
Journal of Computational and Applied Mathematics 220 (2008) 643–660
www.elsevier.com/locate/cam

A discrete filled function algorithm for approximate global
solutions of max-cut problems�

Ai-Fan Linga,∗, Cheng-Xian Xua,b, Feng-Min Xua

aDepartment of Mathematics, Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, PR China
bSKLMSE Lab., Xi’an Jiaotong University, PR China

Received 3 January 2007; received in revised form 24 July 2007

Abstract

A discrete filled function algorithm is proposed for approximate global solutions of max-cut problems. A new discrete filled
function is defined for max-cut problems and the properties of the filled function are studied. Unlike general filled function methods,
using the characteristic of max-cut problems, the parameters in proposed filled function need not be adjusted. This greatly increases
the efficiency of the filled function method. By combining a procedure that randomly generates initial points for minimization of
the filled function, the proposed algorithm can greatly reduce the calculation cost and be applied to large scale max-cut problems.
Numerical results on different sizes and densities test problems indicate that the proposed algorithm is efficient and stable to get
approximate global solutions of max-cut problems.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Combinatorial optimization; Global optimization; Filled function; Max-cut problem; Neighborhood local search

1. Introduction

Filled function methods introduced by Ge in 1990 are a class of global optimization methods. Consider the following
optimization problem:

min f (x)

s.t. x ∈ � ⊂ Rn, (1.1)

where f : Rn → R is a real valued continuous function. Let x∗
1 be a local minimizer of problem (1.1), the basic idea

of the filled function method is to construct an auxiliary function, called filled function, at point x∗
1, that can be further

minimized to get a point, say x, in a basin (see Definition 5 below) of f (x) lower than the basin containing x∗
1 of f (x)

when x∗
1 is not a global minimizer. Then the minimization of f (x) is restarted from the point x. Repeat the process

until a global minimizer of f (x) is obtained.

� This work is supported by National Natural Science Foundations of China 10671152.
∗ Corresponding author.

E-mail addresses: aifanling@yahoo.com.cn (A.-F. Ling), mxxu@mail.xjtu.edu.cn (C.-X. Xu), fengminxu@mail.xjtu.edu.cn (F.-M. Xu).

0377-0427/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.09.012

http://www.elsevier.com/locate/cam
mailto:aifanling@yahoo.com.cn
mailto:mxxu@mail.xjtu.edu.cn
mailto:fengminxu@mail.xjtu.edu.cn

644 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

The first filled function proposed in [13] has the form

P(x; x∗; r, �) = 1

r + f (x)
exp

(
−‖x − x∗‖2

2

�2

)
, (1.2)

where x∗ is a minimizer of the function f, r and � are two adjustable parameters. An unfavorable property of the filled
function (1.2) is that the existence of term exp(−‖x − x∗‖2

2/�
2) makes changes in P(x; x∗; r, �) and ∇P(x; x∗; r, �)

indistinguishable when ‖x − x∗‖2
2 is large. Liu in [21] proposed the following filled function:

L(x; x∗; a) = 1

ln[1 + f (x) − f (x∗)] − a‖x − x∗‖2
2

to improve the property of filled function (1.2), where a is a parameter. Xu et al. in [31] proposed a class of filled
functions to overcome the disadvantage

U(x; x∗; A, �) = −�(f (x) − f (x∗)) − A�(‖x − x∗‖�
2),

where the functions �(·), �(·) have some desired properties and A, � are parameters. Recently, Zhang et al. in [32]
proposed a new two-parameter filled function

p(x; x∗; �, �) =
{�[f (x) − f (x∗)]2 − �‖x − x∗‖2

2 when f (x)�f (x∗),
f (x∗) − f (x) − �‖x − x∗‖2

2 when f (x)�f (x∗).
(1.3)

Ge and Huang [14] employed the filled function method to solve nonlinear integer programming problems. Ng et al.
[23] dealt with discrete optimization problems using the filled function (1.3). More results on filled function methods
for discrete optimization problems can be found in Zhu [33], He et al. [18], Shang and Zhang [26] and Gu and Wu
[17]. However, to the best of our knowledge, there is very few attempts for max-cut problems or other combinatorial
optimization problems by using the filled function methods.

Max-cut problems are a kind of discrete optimization problems. Given a graph G(V ; E), the problem is to find a
partition of the node set S1 ⊂ V and S2 = V \S1, such that the sum of the weights on the edges connecting the two
parts is maximized, where V and E are the sets of nodes and edges in the graph. Let W = (wij)n×n be the symmetric
weighted adjacency matrix of a given graph G(V, E), with wij �= 0, for (i, j) ∈ E and wij = 0 for (i, j) /∈ E, the
max-cut problem can be expressed as the following discrete quadratic optimization problem:

(MC): min f (x) = xTWx

s.t. x ∈ S,

where S = {−1, 1}n and x = (x1, . . . , xn)
T. x ∈ {−1, 1}n means that xi takes either −1 or 1 for all i = 1, 2, . . . , n.

The max-cut problem has long been known to be NP-complete [20], even for any un-weighted graphs [12], and
has applications in circuit layout design and statistical physics [3]. Approximate algorithms, such as �-approximation
algorithm [16], heuristic algorithms [9] and continuous algorithms [27,30] have been proposed to solve max-cut
problems. Based on the following semi-definite programming (SDP) relaxation,

(SDP): max L · X

s.t. diag(X) = e,

X�0,

Goemans and Williamson in [16] proposed a 0.878-approximation randomized algorithm for nonnegative weighted
graphs, where e ∈ Rn is the column vector with all ones and L = [Diag(We) − W]/4, Diag(We) is the diagonal
matrix with elements of the vector We being diagonal entries and diag(X) = (X11, . . . , Xnn)

T, Xii, i = 1, 2, . . . , n

are the diagonal entries of the matrix X. Bertsimas-Ye in [6] and Zwick in [34] also proposed random algorithms for
nonnegative weighted graphs with the same performance ratio.

Burer et al. in [9] proposed a rank-2 relaxation to max-cut problems and developed a continuous optimization heuristic
to solve max-cut problems. Festa et al. in [11] designed, implemented and tested several pure and hybrid heuristics, such

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 645

as greedy randomized adaptive search procedure (GRASP), variable neighborhood search (VNS) and a path-relinking
(PR) intensification heuristic for max-cut problems and obtained some satisfactory results on some well-known G-set
graphs. Alperin and Nowak in [2] presented a smoothing heuristic for max-cut problems. The heuristic is based on a
parametric optimization problem defined as a convex combination between the original problem and its Lagrangian
relaxation. Starting from the Lagrangian relaxation, a path following method is proposed to obtain good solutions while
gradually transforming the relaxed problem into the original problem formulated with an exact penalty function.

Xu et al. in [30,27] proposed continuous optimization methods to solve max-cut problems, in which max-cut problems
were relaxed into a nonlinear continuous optimization problem with convex constraints:

max xTLx

s.t. B(xi,
√

n)�0, i = 1, . . . , n,

‖x‖2
2 �n,

where B(xi,
√

n) is a B-function (see [30]). An obvious advantage of the continuous method is that it greatly reduces the
CPU-time via without using linear search in each iteration. However, the solution obtained by the continuous methods
cannot be guaranteed as a global solution, which motivates us to study global optimization method to deal with max-cut
problems.

The main contribution of this paper is to propose a discrete filled function method to get approximate global solutions
of max-cut problems. A discrete filled function is applied to solve max-cut problems for different size and dense graphs
concluding negative weight. Only at most (n − K)(K ∈ Z, 1�K < n) inner products of two n-dimensional vectors
are calculated in each iteration, and the parameters of the filled function need not to be adjusted in the process of
implementing the algorithm. By adding a subroutine for randomly generating initial points to minimizing the filled
function, the proposed algorithm can greatly reduce the calculation cost, and can be applied to large scale max-cut
problems. Numerical experiments and comparisons on some randomly generated max-cut problems and on some
well-known large scale max-cut problems are made to show the efficiency of the proposed algorithm.

