5 NH-5 Name N-5 NH-5 Name N-5 NH-5
P16 10 142 P34 10 231 G1 12 161
P22 8 123 P37 10 163 G11 33 215
P28 12 127 P43 9 195 G14 32 190

27

