A brief survey on Bounded Index Property

Qiang ZHANG

Xi'an Jiaotong University

Nielsen Theory and Related Topics KU Leuven Campus Kulak, Kortrijk, Belgium June 6, 2019

Fixed point class

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathsf{F}) := \operatorname{ind}(f, \mathsf{F}) := \sum_{x \in \mathsf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Fixed point class

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{nd}(\mathsf{F}) := \operatorname{ind}(f, \mathsf{F}) := \sum_{x \in \mathsf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Qiang ZHANG

A brief survey on Bounded Index Property

Fixed point class

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Qiang ZHANG

For any group G, denote the set of endomorphisms of G by End(G).

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$\operatorname{Fix} \phi := \{ g \in G | \phi(g) = g \}.$$

For a family \mathcal{B} of endomorphisms of G (i.e., $\mathcal{B} \subseteq \text{End}(G)$), the fixed subgroup of \mathcal{B} is

$$\operatorname{Fix} \mathcal{B} := \{ g \in \mathcal{G} | \phi(g) = g, \forall \phi \in \mathcal{B} \} = igcap_{\phi \in \mathcal{B}} \operatorname{Fix} \phi.$$

For a fixed point $x \in \mathbf{F}$, let

$$\mathrm{Stab}(f,x) := \{\gamma \in \pi_1(X,x) | \gamma = f_\pi(\gamma)\} \subset \pi_1(X,x),$$

where $f_{\pi} : \pi_1(X, x) \to \pi_1(X, x)$ is the induced endomorphism. It is independent of the choice of $x \in F$, up to isomorphism. For a fixed point class **F** of f, define the rank to be

$$\operatorname{rk}(\mathbf{F}) := \operatorname{rk}(f, x) := \operatorname{rkStab}(f, x), \quad \forall x \in \mathbf{F}.$$

For an empty fixed point class \mathbf{F} , we can make it nonempty by deforming f.

< □ > < □ >

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

 $H: \textbf{F}_0 \mapsto \textbf{F}_1$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

 $\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \quad \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1).$

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance) Under the correspondence via a homotopy H, $ind(f_0, F_0) = ind(f_1, F_1), \quad rk(f_0, F_0) = rk(f_1, F_1).$

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \quad \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1).$$

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

 $\mathbf{F}_X \to \mathbf{F}_Y$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Theorem (Commutation invariance)

Under the correspondence via commutation,

 $\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y), \quad \operatorname{rk}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{rk}(\phi \circ \psi; \mathbf{F}_Y).$

・ロン ・回 と ・ 回 と ・ 回 と

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$F_X \rightarrow F_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_{X}) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_{Y}), \quad \operatorname{rk}(\psi \circ \phi; \mathbf{F}_{X}) = \operatorname{rk}(\phi \circ \psi; \mathbf{F}_{Y}).$$

Image: A match the second s

Definition

A sequence $\{f_i : X_i \to X_i | i = 0, \dots, k\}$ of self-maps is a mutation if for each *i*, either

2) f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $ind(\mathbf{F})$ and the rank $rk(\mathbf{F})$ are mutation invariants.

イロト イポト イヨト イヨト

Definition

A sequence $\{f_i : X_i \to X_i | i = 0, \dots, k\}$ of self-maps is a mutation if for each *i*, either

$$\ \, {\bf 0} \ \, X_{i+1} = X_i \ \, {\rm and} \ \, f_{i+1} \simeq f_i, \ \, {\rm or} \ \,$$

2 f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $ind(\mathbf{F})$ and the rank $rk(\mathbf{F})$ are mutation invariants.

Image: A match the second s

Definition

A sequence $\{f_i : X_i \to X_i | i = 0, \dots, k\}$ of self-maps is a mutation if for each *i*, either

$$\ \, {\bf 0} \ \, X_{i+1} = X_i \ \, {\rm and} \ \, f_{i+1} \simeq f_i, \ \, {\rm or} \ \,$$

2 f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $ind(\mathbf{F})$ and the rank $rk(\mathbf{F})$ are mutation invariants.

Definition

A sequence $\{f_i : X_i \to X_i | i = 0, \cdots, k\}$ of self-maps is a mutation if for each *i*, either

$$\ \, {\bf 0} \ \, X_{i+1} = X_i \ \, {\rm and} \ \, f_{i+1} \simeq f_i, \ \, {\rm or} \ \,$$

2 f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index ind(F) and the rank rk(F) are mutation invariants.