The remainder of the paper is arranged as follows. In Section 2, some definitions and preliminaries are recalled.
The new discrete filled function for problem (MC) is presented in Section 3, and the properties of the filled function
are analyzed. In Section 4, details of the proposed filled function algorithm is stated. Numerical experiments and
comparisons are reported in Section 5.

Throughout the paper, if without special statement, we adopt the following convention. R, Z and Rn denote real
numbers set, integer numbers set and the space of real n-dimensional column vectors, respectively. Let x ∈ Rn, the
lp-norm of x is denoted by ‖x‖p = (

∑n
i=1|xi |p)1/p(1�p < ∞).

2. Definition and preliminaries

For convenience, in this section, we will give some definitions and lemmas without proofs.

Definition 1. A sequence {x(i)}ui=−1 is called a discrete path in the set S between two points x∗, x∗∗ in S, where
x(−1) = x∗, x(u) = x∗∗, x(i) ∈ S for all i, if x(i) �= x(j), for all i �= j ; and ‖x(i) − x(i−1)‖p = 2, for all i = 0, 1, 2, . . . , u.
In addition, if ‖x(i) − x∗‖p < ‖x(i+1) − x∗‖p, or ‖x(i) − x∗‖p > ‖x(i+1) − x∗‖p holds for all i, then the sequence is
called a strict discrete path in S. If a (strict) discrete path exists for given points x∗ ∈ S, x∗∗ ∈ S, then x∗ and x∗∗ are
said to be (strict) path-wise connected in S.

For simplicity, we call a (strict) discrete path as a (strict) path. From the definition of the path and the property of
the set S, it is clear that any two distinct points x, y ∈ S are (strict) path-wise connected, and hence S is a (strict)
path-wise connected domain.

Definition 2. For any x ∈ S, and any positive integer K, 1�K �n, the K-neighborhood of x under the lp-norm is
defined by

N(x, K) = {y ∈ S : ‖y − x‖p �2 · K1/p}.

646 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

In particular, if K = 1, we write the 1-neighborhood of x, N(x, 1), as N(x). The boundary of the K-neighborhood
N(x, K) is defined by �N(x, K) = {y ∈ S : ‖y − x‖p = 2 · K1/p}. It is known that |�N(x, K)| = CK

n and each point
in �N(x, K) differs from point x in only K elements. The following lemma is obvious from Definition 2.

Lemma 2.1. For every K ∈ Z, 1�K �n, and any x ∈ S, the number of points in N(x, K) is 1+∑K
i=1C

i
n. Especially,

when K = 1, |N(x)| = n + 1.

Definition 3. A point x∗ ∈ S is called a local discrete minimizer of the function f over S, if f (x∗)�f (x), for all
x ∈ N(x∗). Furthermore, if f (x∗)�f (x), for all x ∈ S, then x∗ is called a global discrete minimizer of f over S.

Let ei ∈ Rn be the ith unit directional vector, and define a set of directions D= {d : d = ±2 · ei , i = 1, . . . , n}, then
for any x ∈ S, there exists a direction d ∈ D, such that x + d ∈ N(x) ⊂ S.

Definition 4. For any x ∈ S, a direction d ∈ D is called a descent direction of the function f at x over S, if x + d ∈ S

and f (x + d) < f (x). In addition, we call d∗ ∈ Dx the discrete steepest descent direction of the function f at x over S,
if f (x + d∗)�f (x + d) for all d ∈ Dx, where Dx = {d ∈ D : x + d ∈ S, f (x + d) < f (x)}.

Definition 5. Let x∗ be a local minimizer of the function f over S, B∗ is said to be a discrete basin of the function f at
x∗, if B∗ ⊂ S is a path-wise connected domain which contains x∗ and in which the discrete steepest descent trajectory
from any point in B∗ converges to x∗, but outside which the discrete steepest descent trajectory from any point in S\B∗
does not converge to x∗.

Definition 6 (Xu et al. [31]). Let x∗ and x∗∗ be two distinct local minimizers of the function f over S, the discrete basin
B∗∗ of f at x∗∗ is said to be lower (or higher) than the discrete basin B∗ of f at x∗, if f (x∗∗) < f (x∗) (or f (x∗∗) > f (x∗)).

Definition 7 (Ng et al. [23]). Let x∗ be a discrete minimizer of the function f over S, and B∗ be the discrete basin of
f at x∗. A function H : S → R is said to be a discrete filled function of f at x∗, if it satisfies the following conditions:

1. x∗ is a strict discrete local maximizer of H over S.
2. H has no discrete local minimizers in B∗ and in any discrete basin of f higher than B∗.
3. If f has a discrete basin, B∗∗ say, lower than B∗, then there is a point x ∈ B∗∗ that minimizes H on the path

{x∗, . . . , x, . . . , x∗∗} in S, where x∗∗, x∗ are minimizers of f in B∗∗ and B∗, respectively.

3. A discrete filled function and its properties

Let x∗ be a local minimizer of the function f in problem (MC); we modify the filled function (1.3) and define a
function with simpler expression as

Hp(x; x∗; �,) =
{

�[f (x) − f (x∗)] − 	‖x − x∗‖p, f (x)�f (x∗),
[f (x∗) − f (x)] − 	‖x − x∗‖p, f (x)�f (x∗),

(3.1)

where p(1�p < ∞) is a constant, and �, 	 are two adjustable parameters. For simplicity, in the remainder of this
paper, we only consider the case of p = 1, and denote H1(x; x∗; �,) as H(x; x∗; �,), but it is not hard to extend
all results of this paper to the case of 1 < p < ∞. Since the specialities of the quadratic function f and the set S in
max-cut problems, we can simplify the proofs to show that H(x; x∗; �,) is a filled function of f at x∗, and assign a
more efficient algorithm for global minimization of max-cut problems. The remainder of this section will be used to
show that the function H(x; x∗; �,) is a discrete filled function of the function f at point x∗. The following lemma
plays an important role in the analysis of this section.

Lemma 3.1. For any given x ∈ S and for any y ∈ N(x), we have

|f (y) − f (x)|�4qM , (3.2)

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 647

where q = max{qi : i = 1, . . . , n}�n and M = max{‖wi‖1 : i = 1, . . . , n}, wi (i = 1, . . . , n) are the ith column of the
weighted adjacency matrix W of a given graph, and qi(i = 1, . . . , n) are the number of nonzero elements in vector wi

(i = 1, . . . , n).

Proof. Let xl ∈ N(x) (l = 1, 2, . . . , n), where index l expresses that only the lth element of xl differs from the lth
element of x, i.e.,

xl
i =

{
xi, i = 1, 2, . . . , n, i �= l,

−xl, i = l.

Since wii = 0, for i = 1, . . . , n, we have

|f (xl) − f (x)| = |(xl)TWxl − xTWx|

=
∣∣∣∣∣∣

n∑
i �=l,j �=l

xiwij xj − 2
n∑

i �=l

xiwilxl −
n∑
i,j

xiwij xj

∣∣∣∣∣∣
= 4

∣∣∣∣∣
n∑

i=1

xiwilxl

∣∣∣∣∣
= 4|xl · xTwl |
= 4|xTwl |�4ql‖wl‖1

�4qM, l = 1, 2, . . . , n. (3.3)

This completes the proof. �

Theorem 3.2. Let x∗ be a local minimizer of the function f on S. If 	 > 0, and 0�� < 	/(2qM), then the function
H(x; x∗; �,) satisfies the first condition of Definition 7, i.e., x∗ is a strict local maximizer of H(x; x∗; �,) on S.
Furthermore, if x∗ is a global minimizer of f on S, then H(x; x∗; �,) < 0 for all x ∈ S\{x∗}.

Proof. Assume that x∗ is a local minimizer of f on S. Since f (x)�f (x∗) and ‖x − x∗‖1 = 2 for any x ∈ N(x∗)\{x∗}.
It follows from Lemma 3.1 that when 0�� < 	/(2qM), we have

H(x; x∗; �,) = �[f (x) − f (x∗)] − 	‖x − x∗‖1

�4�qM − 2	 < 0 = H(x∗; x∗; �,).

Hence, x∗ is a strict local maximizer of H(x; x∗; �,) on S.
If x∗ is a global minimizer of f on S, then for any x ∈ S\{x∗}, there exists a integer K(1�K �n), such that

x ∈ �N(x∗, K) that implies ‖x − x∗‖1 = 2K . Hence, there must exist at least a path {xj }Kj=0 from x∗ to x satisfying
x∗ = x0, x = xK . Since

|f (x) − f (x∗)| = |f (xK) − f (xK−1) + f (xK−1) − f (xK−2) + · · · + f (x1) − f (x0)|

�
K∑

i=1

|f (xi) − f (xi−1)|,

and xi ∈ N(xi−1). It follows from Lemma 4.1 that

|f (x) − f (x∗)|�
K∑

i=1

4qM = 4KqM .

Thus,

H(x; x∗; �,) = �[f (x) − f (x∗)] − 	‖x − x∗‖1

�4K�qM − 2K	 < 0 = H(x∗; x∗; �,),

when 	 > 0, and 0�� < 	/(2qM). �

648 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

Lemma 3.3. Let x∗ be a local minimizer of the function f on S, x ∈ S and f (x)�f (x∗). If 	 > 0 and 0���	/(2qM),
and if there exists direction d ∈ D, such that x + d ∈ S, f (x + d)�f (x∗) and ‖x + d − x∗‖1 > ‖x − x∗‖1,
then we have

H(x + d; x∗; �,)�H(x; x∗; �,) < H(x∗; x∗; �,) = 0. (3.4)

Proof. Denote D0 = {d ∈ D : x + d ∈ S, f (x + d)�f (x∗), ‖x + d − x∗‖1 > ‖x − x∗‖1}. If D0 is nonempty, then
f (x)�f (x∗), f (x + d)�f (x∗) and ‖x + d − x∗‖1 − ‖x − x∗‖1 = 2 for each d ∈ D0. It follows from the definition
of the function H that

H(x + d; x∗; �,) − H(x; x∗; �,) = �[f (x + d) − f (x)] − 2	. (3.5)

If f (x + d)�f (x), then H(x + d; x∗; �,) < H(x; x∗; �,) when 	 > 0. If f (x + d)�f (x), it follows from Lemma
3.1 that the right-hand side of (3.5) is not greater than 4�qM − 2	, i.e.,

H(x + d; x∗; �,) − H(x; x∗; �,)�4�qM − 2	.

Hence, when 0���	/(2qM),

H(x + d; x∗; �,)�H(x; x∗; �,)

holds. The second inequality in (3.4) directly follows from Theorem 3.2. �

Lemma 3.3 indicates that for any point x ∈ S, especially, when x lies either in the basin B∗ or basin higher than B∗,
if D0 is nonempty, then x is not a local minimizer of the function H. That is, we have the following result.

Theorem 3.4. Let x∗ be a local minimizer of the function f on S, and B∗ be the discrete basin of f at x∗. If
	 > 0, 0�� < 	/(2qM), then H(x; x∗; �,) has no any local minimizer in B∗ and in any basin higher than B∗.

Proof. Let U∗ denote the union of all basins of f higher than B∗, it is clear from Definition 6 that f (x) > f (x∗)
holds for any point x ∈ U∗. Note that −x∗ /∈ U∗ via f (−x∗) = f (x∗) and −x∗ /∈ B∗ via the fact that x∗ oneself is
a minimizer of f. Hence for any x ∈ B∗ or x ∈ U∗, it follows that x �= −x∗. Thus, there exists at least a direction
d ∈ D, such that x + d ∈ S and ‖x + d − x∗‖1 > ‖x − x∗‖1. If f (x + d) < f (x∗), then we can obtain a point, say x∗∗,
satisfying f (x∗∗) < f (x∗) by minimizing the function f from x. It means x is in a basin of f lower than the basin B∗
that contradicts x ∈ B∗ or x ∈ U∗. Thus the set D0 is nonempty. From Lemma 3.3, x is not a local minimizer of the
function H(x; x∗; �,). �

Theorem 3.4 indicates that if 	 > 0 and 0�� < 	/(2qM), then H(x; x∗; �,) satisfies the second condition of
Definition 7. From Lemma 3.3 and Theorem 3.4, we can obtain the following conclusions. When 	 > 0 and 0�
� < 	/(2qM),

(i) for any x ∈ B∗, x �= x∗, if d satisfies ‖x+d−x∗‖1 > ‖x−x∗‖1 and f (x+d)�f (x∗), then d is a descent direction
of H at x,

(ii) for any x ∈ U∗, if d satisfies ‖x + d − x∗‖1 > ‖x − x∗‖1 and f (x + d)�f (x∗), then d is a descent direction of H
at x.

Theorem 3.5. Let f (x∗) > f (x∗∗), and B∗, B∗∗ be basins of the function f at x∗, x∗∗ in S, respectively. Assume that
x ∈ B∗∗, and x + d ∈ B∗∗, where d is a descent direction of f at x in S and satisfies

f (x + d) < f (x∗)�f (x). (3.6)

Suppose that there is a strict path {x(i)}ui=−1 in S between x∗(=x(−1)) and x(=x(u)), such that

f (x(i))�f (x∗), (3.7)

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 649

for all i = 0, 1, . . . , u. If 0�� < 	/(2qM), and 0 < 	 < 	0, then x is a minimizer of the function H(x; x∗; �,) on the
path {x(i)}u+v

i=−1 in S, where x∗(=x(−1)), x + d = x(u+1), x∗∗(=x(u+v)) and

	0 = 2qM[f (x∗) − f (x + d)]
f (x) − f (x∗) + 4qM

> 0. (3.8)

Proof. It is sufficient to showH(x; x∗; �,) < H(x(u+1); x∗; �,)=H(x+d; x∗; �,), andH(x; x∗; �,) < H(x(u−1);
x∗; �,) hold on the path. Since x(0) and x∗ are adjacent points in the (strict) path {x(i)}ui=−1, x(0) ∈ B∗ and
H(x(0); x∗; �,) < H(x∗; x∗; �,) = 0 holds from Theorem 3.2 when 	 > 0, 0�� < 	/(2qM).

Since {x(i)}ui=−1 is a strict path starting from x∗, assume that ‖x(i−1)−x∗‖1 < ‖x(i)−x∗‖1 holds, for all i=0, 1, . . . , u.
In view of (3.7) and Lemma 3.3, for all the points {x(i)}, i = −1, 0, . . . , u on the strict path, we have

H(x(i); x∗; �,) < H(x(i−1); x∗; �,) < 0, i = 1, . . . , u.

Especially,

H(x; x∗; �,) < H(x(u−1); x∗; �,) < H(x(u−j); x∗; �,), j = 2, . . . , u + 1. (3.9)

On the other hand, since d satisfies (3.6),

H(x + d; x∗; �,) − H(x; x∗; �,)

= f (x∗) − f (x + d) − �[f (x) − f (x∗)] − 	{‖x + d − x∗‖1 − ‖x − x∗‖1}

> f (x∗) − f (x + d) − 	

2qM
[f (x) − f (x∗)] − 2	 (3.10)

holds when 0�� < 	/(2qM).
It can be verified that the right-hand side of (3.10) is nonnegative when

	� 2qM[f (x∗) − f (x + d)]
f (x) − f (x∗) + 4qM

= 	0,

that is, when 0 < 	 < 	0, we have

H(x; x∗; �,) < H(x + d; x∗; �,). (3.11)

Therefore, x minimizes H(x; x∗; �,) on the path {x(i)}u+1
i=−1 in S between x∗ and x(u+1) = x + d. If x + d = x∗∗, then

the conclusion of the theorem holds. If x + d �= x∗∗, since x + d ∈ B∗∗, then there exists a steepest descent trajectory
{x(i)}u+v

i=u+1 of f in S from x + d to x∗∗ = x(u+v). Hence x is a minimizer of H(x; x∗; �,) on the path {x(i)}u+v
i=−1. �

In view of Theorem 3.5, when x + d �= x∗∗, the path {x(u+j)}vj=1 is a steepest descent trajectory of the function f

from x(u+1), and hence

f (x∗) > f (x(u+1)) > f (x(u+2)) > · · · > f (x(u+v)) = f (x∗∗), (3.12)

x(u+j+1) ∈ N(x(u+j)), j = 1, 2, . . . , v − 1. (3.13)

Let

	(j) = f (x(u+j)) − f (x(u+j+1))

= 4
n∑

i=1

x
(u+j)
i wilj x

(u+j)
lj

> 0, j = 1, . . . , v − 1,

where x
(u+j)
i is the ith element of the vector x(u+j), and lj is defined by

lj = arg min

{
−4

n∑
i=1

x
(u+j)
i wilx

(u+j)
l : l = 1, . . . , n

}
.