▲ □ ► ▲ □ ►

From now on, unless otherwise stated, we always assume X to be a graph, a surface or a Seifert manifold, and $f : X \to X$ is a selfmap. For convenience, we define another term.

Definition

The characteristic of a fixed point class **F** is defined as

$$\operatorname{chr}(\mathbf{F}) := 1 - \operatorname{rk}(\mathbf{F}).$$

with the exception is when $\operatorname{Stab}(f, \mathbf{F}) = \pi_1(S)$ for some closed hyperbolic surface $S \subset X$, in this case

$$\operatorname{chr}(\mathbf{F}) := \chi(S) = 2 - \operatorname{rk}(\mathbf{F}).$$

From now on, unless otherwise stated, we always assume X to be a graph, a surface or a Seifert manifold, and $f : X \to X$ is a selfmap. For convenience, we define another term.

Definition

The characteristic of a fixed point class **F** is defined as

$$\operatorname{chr}(\mathbf{F}) := 1 - \operatorname{rk}(\mathbf{F}).$$

with the exception is when $\operatorname{Stab}(f, \mathbf{F}) = \pi_1(S)$ for some closed hyperbolic surface $S \subset X$, in this case

$$\operatorname{chr}(\mathbf{F}) := \chi(S) = 2 - \operatorname{rk}(\mathbf{F}).$$

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}$.
- Lefschetz number

$$L(f) := \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

<ロ> <同> <同> <同> < 同>

- ∢ ≣ ▶

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := #\{essential fixed point classes of f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q}))$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

・ロト ・回ト ・ヨト

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := #\{essential fixed point classes of f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

・ロト ・回ト ・ヨト

2

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := #\{essential fixed point classes of f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_{q}(-1)^{q}\mathrm{Trace}(f_{*}:H_{q}(X;\mathbb{Q})\rightarrow H_{q}(X;\mathbb{Q})).$$

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact hyperbolic surface, and $f : X \to X$ is a selfmap. Then (A) $ind(F) \leq chr(F)$ for every fixed point class F of f; (B) when X is not a tree,

$$\sum_{\mathrm{nd}(\mathbf{F})+\mathrm{chr}(\mathbf{F})<0} \{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})\} \ge 2\chi(X),$$

where the sum is taken over all fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0.$

B. Jiang, S.D. Wang, Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11(2011), 2297–2318.

▲冊▶ ▲屋▶ ▲屋≯

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact hyperbolic surface, and $f : X \to X$ is a selfmap. Then (A) $ind(F) \leq chr(F)$ for every fixed point class F of f; (B) when X is not a tree,

$$\sum_{\operatorname{ad}(\mathsf{F})+\operatorname{chr}(\mathsf{F})<0} \{\operatorname{ind}(\mathsf{F})+\operatorname{chr}(\mathsf{F})\} \ge 2\chi(X),$$

where the sum is taken over all fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0.$

B. Jiang, S.D. Wang, Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11(2011), 2297–2318.

▲圖▶ ▲屋▶ ▲屋▶

Theorem (Jiang-Wang-Z., 2011)

iı

Suppose X is either a connected finite graph or a connected compact hyperbolic surface, and $f : X \to X$ is a selfmap. Then (A) $ind(F) \leq chr(F)$ for every fixed point class F of f; (B) when X is not a tree,

$$\sum_{\mathrm{nd}(\mathbf{F})+\mathrm{chr}(\mathbf{F})<0} \{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})\} \geq 2\chi(X),$$

where the sum is taken over all fixed point classes F with $\mathrm{ind}(F)+\mathrm{chr}(F)<0.$

B. Jiang, S.D. Wang, Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11(2011), 2297–2318.

▲冊▶ ▲屋▶ ▲屋▶

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of F_n . Then $\operatorname{rkFix} \phi \leq \operatorname{rk} F_n$.

Theorem (Dicks-Ventura, 1996)

Let ϕ be an injective endomorphism of F_n . Then

 $\operatorname{rkFix}\phi \leq \operatorname{rk}F_n.$

[**Bergman,1999**] generalized this result to any family of endomorphisms.