650 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

In the next theorem, we will prove that x is a global (or unique) minimizer of H(x; x∗; �,) on the path
{x(i)}u+v

i=−1.

Theorem 3.6. Let the conditions of Theorem 3.5 be satisfied and x + d �= x∗∗. Assume that the path {x(u+j)}vj=1

satisfies ‖x(u+j+1) − x∗‖1 > ‖x(u+j) − x∗‖1 for all j ∈ {1, . . . , v − 1}. If

0 < 	 < min

{
	0,

	(j)

2
: j = 1, . . . , v − 1

}
(3.14)

then x is the global minimizer of the function H on the path {x(i)}u+v
i=1 .

Proof. Combining inequality (3.9), it is sufficient to show

H(x; x∗; �,) < H(x(u+j); x∗; �,), j = 1, . . . , v.

Since ‖x(u+j+1) − x∗‖1 > ‖x(u+j) − x∗‖1, ‖x(u+j+1) − x∗‖1 − ‖x(u+j) − x∗‖1 = 2, j ∈ {1, . . . , v − 1} from (3.13).
It follows from the definition of the function H and (3.12) that

H(x(u+j); x∗; �,) − H(x(u+j+1); x∗; �,) = f (x(u+j+1)) − f (x(u+j)) + 2	 (3.15)

holds for all j ∈ {1, 2, . . . , v − 1}. When 	 is chosen to satisfy inequality (3.14), the value of the right-hand side of
(3.15) is

−	(j) + 2	 < 0, j = 1, . . . , v − 1.

Thus

H(x(u+j); x∗; �,) < H(x(u+j+1); x∗; �,), j = 1, . . . , v − 1.

Combining (3.11), it follows that

H(x; x∗; �,) < H(x(u+j); x∗; �,), j = 1, . . . , v.

This completes the proof. �

Theorems 3.5 and 3.6 indicate that the function H(x; x∗; �,) satisfies the third condition of Definition 7. From the
analysis above, we can conclude that when 0 < 	 < 	0 and 0�� < 	/(2qM), H(x; x∗; �,) is a discrete filled function
of the function f at point x∗on S.

4. The algorithm

The parameters � and 	 play important role in filled function algorithm for global optimization. A typical approach
to select �, 	 in the literatures is to first give appropriate initial estimations of �, 	, and then adjust them step by step in
the process of implementing an algorithm. The shortcoming of the approach is that the algorithm needs to restart after
�, 	 are adjusted, which will increase lots of loads of computation. In the algorithm proposed in this paper, �, 	 can be
given independent of variable x ∈ S and need not to be adjusted in the implementation of the algorithm.

4.1. The estimation of �, 	

From Theorems 3.2 and 3.5, it is not difficult to find that when �, 	 satisfy

0 < 	 < 	0 = 2qM[f (x∗) − f (x + d)]
f (x) − f (x∗) + 4qM

,

0�� <
	

2qM
, (4.1)

H(x; x∗; �,) is a desired filled function of f at x∗ on S, where x∗, x, and x + d satisfy (3.6).

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 651

Since f (x) − f (x + d)�4qM , we have

0 < f (x) − f (x∗) + 4qM �8qM − [f (x∗) − f (x + d)].
It follows that

	0 = 2qM[f (x∗) − f (x + d)]
f (x) − f (x∗) + 4qM

� 2qM[f (x∗) − f (x + d)]
8qM − [f (x∗) − f (x + d)] . (4.2)

For a given matrix W , let
 denote the precision of calculation in implementing the algorithm, it is clear that 0 <
�1
and, from (3.6),

f (x∗) − f (x + d)�
 > 0. (4.3)

Let

g(t) = 2qMt

8qM − t
, t ∈ [0, 4qM],

then g(t) is a monotone increasing function with respect to t in the interval [0, 4qM]. Thus, from (4.2) and (4.3),

	0 �g(f (x∗) − f (x + d))�g(
) > g(0) = 0.

If the value of 	 is taken as

	 = 	(W) = 1

2
g(
) = qM

8qM −

, (4.4)

then 0 < 	 < 	0 holds for any x ∈ S, where 	(W) means that the value of 	 only depends on the given matrix W and
is independent of variable x ∈ S. After the value of 	 is chosen, any value of � satisfying (4.1) can be selected, for
instance,

� = �(W) = 	(W)

4qM
=

4(8qM −
)
. (4.5)

It is clear that � satisfies 0�� < 	/(2qM) = 	(W)/(2qM) for any x ∈ S.

4.2. The statement of the algorithm

In this subsection, we will state the filled function algorithm and the detail of implementing the algorithm will be
given in the following subsections. Once a local minimizer, x∗

k say, of the function f is obtained, initial points from
which the minimization of the filled function H(x; x∗

k ; �(W), 	(W)) is started are randomly generated in the neigh-
borhood N(x∗

k).

Algorithm (DFFA): The Discrete Filled Function Algorithm
Step 0. (Initialization)

(1) Input the matrix W , an initial point x0, the number n1(�n) and set k := 0.
(2) Calculate 	 = 	(W) and � = �(W).

Step 1. Minimize f from xk using a local minimization method and obtain a local minimizer x∗
k of f on S,

set I = 1, Ñ = {x∗
k}.

Step 2. Randomly generate an initial point xi
k in the set N(x∗

k)\Ñ .
Step 3. Minimize the filled function H(x; x∗

k ; �(W), 	(W)) starting from the point xi
k . If a point x is obtained,

such that either x satisfiesf (x) < f (x∗
k) or x lies in a basin of f lower than the current basin, then set

xk+1 = x, k = k + 1 and goto Step 1.
Step 4. If I < n1, set Ñ = Ñ ∪ {xi

k}, I = I + 1, goto Step 2.
Step 5. (Termination) If I = n1, then return x∗

k and stop.

652 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

Remark 1. The index i of xi
k in step 2 means that only the ith element of xi

k differs from that of x∗
k . Also, the

index i is distinct with the counter I. In fact, by the discussion of the Section 4.3, the index i is a function of the
counter I.

Remark 2. The termination condition I = n1 indicates that we do not get a better solution than the current x∗
k

after arbitrary n1 points out of n points in N(x∗
k) have been used as initial points to minimize H(x; x∗

k ;
�(W), 	(W)).

4.3. Minimizing f using local search

Given a point x = (x1, . . . , xn)
T ∈ S, 1-neighborhood search is used to find a point xi∗ ∈ N(x) satisfying f (xi∗) =

min{f (xp): xp ∈ N(x)}. If xi∗ �= x, then replacing x with xi∗ and repeating the process until a point x∗ satisfying
f (x∗) = min{f (x): x ∈ N(x∗)} is found, which indicates that x∗ is a local minimizer of f.