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of F_n . Then $\operatorname{rkFix} \phi \leq \operatorname{rk} F_n$.

Theorem (Dicks-Ventura, 1996)

Let ϕ be an injective endomorphism of F_n . Then

 $\mathrm{rkFix}\phi\leq\mathrm{rk}F_{n}.$

[**Bergman,1999**] generalized this result to any family of endomorphisms.

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of F_n . Then $\operatorname{rkFix} \phi \leq \operatorname{rk} F_n$.

Theorem (Dicks-Ventura, 1996)

Let ϕ be an injective endomorphism of F_n . Then

 $\mathrm{rkFix}\phi \leq \mathrm{rk}F_n$.

[Bergman,1999] generalized this result to any family of endomorphisms.

Corollary (Jiang, 1998)

Let X be either a connected finite graph(not a tree) or a connected compact hyperbolic surface, and $f : X \to X$ a selfmap. Then

- $\operatorname{ind}(\mathbf{F}) \leq 1, \forall \mathbf{F} \in \operatorname{Fpc}(f);$
- 2 Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(\mathbf{F})<-1} \{\mathrm{ind}(\mathbf{F})+1\} \ge 2\chi(X).$$

3
$$|L(f) - \chi(X)| \leq N(f) - \chi(X).$$

Theorem (Jiang-Wang-Z., 2011)

Let ϕ be an endomorphism of a surface group G. Then

 ${f 0}\ {
m rkFix}\phi\leq {
m rk}{f G}$, with equality if and only if $\phi={
m id}$;

2) $\operatorname{rkFix}\phi \leq \frac{1}{2}\operatorname{rk}G$ if ϕ is not epimorphic.

Corollary (Jiang, 1998)

Let X be either a connected finite graph(not a tree) or a connected compact hyperbolic surface, and $f : X \to X$ a selfmap. Then

- $\operatorname{ind}(\mathbf{F}) \leq 1, \forall \mathbf{F} \in \operatorname{Fpc}(f);$
- 2 Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(\mathbf{F})<-1} \{\mathrm{ind}(\mathbf{F})+1\} \ge 2\chi(X).$$

3
$$|L(f) - \chi(X)| ≤ N(f) - \chi(X).$$

Theorem (Jiang-Wang-Z., 2011)

Let ϕ be an endomorphism of a surface group G. Then

- **1** $\operatorname{rkFix}\phi \leq \operatorname{rk} G$, with equality if and only if $\phi = \operatorname{id}$;
- 2 $\operatorname{rkFix}\phi \leq \frac{1}{2}\operatorname{rk}G$ if ϕ is not epimorphic.

Theorem (Wu-Z.,2014)

Let \mathcal{B} be a family of **endomorphisms** of G. Then

- $\operatorname{rkFix}\mathcal{B} \leq \operatorname{rk}G$, with equality if and only if $\mathcal{B} = \{id\}$;
- 2 $\operatorname{rkFix}\mathcal{B} \leq \frac{1}{2}\operatorname{rk}G$, if \mathcal{B} contains a non-epimorphic endomorphism

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- **1** $\operatorname{ind}(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in \operatorname{Fpc}(f)$, hence $L(f) \leq N(f)$;
- **2** If *M* is orientable and *f* is **orientation-preserving**, then

 $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f),$

hence $|L(f)| \leq N(f)$.

③ \forall n > 3, ∃f on a closed aspherical n-manifold such that

$$L(f) > N(f).$$

- 4 同 6 4 日 6 4 日 6

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- $ind(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in Fpc(f)$, hence $L(f) \leq N(f)$;
- **2** If *M* is orientable and *f* is **orientation-preserving**, then

 $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \ \mathbf{F} \in \operatorname{Fpc}(f),$

hence $|L(f)| \leq N(f)$.

③ \forall *n* > 3, ∃*f* on a closed aspherical *n*-manifold such that

L(f) > N(f).

æ

イロト イポト イヨト イヨト

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- $ind(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in Fpc(f)$, hence $L(f) \leq N(f)$;
- **2** If M is orientable and f is **orientation-preserving**, then

 $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \ \mathbf{F} \in \operatorname{Fpc}(f),$

hence $|L(f)| \leq N(f)$.