Let xp = (x
p

1 , . . . , x
p
p , . . . , x

p
n)T ∈ N(x)\{x} with x

p
i = xi , for all i �= p and x

p
p = −xp, i.e., only the pth element

of xp differs from the pth element of x. Let �(p) denote the difference between f (xp) and f (x),

�(p) = f (xp) − f (x) = (xp)TWxp − (x)TWx

= − 4
n∑

i=1

xiwipxp, p = 1, 2, . . . , n, (4.6)

here we use the fact wii = 0, i = 1, . . . , n. Calculate

�(i∗) = min{�(p): p = 1, 2, . . . , n}. (4.7)

If �(i∗)�0, then x is a local minimizer of f. Otherwise xi∗ satisfies f (xi∗) < f (xp), for all p = 1, 2, . . . , n, where
xp ∈ N(x)\{x}, p = 1, 2, . . . , n.

If �(i∗) < 0 1-neighborhood local search can be continued at the point xi∗ . Assume that the index i∗ satisfies (4.7),
that is

xi∗ = (x
i∗
1 , . . . , x

i∗
i∗ , . . . , xi∗

n)T = (x1, . . . ,−xi∗ , . . . , xn)
T.

Let xp,i∗ be the point in N(xi∗) from which only pth element differs from the pth element of xi∗ for p=1, . . . , n, p �= i∗,
and we denote xp,i∗ = (x1, . . . ,−xp, . . . ,−xi∗ , . . . , xn)

T. Then

�(i∗, p) = f (xp,i∗) − f (xi∗) = (xp,i∗)TW(xp,i∗) − (xi∗)TW(xi∗)

= − 4
n∑

i=1

x
i∗
i wipxi∗

p

= �(p) − 8x
i∗
i∗ wi∗pxi∗

p

= �(p) + 8xi∗wi∗pxp (p �= i∗),

�(i∗, i∗) = − �(i∗), (4.8)

where the �(p) is given in (4.6). If �(i∗, p)�0, for all p = 1, 2, . . . , n, then xi∗ is a local minimizer of f. Oth-
erwise, we calculate �(i∗, p∗) = minp{�(i∗, p): p = 1, 2, . . . , n, p �= i∗}, set xi∗ = xi∗,p∗ , i∗ = p∗ and repeat the
process above until a local minimizer of f is found. We summary the 1-neighborhood local search in the following
Algorithm (A1).

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 653

Algorithm (A1): 1-neighborhood local search
Step 1. Given an initial point x0 ∈ S, calculate f0 = f (x0).
Step 2. Calculate

�(p) = −4
n∑

i=1

x0
i wipx0

p, p = 1, 2, . . . , n.

Step 3. Calculate

�(i∗) = min{�(p): p = 1, 2, . . . , n}.
Step 4. If �(i∗)�0, then set x∗ = x0, and return x∗ as a local minimizer of f, stop.
Step 5. Set f0 = f0 + �(i∗), and calculate

�(p) =
{

�(p) + 8x0
i∗wi∗px0

p, p �= i∗,
−�(i∗), p = i∗.

set x0
i∗ = −x0

i∗ , goto Step 3.

4.4. Generating initial points to minimize H

For any minimizer x∗
k of f, a point xi

k ∈ N(x∗
k)\{x∗

k} is called a good point in N(x∗
k), if a point x in a basin of f

lower than the current basin can be obtained by minimizing the filled function H(x; x∗
k ; �(W), 	(W)) starting from

xi
k . Let S∗ denote the set of all minimizers of the function f on S. It is clear that if x∗

k = arg max{f (x∗): x∗ ∈
S∗}, then there may exist more good points in N(x∗

k). On the contrary, if x∗
k = arg min{f (x∗): x∗ ∈ S∗}, then

there does not exist any good point in N(x∗
k). Thus the number of good points in N(x∗

k) can reflect completely the
performance of the minimizer x∗

k , that is, less the number of good points exists, the better performance the minimizer
x∗
k has.
However, it is still challenging for efficiently validating whether a point in N(x∗

k) is a good point. A typical and
direct approach as presented in the literatures to find an initial point for minimizing H is to test one by one each point
in N(x∗

k)\{x∗
k}. Since there are n elements in N(x∗

k)\{x∗
k}, it may not be advisable for the approach when n is large.

Especially, for max-cut problems, it is unlikely to confirm all points in N(x∗
k) being good points or exclude all points

in N(x∗
k) not being good points. The approach proposed in this paper is to randomly generate n1(�n) points from

N(x∗
k)\{x∗

k} as initial points to minimize H, where n1 is called sample size. The probability of each point in N(x∗
k)\{x∗

k}
sampled is n1/n, and n1 does not need to be chosen too close to n via S is a connect domain. The numerical results in
Section 5 (see Table 5) indicate that after the random generating subroutine is added into the filled function algorithm,
the better performance of the proposed algorithm is displayed and the costs of computation and CPU-time are greatly
reduced.

Now, we state the random process of generating initial points. For given n, assume that we need to draw out randomly
n1 points from n points in N(x∗

k)\{x∗
k}. Set I1 =[n/n1], where [a] denotes the integer part of the real number a. If n/n1

is an integer, then we can partition the set N ={1, . . . , n} into n1 disjoint subsets and each subset has I1 integers, that is
N1 = {1, . . . , I1}, N2 = {I1 + 1, . . . , 2I1}, . . . , Nn1 = {(n1 − 1)I1 + 1, . . . , n1I1}. Let c be a random number in (0, 1),
i = (I − 1) · I1 + [c · I1] + 1 ∈ NI , I = 1, 2, . . . , n1, and we take xi

k as an initial point to minimize H(x; x∗; �,),
where the index i means the ith element of xi

k differs from the ith element of x∗
k . The random number c ∈ (0, 1) can

be generated from the uniform distribution U(0, 1).
If n/n1 is a fraction, then set n0 = n − n1I1. Since n0 < n1, we can also partition the set N = {1, . . . , n} into n1

disjoint subsets of N, where each subset of the first n1 − n0 subsets has I1 integers and each subset of last n0 subsets
has I1 + 1 integers. Then we also take xi

k as an initial point to minimize H(x; x∗; �,), where the index i has the same
meaning as above and for I = 1, 2, . . . , n1 − n0,

i = (I − 1) · I1 + [c · I1] + 1,

654 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

or for I = n1 − n0 + 1, . . . , n1 − n0 + j, . . . , n1,

i = (n1 − n0)I1 + (I1 + 1)(I − (n1 − n0) − 1) + [(I1 + 1) · c] + 1

= (I1 + 1)(I − 1) − (n1 − n0) + [(I1 + 1) · c] + 1,

c ∈ (0, 1) is a random number generated from U(0, 1).

4.5. Minimizing the filled function H

In this subsection, we will describe the method of minimizing H in detail. Let x∗
k = (x∗

k1, . . . , x
∗
km, . . . , x∗

kn)
T ∈ S

denote the current local minimizer of f in problem (MC) and x = (x1, . . . , xn)
T ∈ �N(x∗

k , K), 1�K �n. Denote
XK = {y ∈ S: y ∈ N(x), ‖y − x∗

k‖1 > ‖x − x∗
k‖1}, then we have the following result.

Lemma 4.1. There only exist (n − K) elements in set XK .

Proof. Without loss of generality, assume that x satisfies

xs = −x∗
ks, s = 1, 2, . . . , K ,

xs = x∗
ks, s = K + 1, K + 2, . . . , n.