③ \forall *n* > 3, ∃*f* on a closed aspherical *n*-manifold such that

L(f) > N(f).

æ

イロト イポト イヨト イヨト

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyperbolic orbifold, and $f : M \to M$ is a homeomorphism. Then (A) $ind(F) \leq chr(F)$ for every essential fixed point class F of f; (B)

where the sum is taken over all essential fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0,$ and

 $\mathcal{B} = \begin{cases} 4(3 - \mathrm{rk}\pi_1(M)) & M \text{ is a closed surface } F \times S^1\\ 4(2 - \mathrm{rk}\pi_1(M)) & others \end{cases}$

< □ > < □ > < □ >

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyperbolic orbifold, and $f : M \to M$ is a homeomorphism. Then (A) $ind(F) \leq chr(F)$ for every essential fixed point class F of f; (B)

where the sum is taken over all essential fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0,$ and

 $\mathcal{B} = \begin{cases} 4(3 - \mathrm{rk}\pi_1(M)) & M \text{ is a closed surface } F \times S^2 \\ 4(2 - \mathrm{rk}\pi_1(M)) & \text{others} \end{cases}$

● ▶ ▲ ● ▶

ind

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyperbolic orbifold, and $f : M \to M$ is a homeomorphism. Then (A) $ind(F) \leq chr(F)$ for every essential fixed point class F of f; (B)

$$\sum_{\mathrm{d}(F)+\mathrm{chr}(F)<0}\{\mathrm{ind}(F)+\mathrm{chr}(F)\}\geq \mathcal{B},$$

where the sum is taken over all essential fixed point classes F with ${\rm ind}(F)+{\rm chr}(F)<0,$ and

$$\mathcal{B} = \begin{cases} 4(3 - \mathrm{rk}\pi_1(M)) & \text{M is a closed surface $F \times S^1$} \\ 4(2 - \mathrm{rk}\pi_1(M)) & \text{$others$} \end{cases}$$

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

○ $\sum_{ind(F)<-1} \{ind(F)+1\} ≥ B.$ ○ |L(f) - B/2| ≤ N(f) - B/2.

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $ind(F) \in \{-1, 0, 1\}$.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

1 $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class **F** of f;

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $\operatorname{ind}(\mathsf{F}) \in \{-1,0,1\}$.

(4 同) (4 回) (4 回)

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

2
$$\sum_{ind(\mathbf{F}) < -1} \{ind(\mathbf{F}) + 1\} \geq \mathcal{B}$$

$$|L(f) - \mathcal{B}/2| \le N(f) - \mathcal{B}/2.$$

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $\operatorname{ind}(\mathsf{F}) \in \{-1, 0, 1\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

2
$$\sum_{ind(\mathbf{F})<-1} \{ind(\mathbf{F})+1\} \geq \mathcal{B}$$

$$|L(f) - \mathcal{B}/2| \le N(f) - \mathcal{B}/2.$$

The bound above is analogous to the one on graphs and surfaces. For *f* orient.-preserving, [Jiang-Wang, 1992]: $ind(F) \in \{-1, 0, 1\}$.

- 4 同 ト 4 三 ト

Proposition (Z., 2012)

Suppose $f : M \to M$ is a homeomorphism of a compact orientable Seifert 3-manifold with hyperbolic orbifold. Let $f_{\pi} : \pi_1(M, x) \to \pi_1(M, x)$ be the induced automorphism and $\operatorname{Fix}(f_{\pi}) := \{\gamma \in \pi_1(M, x) | \gamma = f_{\pi}(\gamma)\} \subset \pi_1(M, x)$, where x is in an essential fixed point class. Then

$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$

Theorem (Z., 2013)

Suppose *M* is a compact orientable **Seifert** 3-manifold, and f_{π} : $\pi_1(M) \to \pi_1(M)$ is an automorphism induced by an orientationreversing homeomorphism $f : M \to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

Proposition (Z., 2012)

Suppose $f : M \to M$ is a homeomorphism of a compact orientable Seifert 3-manifold with hyperbolic orbifold. Let $f_{\pi} : \pi_1(M, x) \to \pi_1(M, x)$ be the induced automorphism and $\operatorname{Fix}(f_{\pi}) := \{\gamma \in \pi_1(M, x) | \gamma = f_{\pi}(\gamma)\} \subset \pi_1(M, x)$, where x is in an essential fixed point class. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

Theorem (Z., 2013)

Suppose M is a compact orientable Seifert 3-manifold, and f_{π} : $\pi_1(M) \to \pi_1(M)$ is an automorphism induced by an orientationreversing homeomorphism $f : M \to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M³ be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f: M \to M$, **1** $\operatorname{ind}(f, \mathbf{F}) < 1$ for every fixed point class **F** of f; $\sum \quad \operatorname{ind}(f, \mathbf{F}) > 1 - 2\operatorname{rk}\pi_1(M),$ where the sum is taken over all fixed point classes **F** with $\operatorname{ind}(f, \mathbf{F}) < 0.$

▲ 同 ▶ | ▲ 三 ▶

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M^3 be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f : M \to M$, a) $\operatorname{ind}(f, \mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f; b) $\sum_{\operatorname{ind}(f, \mathbf{F}) < 0} \operatorname{ind}(f, \mathbf{F}) > 1 - 2\operatorname{rk}\pi_1(M)$, where the sum is taken over all fixed point classes \mathbf{F} with $\operatorname{ind}(f, \mathbf{F}) < 0$.

■ $N(f) \ge L(f) > 1 - 2 \operatorname{rk} \pi_1(M).$

< □ > < □ >

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M^3 be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f : M \to M$, a) $\operatorname{ind}(f, \mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f; b) $\sum_{\operatorname{ind}(f, \mathbf{F}) < 0} \operatorname{ind}(f, \mathbf{F}) > 1 - 2\operatorname{rk}\pi_1(M)$, where the sum is taken over all fixed point classes \mathbf{F} with $\operatorname{ind}(f, \mathbf{F}) < 0$.

3
$$N(f) \ge L(f) > 1 - 2 \operatorname{rk} \pi_1(M).$$

< A > < > >

As a corollary, we have a bound for hyperbolic 3-manifolds

Theorem (Lin-Wang, 2012)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a compact orientable hyperbolic 3-manifold with finite volume. Then

 $\operatorname{rkFix}\phi < 2\operatorname{rk}G.$

▲冊▶ ▲ 臣▶ ▲ 臣▶

As a corollary, we have a bound for hyperbolic 3-manifolds

Theorem (Lin-Wang, 2012)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a compact orientable **hyperbolic** 3-manifold with finite volume. Then

 $\operatorname{rkFix}\phi < 2\operatorname{rk}G.$

For any compact hyperbolic 4-manifold

Theorem (Z., 2015)

Let M^4 be a hyperbolic 4-manifold. Then for any homeomorphism $f: M \to M$, we have

$$\max\{N(f), |L(f)|\} \le \sum_{\mathbf{F} \in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \le \mathcal{B}(M),$$

where $\mathcal{B}(M) = \max\{\dim H_*(M; \mathbb{Z}_p) | p \text{ is a prime}\}$. In particular, if f is not homotopic to the identity, then

$$\operatorname{ind}(f, \mathbf{F}) \leq 1, \qquad L(f) \leq N(f).$$

Theorem (Z., 2015)

Let M^n be a hyperbolic n-manifold $(n \ge 5)$. If the isometry group Isom(M) is a **p-group** (|Isom(M)| is a power of some prime p), then for any homeomorphism $f : M \to M$, we have

$$\max\{N(f), |L(f)|\} \leq \sum_{\mathbf{F}\in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \leq \dim H_*(M; \mathbb{Z}_p),$$

where dim $H_*(M; \mathbb{Z}_p)$ denotes the dimension of the \mathbb{Z}_p -linear space

$$H_*(M;\mathbb{Z}_p)=\bigcup_{r\geq 0}H_r(M;\mathbb{Z}_p).$$

Question

Is there an analogous explicit bound for any compact hyperbolic *n*-manifold with $n \ge 5$?