For any y ∈ XK , since y ∈ N(x), either there exists an index s ∈ {1, . . . , K} or s ∈ {K +1, . . . , n}, such that ys =−xs .
If s ∈ {1, . . . , K}, then there are only K −1 different elements between y and x∗

k . It follows that ‖y−x∗
k‖1 < ‖x−x∗

k‖1
that contradicts y ∈ XK . Hence s ∈ {K + 1, . . . , n}, and each s ∈ {K + 1, . . . , n} corresponds to an element in XK .
That shows that there are only n − K elements in XK , i.e., |XK | = n − K . �

Let xi
k = (xi

k1, . . . , x
i
km, . . . , xi

kn)
T be a point that is randomly generated in N(x∗

k)\{x∗
k}, where the superscript

i expresses that the sign of only the ith element of xi
k differs from the sign of the ith element of x∗

k . Since xi
k ∈

�N(x∗
k , 1), |X1| = n − 1, where X1 = {x ∈ S : x ∈ N(xi

k), ‖x − x∗
k‖1 > ‖xi

k − x∗
k‖1}. Denote X1 = {xi1

k , . . . ,

xi,i−1
k , xi,i+1

k , . . . , xij
k , . . . , xin

k }, where xij
k = (x

ij

k1, . . . , x
ij
km, . . . , x

ij
kn)

T ∈ X1 and x
ij
km =xi

km (m=1, 2, . . . , n, m �= j),

x
ij
kj = −xi

kj .

Now, we present the process of minimizing the filled function H starting from an initial point xi
k ∈ N(x∗

k). Assume that

f (xij
k)�f (x∗

k) holds for all points xij
k ∈ X1 (j = 1, . . . , n, j �= i) (if there exists xij

k ∈ X1 such that f (xij
k) < f (x∗

k),

then xij
k is in a basin lower than the current basin containing x∗

k). Since f (xi
k)�f (x∗

k), ‖xij
k − x∗

k‖1 > |xi
k − x∗

k‖1, and
�(W), 	(W) are calculated by (4.4), (4.5), respectively, it follows from Lemma 3.3 that

�H (j) = H(xij
k ; x∗

k ; �(W), 	(W)) − H(xi
k; x∗

k ; �(W), 	(W)) < 0, j = 1, . . . , n, j �= i.

On the other hand,

�H (j) = �(W)[f (xij
k) − f (xi

k)] − 	(W)[‖xij
k − x∗

k‖1 − ‖xi
k − x∗

k‖1]

= − 4�(W)

n∑
m=1

xi
kmwmjx

i
kj − 2	(W)

= �(W)�f (j) − 2	(W), j = 1, . . . , n, j �= i,

where �f (j) = f (xij
k) − f (xi

k). Thus we can find an index j to minimize �H (j), that is equivalent to minimize �f (j)

for all j ∈ {1, 2, . . . , n}\{i}. Let

j∗ = arg min
j

{�f (j): j ∈ {1, 2, . . . , n}\{i}}

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 655

then for all xij
k ∈ X1, we have

H(xij∗
k ; x∗

k ; �(W), 	(W))�H(xij
k ; x∗

k ; �(W), 	(W)),

and xij∗
k is used as the next iterate point for minimizing H(x; x∗

k ; �(W), 	(W)).

After xij∗
k ∈ �N(x∗

k , 2) is found, we consider the points in set X2 ={x ∈ S: x ∈ N(xij∗
k), ‖x − x∗

k‖1 > ‖xij∗
k − x∗

k‖1}
and |X2| = n − 2. There are two possible cases.

1. If there exists a point x ∈ X2, such that f (x) < f (x∗
k), then x is a point in a basin of f lower than the current basin

and we can re-minimize f using Algorithm (A1) from x.
2. If for all x ∈ X2, f (x)�f (x∗

k), then we can find a point x ∈ X2 satisfying H(x; x∗
k ; �(W), 	(W))�H(xij∗

k ; x∗
k ;

�(W), 	(W)). If there is a direction d ∈ {d ∈ D : x + d ∈ S, ‖x + d − x∗
k‖1 > ‖x − x∗

k‖1}, such that H(x +
d; x∗

k ; �(W), 	(W)) > H(x; x∗
k ; �(W), 	(W)), then x is a minimizer of the filled function H(x; x∗

k ; �(W), 	(W))

on the path connecting x∗
k to x + d. Hence x is a point in a basin of f lower than the current basin, and we can also

minimize f using Algorithm (A1) from x. If for all direction d ∈ {d ∈ D : x + d ∈ S, ‖x + d − x∗
k‖1 > ‖x − x∗

k‖1},
H(x + d; x∗

k ; �(W), 	(W))�H(x; x∗
k ; �(W), 	(W)), then we can define the set X3 and continue to minimize

H(x; x∗
k ; �(W), 	(W)) in X3 from x with the same (�(W), 	(W)).

Formally, the process of minimizing the filled function H can be described as follows.

Algorithm (A2): Minimizing the Filled Function H
Step 1. Let xi

k ∈ N(x∗
k)\Ñ be a randomly generated point, set x̃i

k = xi
k . Calculate

�0 = f (̃xi
k) − f (x∗

k) = −4
n∑

m=1
x∗
kmwmix

∗
ki

= −4[(x∗
k)

Twi]x∗
ki ,

set K = 1 and Ĩ = {i}.
Step 2. If K = [n

2], goto step 2 of Algorithm (SA). Otherwise, for all
xij
k ∈ XK = {x ∈ N(̃xi

k): ‖x − x∗
k‖1 > ‖̃xi

k − x∗
k‖1}.

Calculate

�f (j) = f (xij
k) − f (̃xi

k) = −4[(̃xi
km)Twj]̃xi

kj , j = 1, . . . , n, j /∈ Ĩ , (4.9)

j∗ = arg min{�f (j): j ∈ {1, 2, . . . , n}\Ĩ }, (4.10)

�K(j∗) = f (xij∗
k) − f (x∗

k) = �K−1(j∗) + �f (j∗).
Here, �0(j∗) = �0.

Step 3. If �K(j∗) = f (xij∗
k) − f (x∗

k) < 0, then goto Algorithm (A1) to minimize f starting from xij∗
k .

Step 4. Set

x̃i
k = xij∗

k , K = K + 1, Ĩ = Ĩ ∪ {j∗},
goto step 2.

Remark 3. By the symmetry structure of the set S, for any integer K with [n/2] < K �n, if x ∈ �N(x∗
k , K), then

−x ∈ �N(x∗
k , n − K) also f (−x) = f (x). Thus if we cannot find a point x in a basin of f lower than the current basin

along a steepest descent path of H(x; x∗
k ; �(W), 	(W)) from point xi

k ∈ N(x∗
k) to some point in �N(x∗

k , [n/2]), then
it is not necessary to continue the search in �N(x∗

k , [n/2] + 1). Hence, when K = [n/2] in step 2, we need to restart
the minimization of filled function H(x; x∗

k ; �(W), 	(W)) by generating another initial point.

Remark 4. In order to obtain the next initial iterate point xij∗
k from previous initial point x̃i

k for minimizing H, we
need to calculate equality (4.9) and (4.10), that is, only the need to calculate the inner product of two n-dimensional
vectors at most (n − |Ĩ |) times, instead of calculating directly the value f (xij

k) (j ∈ {1, 2, . . . , n}\Ĩ).

656 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

5. Numerical results

In this section, some experimented results are reported on the following two classes of test max-cut problems:

• Randomly generated graphs (20�n�200).
• 12 G-set graphs (n�800).

When n1 = n, in Algorithm DFFA, it means that in case necessary all points in N(x∗
k)\{x∗

k} will be generated as initial
points to minimize the filled function H(x; x∗

k ; �(W), 	(W)). We call the algorithm as Algorithm (DA).
The first class of test problems are generated by the matlab code

c = floor(w ∗ abs(full(spRANDSYM(n, a)))),

W = c − diag(diag(c)), (5.1)

where the parameter a reveals the density of nonzero entries in matrix W and w reflects the weighted values of
matrix W .

When 20�n�100, we randomly generate 18 problems with w = 1, denoted by S1, . . . , S18 and call them as S-set
problems, and only the Algorithm (DA) is implemented for all S-set problems. When 120�n�200, we randomly
generate eight-problems with w as a random integer in [1,50], denoted by L1, . . . , L8 and call them as L-set problems.
We implement Algorithm(DFFA) with n1 = [n/2] and Algorithm (DA) for all L-set problems. The 12 G-set graphs
are G1, G2, G3, G11, G12, G13, G14, G15, G16, G43, G44 and G45 that were created by using a graph generator,
rudy, written by Pro. Rinaldi. We only implement Algorithm (DFFA) with n1 = [n/10] for the 12 G-set problems. All
the results presented in this section for the proposed algorithm are implemented in a 1.6 GHz Pentium IV personal
computer with 256 Mb of RAM.

The elements wij of matrix W are integers for all test problems. Thus we take
= 1 in Eqs. (4.4) and (4.5). By (4.4),
the value 	 decreases and tends to 1

8 with the increasing of the product qM. Hence, a simple choice for the value of 	
is 	 = 1

8 that satisfies 	 < 	0 for all test problems. Thus, we only need to calculate the value of � by (4.5) for different
test problems. These values are given in Tables 1–3. It can be seen from Tables 1–3 that with the increasing of the
dimension or the density of matrix W , � is decreasing via the value q and M increasing.

Table 1
The values of parameter � for randomly generated the 18 S-set problems

Problem n a �(W)

S1 20 0.09 0.0052
S2 0.30 0.0013
S3 0.60 8.9446e−4

S4 30 0.09 0.0070
S5 0.30 1.3055e−3
S6 0.60 8.1300e−4

S7 40 0.09 0.0052
S8 0.30 8.9446e−4
S9 0.60 2.1786e−4

S10 60 0.09 1.7422e−3
S11 0.30 3.3444e−4
S12 0.60 2.0564e−4

S13 80 0.09 1.3155e−3
S14 0.30 2.4814e−4
S15 0.60 1.3024e−4

S16 100 0.09 8.6956e−4
S17 0.30 1.6717e−4
S18 0.60 6.2570e−5

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 657

Table 2
The values of parameter � for randomly generated the 8 L-set problems

Problem n a w �(W)

L1 120 0.30 47 3.5568e−7
L2 0.60 7 1.2084e−6

L3 160 0.30 30 3.6837e−7
L4 0.60 14 3.0114e−7

L5 180 0.30 47 1.9473e−7
L6 0.60 9 4.0575e−7

L7 200 0.30 17 4.6358e−7
L8 0.60 46 5.5325e−8

Table 3
The values of parameter � for the 12 G-set problems

Problem n Density (%) �(W)

G1 800 6.12 1.3334e−5
G2 1.4348e−5
G3 1.3127e−5

G11 800 0.63 0.0040
G12 0.0040
G13 0.0040

G14 800 1.58 3.5870e−6
G15 2.6710e−6
G16 4.1412e−6

G43 1000 2.10 5.5658e−5
G44 4.5658e−5
G45 4.5658e−5

For each of all S-set and L-set problems, we run Algorithms (DFFA) (or (DA)) and Continuation Algorithm [30] 10
times, respectively. The numerical results and comparisons are listed in Tables 4 and 5. In both the tables, the columns
headed with F ∗ and F ∗

C present the largest values to max-cut problems generated by Algorithms (DFFA) (or (DA)) and
Continuation Algorithm in 10 tests, respectively. N and NH denote the number of local minimizers of f which is found
by Algorithm (DFFA) or (DA) and the number of mean times minimizing the filled function H, that is, the number of
mean initial points generated for minimizing H 10 times, respectively. The CPU-time, denoted by time(s), is the mean
value of CPU-time in 10 tests. F ∗

0 stands for the max-cut value associated with the first minimizer x∗
0 of f obtained

by Algorithm (A1) starting from an initial point x0, where the initial point x0 is generated randomly by the procedure
x0 := sign(unifrnd(−1, 1, n, 1)), where unifrnd(−1, 1, n, 1) is a Matlab function which generates an n-dimensional
uniformly distributed vector whose elements lie in (−1, 1). sign(x) is a sign function that takes 1 when x�0 and -1
when x < 0.

In order to see how the value F ∗ is close to the global optimal value of the max-cut problem, we calculate the ratio
SU% = (

∑
F ∗/

∑
SU)%, where SU is an upper bound of F ∗, which is generated by solving problem (SDP) using the

Matlab software package for solving semidefinite programming, SDPPACK [1].
Table 6 gives the results and comparisons between the hybrid GRASP-VNS [11] (hybrid greedy randomized adaptive

search procedure with variable neighborhood search) heuristic, denoted as gvns, and the Algorithm (DFFA) on the 12
G-set large size test problems. In the table, the columns headed with gvns present the approximate values to max-cut
problems generated by the gvns heuristic and these values are quoted from [11]. The upper bound SU for the 12 G-set

658 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

Table 4
The numerical comparisons of continuous method with Algorithm (DA) for the 18 S-set problems with running continuous method, Algorithm (DA)
10 times, respectively, for each problem

Problem SU Continuous Algorithm (DA)

F ∗
C Time (s) F ∗

0 N NH F ∗ Time (s)

S1 9 9 0.01 9 1 20 9 0.12
S2 27 27 0.01 25 2 31 27 0.13
S3 43 40 0.02 38 3 26 43 0.12

S4 14 12 0.03 11 3 36 14 0.30
S5 37 34 0.05 34 3 40 36 0.36
S6 74 69 0.06 66 3 36 72 0.41

S7 29 26 0.10 25 3 45 29 0.92
S8 72 66 0.13 61 4 60 71 0.94
S9 124 116 0.15 110 6 56 120 0.98

S10 55 46 0.25 49 4 69 54 3.57
S11 164 155 0.33 144 8 85 159 5.10
S12 311 293 0.46 289 7 88 300 3.75

S13 97 90 1.42 89 7 73 96 10.32
S14 268 249 1.87 239 7 115 256 8.98
S15 465 437 2.02 426 5 106 452 8.54

S16 153 142 3.56 139 8 181 148 29.70
S17 409 379 4.13 370 7 163 390 22.38
S18 762 715 4.67 706 7 178 736 23.62

Sum 3113 2905 3012
SU% 100 93.32 96.76

Bold value represents, for the same as test problem, the largest max-cut value obtained by algorithm DFFA, DA, CA or GRASP-VNS.

problems comes from [7]. The value F ∗ is obtained by running Algorithm (DFFA) only one time. The following
observations can be made based on the results in Tables 4–6.

(1) For different density graphs, the proposed filled algorithm is efficient for solving max-cut problems. Comparison
with F ∗

C and gvns, the value F ∗ is obviously greatly improved.
(2) Although Algorithm (DFFA) uses less points in N(x∗

k)\{x∗
k} than Algorithm (DA) as initial points to minimizing

H(x; x∗
k ; �(W), 	(W)), the value F ∗ and the ratio SU% obtained by Algorithm (DFFA) are not less than that

obtained by Algorithm (DA). Moreover, Algorithm (DFFA) has obtained a better solution than Algorithm (DA)
for L4. Especially, Algorithm (DFFA) only needs to spend almost half of CPU-time of Algorithm (DA).

(3) The ratio SU% reflects that the obtained solution by the proposed algorithm is very close to the global solution for
all the test problems.

(4) The value � = (F ∗ − F ∗
0)/N listed in the final column of Table 6 indicates that the speed of improving from F ∗

0
to F ∗ is fast for problems G1, G2, G3, G43, G44 and G45, which also reflects the filled function algorithm is
promising for solving max-cut problems.

(5) Although we have greatly reduced the computation cost by random generating initial points and avoiding to
calculate the function value repeatedly, the CPU-time is still large. This is because N, the number of the local
minimizers of the function f and the times of minimizing the filled function H are large. That is, the larger the N
and NH are, the more the CPU-time is.

6. Conclusions

A discrete filled function algorithm is proposed to find approximate global solutions for NP-hard max-cut problems.
The algorithm is implemented via two phase cycle: in the first phase, the objective function f in problem (MC) is

A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660 659

Table 5
The numerical comparisons of continuous method with Algorithm (DA), (DFFA) for the 8 L-set problems with running continuous method, Algorithm
(DA) and (DFFA) 10 times, respectively, for each problem

Problem SU Continuous Algorithm (DA)/(DFFA)

F ∗
C Time (s) F ∗

0 N NH F ∗ Time (s)

L1 49 738 46 423 6.25 46 382 10 194 47 934 48.27
45 128 7 97 47 934 23.15

L2 11 765 11 122 6.86 11 066 10 169 11 421 40.30
11 090 13 97 11 421 22.15

L3 55 241 51 525 7.67 50 920 9 194 53 311 81.50
51 451 10 127 53 311 52.10

L4 43 860 41 690 8.77 41 610 7 220 42 459 92.21
41 654 9 144 42 477 58.90

L5 108 190 102 082 9.80 100 460 11 292 104 493 159.02
102 033 9 149 104 493 79.05

L6 33 856 32 078 9.72 31 975 16 285 33 073 151.74
31 812 13 128 33 073 66.87

L7 46 810 44 122 11.56 43 814 20 321 45 182 214.87
44 072 18 185 45 182 121.29

L8 225 610 215 988 14.02 215 972 14 351 219 461 237.69
214 798 11 222 219 461 148.97

Sum 575 070 545 030 557 334
557 352

%SU 100 94.77 96.91
96.92

Bold value represents, for the same as test problem, the largest max-cut value obtained by algorithm DFFA, DA, CA or GRASP-VNS.

Table 6
The numerical comparisons of gvns heuristic with Algorithm (DFFA) for 12 G-set problems with only running Algorithm (DFFA) once time for
each problem

Problem SU gvns Algorithm (DFFA)

F ∗
0 N NH F ∗ Time (s) �

G1 12 078 11 475 11 355 14 165 11 557 1112.32 14.43
G2 12 084 11 499 11 280 21 196 11 563 1210.40 13.46
G3 12 077 11 507 11 315 19 217 11 549 1254.53 12.32

G11 627 544 448 40 218 557 1316.25 2.73
G12 621 542 418 41 227 550 1478.90 3.23
G13 645 572 430 37 202 576 1099.36 3.95

G14 3187 3009 2926 21 198 3029 1016.42 4.90
G15 3169 3008 2891 28 214 3021 1103.71 4.64
G16 3172 2983 2896 22 169 3025 922.49 5.86

G43 7027 6583 6224 27 285 6587 1452.32 13.44
G44 7022 6559 6373 22 293 6578 1546.18 9.32
G45 7020 6553 6372 25 267 6573 1402.56 8.04

Sum 68 729 64 834 65 165
%SU 100 94.33 94.81

Bold value represents, for the same as test problem, the largest max-cut value obtained by algorithm DFFA, DA, CA or GRASP-VNS.

660 A.-F. Ling et al. / Journal of Computational and Applied Mathematics 220 (2008) 643–660

minimized using the 1-neighborhood local search to obtain a local minimizer, and then in the second phase, the discrete
filled function from some neighbor points of the local optimizer is minimized and the two cycles are repeated until the
stop conditions are satisfied. The properties of the proposed filled function are analyzed. The characteristics of max-cut
problems are used to show that the parameter values in the filled function need not be adjusted. This greatly increases
the efficiency of the proposed filled function method. Numerical results and comparisons are reported to indicate that
the filled function algorithm is efficient for max-cut problems. For large scale graphs, the algorithm may spend more
time to find a desired solution which is due to the number of the local minimizers of the function f and the times of
minimization of the filled function H from different initial points in a neighbor of a local minimizer of f. Hence further
works on the proposed algorithm are required to refine the algorithm in theory and implementation.

Acknowledgments

The authors are indebted to two anonymous referees whose comments helped considerably to improve this paper.

References

[1] F. Alizadeh, J. Haeberly, M. Nayakkankuppam, M. Overton, S. Schmieta, SDPPACK use’s guide: version 0.9 beta for MATLAB5.0, 1997.
[2] H. Alperin, I. Nowak, Lagrangian smoothing heuristics for max-cut, J. Heuristics 11 (2005) 447–463.
[3] F. Barahona, Grötschel, G. Reinelt, An application of combinatorial optimization to statistical physics and circuit layout design, Oper. Res. 36

(1988) 493–513.
[6] D. Bertsimas, Y. Ye, Semidefinite relaxations, multivariate normal distributions, and order statistics, in: D.-Z. Du, P. Pardalos (Eds.), Handbook

of Combinatorial Optimization, Kluwer Academic Publishers, Dordrecht, 1998, pp. 1–17.
[7] S. Burer, R.D.C. Monteiro, A projected gradient algorithm for solving the maxcut SDP relaxation, Optimization Methods and Software 15

(2001) 175–200.
[9] S. Burer, R.D.C. Monteiro, Y. Zhang, Rank-two relaxation heuristics for max-cut and other binary quadratic programs, SIAM J. Optim. 12

(2001) 503–521.
[11] P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro, Randomized heuristics for the max-cut problem, Optimization Methods and Software

17 (2002) 1033–1058.
[12] M. Garey, D. Johnson, L. Stochmeter, Some simplified NP-complete graph problems, Theoret. Comput. Sci. 1 (1976) 237–267.
[13] R.-P. Ge, A filled function method for finding a global minimizer of a function of several variables, Math. Programming 46 (1990) 191–204.
[14] R.-P. Ge, C.B. Huang, A continuous approach to nonlinear integer programming, Appl. Math. Comput. 34 (1) (1989) 39–60.
[16] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite

programming, J. Assoc. Comput. Mach. 42 (6) (1995) 1115–1145.
[17] Y.H. Gu, Z.Y. Wu, A new filled function method for nonlinear integer programming problem, Appl. Math. Comput. 173 (2006) 938–950.
[18] X.-L. He, C.-X. Xu, C.-C. Zhu, A new class of filled functions for global minimization, computation intelligence and security, part I, in:

Proceedings Lecture Notes in Artificial Intelligence, vol. 3801, 2005, pp. 1088–1093.
[20] R.M. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher (Eds.), Complexity of Computer Computations, Plenum

Press, New York, 1972, pp. 85–103.
[21] X. Liu, Finding global minima with a computable filled function, J. Global Optim. 19 (2001) 151–161.
[23] C.-K. Ng, L.-S. Zhang, D. Li, W.-W. Tian, Discrete filled function method for discrete global optimization, Comput. Optim. Appl. 31 (2005)

87–115.
[26] Y.-L. Shang, L.-S. Zhang, A filled function method for finding a global minimizer on global integer optimization, J. Comput. Appl. Math. 181

(2005) 200–210.
[27] C.-X. Xu, X.-L. He, F.-M. Xu, An effective continuous algorithm for approximate solutions of large scale max-cut problems, J. Comput. Math.

24 (6) (2006) 749–760.
[30] F.-M. Xu, C.-X. Xu, H.-G. Xue, A feasible direction algorithm without line search for solving max-bisection problem, J. Comput. Math. 23

(2005) 619–634.
[31] Z. Xu, H.-X. Huang, P.M. Pardalos, C.X. Xu, Filled functions for unconstrained global optimization, J. Global Optim. 20 (2001) 49–65.
[32] L.-S. Zhang, C. Ng, D. Li, W.-W. Tian, A new filled function method for global optimization, J. Global Optim. 28 (2004) 17–43.
[33] W.-X. Zhu, An approximate algorithm for nonlinear integer programming, Appl. Math. Comput. 93 (2–3) (1998) 183–193.
[34] U. Zwick, Outward rotations: a tool for rounding solutions of semidefinite programming relaxations, with applications to max cut and other

problems, in: Proceedings of 31st STOC, 1999, pp. 679–687.

	A discrete filled function algorithm for approximate global solutions of max-cut problems62626262
	Introduction
	Definition and preliminaries
	A discrete filled function and its properties
	The algorithm
	The estimation of alpha,beta
	The statement of the algorithm
	Minimizing =f using local search
	Generating initial points to minimize =H
	Minimizing the filled function =H

	Numerical results
	Conclusions
	Acknowledgments
	References