Qiang ZHANG

Theorem (Z., 2015)

Let M^n be a hyperbolic n-manifold $(n \ge 5)$. If the isometry group Isom(M) is a **p-group** (|Isom(M)| is a power of some prime p), then for any homeomorphism $f : M \to M$, we have

$$\max\{N(f), |L(f)|\} \leq \sum_{\mathbf{F}\in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \leq \dim H_*(M; \mathbb{Z}_p),$$

where dim $H_*(M; \mathbb{Z}_p)$ denotes the dimension of the \mathbb{Z}_p -linear space

$$H_*(M;\mathbb{Z}_p)=\bigcup_{r\geq 0}H_r(M;\mathbb{Z}_p).$$

Question

Is there an analogous explicit bound for any compact hyperbolic *n*-manifold with $n \ge 5$?

Key points of Proofs of the three Theorems above

- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.
- **F**: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and t : X → X a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x = tx). The projection X → X' maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

 $\dim H_*(F;\mathbb{Z}_p) \leq \dim H_*(X;\mathbb{Z}_p).$

・ 母 と ・ ヨ と ・ ヨ と

Key points of Proofs of the three Theorems above

- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.
- **F**: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and t : X → X a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x = tx). The projection X → X' maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

 $\dim H_*(F;\mathbb{Z}_p)\leq \dim H_*(X;\mathbb{Z}_p).$

Key points of Proofs of the three Theorems above

- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.
- **F**: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and t : X → X a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x = tx). The projection X → X' maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

$$\dim H_*(F;\mathbb{Z}_p) \leq \dim H_*(X;\mathbb{Z}_p).$$

Bounded Index Property: $BIP \Longrightarrow BIPHE \Longrightarrow BIPH$

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH), Bounded Index Property for Homotopy Equivalences (BIPHE)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism, homotopy equivalence) $f : X \to X$,

$|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$

- BIP, BIPHE are homotopy type invariants;
- BIP \Longrightarrow BIPHE \Longrightarrow BIPH;
- For an aspherical (i.e. π_i(X) = 0 for all i > 1) closed manifold M, if Borel's conjecture (any homotopy equivalence f : M → M is homotopic to a homeomorphism g : M → M) is true, then

$$M \text{ has } BIPHE \iff M \text{ has } BIPH.$$

Bounded Index Property: $BIP \implies BIPHE \implies BIPH$

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH), Bounded Index Property for Homotopy Equivalences (BIPHE)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism, homotopy equivalence) $f : X \to X$,

$$|\mathrm{ind}(f,\mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \mathrm{Fpc}(f).$$

- BIP, BIPHE are homotopy type invariants;
- BIP \implies BIPHE \implies BIPH;
- For an aspherical (i.e. π_i(X) = 0 for all i > 1) closed manifold M, if Borel's conjecture (any homotopy equivalence f : M → M is homotopic to a homeomorphism g : M → M) is true, then

$$M \text{ has BIPHE} \iff M \text{ has BIPH.}$$

Bounded Index Property: $BIP \implies BIPHE \implies BIPH$

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH), Bounded Index Property for Homotopy Equivalences (BIPHE)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism, homotopy equivalence) $f : X \to X$,

$$|\mathrm{ind}(f,\mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \mathrm{Fpc}(f).$$

- BIP, BIPHE are homotopy type invariants;
- BIP \implies BIPHE \implies BIPH;
- For an aspherical (i.e. π_i(X) = 0 for all i > 1) closed manifold M, if Borel's conjecture (any homotopy equivalence f : M → M is homotopic to a homeomorphism g : M → M) is true, then

$$M \text{ has BIPHE} \iff M \text{ has BIPH.}$$

Bounded Index Property: $BIP \implies BIPHE \implies BIPH$

A compact polyhedron X is said to have the Bounded Index Property (BIP)(resp. Bounded Index Property for Homeomorphisms (BIPH), Bounded Index Property for Homotopy Equivalences (BIPHE)), if $\exists B > 0$ s.t. for any map (resp. homeomorphism, homotopy equivalence) $f : X \to X$,

$$|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f).$$

- BIP, BIPHE are homotopy type invariants;
- BIP \implies BIPHE \implies BIPH;
- For an aspherical (i.e. π_i(X) = 0 for all i > 1) closed manifold M, if Borel's conjecture (any homotopy equivalence f : M → M is homotopic to a homeomorphism g : M → M) is true, then

$$M \text{ has } BIPHE \iff M \text{ has } BIPH.$$

2

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive examples:

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998]([Kelly, 1997] for parallel results): Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH;

• • • • • • •

2

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive examples:

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998]([Kelly, 1997] for parallel results): Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH;

• • • • • • •

2

ヘロン 人間と 人間と 人間と

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive examples:

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998]([Kelly, 1997] for parallel results): Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH;

• • • • • • •

2

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive examples:

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998]([Kelly, 1997] for parallel results): Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH;

• • • • • • •

2

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive examples:

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998]([Kelly, 1997] for parallel results): Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH;

• • • • • • •

2

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive examples:

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998]([Kelly, 1997] for parallel results): Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH;
- • • • •

æ

▲帰▶ ★ 注▶ ★ 注▶

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao, 2017)

Let $f : S_1 \times S_2 \rightarrow S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

• For every fixed point class **F** of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

◎ $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

To prove the above Theorem, we first consider two good forms of selfmaps called **fiber-preserving maps** and **alternating home-omorphisms**, and then show that any homeomorphism f can be homotoped to one of the two good forms.

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao, 2017)

Let $f : S_1 \times S_2 \rightarrow S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

I For every fixed point class F of f, we have

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq (2\chi_1 - 1)(2\chi_2 - 1);$$

 $■ |L(f) - 2\chi_1\chi_2| ≤ (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

To prove the above Theorem, we first consider two good forms of selfmaps called **fiber-preserving maps** and **alternating homeomorphisms**, and then show that any homeomorphism *f* can be homotoped to one of the two good forms.

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao, 2017)

Let $f : S_1 \times S_2 \rightarrow S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

• For every fixed point class **F** of f, we have

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq (2\chi_1 - 1)(2\chi_2 - 1);$$

 $■ |L(f) - 2\chi_1\chi_2| ≤ (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

To prove the above Theorem, we first consider two good forms of selfmaps called **fiber-preserving maps** and **alternating homeomorphisms**, and then show that any homeomorphism f can be homotoped to one of the two good forms.

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao, 2017)

Let $f : S_1 \times S_2 \rightarrow S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

For every fixed point class F of f, we have

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq (2\chi_1 - 1)(2\chi_2 - 1);$$

2 |*L*(*f*) − 2*χ*₁*χ*₂| ≤ (1 − 2*χ*₁)*N*(*f*) + 2(*χ*₁*χ*₂ − *χ*₁).

To prove the above Theorem, we first consider two good forms of selfmaps called **fiber-preserving maps** and **alternating home-omorphisms**, and then show that any homeomorphism f can be homotoped to one of the two good forms.

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao, 2017)

Let $f : S_1 \times S_2 \rightarrow S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

For every fixed point class F of f, we have

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq (2\chi_1 - 1)(2\chi_2 - 1);$$

2
$$|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$$

To prove the above Theorem, we first consider two good forms of selfmaps called **fiber-preserving maps** and **alternating home-omorphisms**, and then show that any homeomorphism f can be homotoped to one of the two good forms.

Qiang ZHANG

Case 1: Fiber-preserving maps

Definition

A selfmap $f: S_1 \times S_2 \rightarrow S_1 \times S_2$ is called a fiber-preserving map, if

 $f = f_1 imes f_2 : S_1 imes S_2
ightarrow S_1 imes S_2, \quad (a, b) \mapsto (f_1(a), f_2(b)),$

where f_i is a selfmap of S_i (i = 1, 2).

For any fiber-preserving map f, we have $\operatorname{Fix} f = \operatorname{Fix} f_1 \times \operatorname{Fix} f_2$, and each fixed point class **F** of f splits into a product of some fixed point classes of f_i , i.e.,

_emma

• $\mathbf{F} = \mathbf{F}_1 \times \mathbf{F}_2$, $\operatorname{ind}(f, \mathbf{F}) = \operatorname{ind}(f_1, \mathbf{F}_1) \cdot \operatorname{ind}(f_2, \mathbf{F}_2)$, where \mathbf{F}_i is a fixed point class of f_i for i = 1, 2.

æ

イロト イヨト イヨト イヨト

Case 1: Fiber-preserving maps

Definition

A selfmap $f: S_1 \times S_2 \rightarrow S_1 \times S_2$ is called a fiber-preserving map, if

$$f = f_1 \times f_2 : S_1 \times S_2 \rightarrow S_1 \times S_2, \quad (a,b) \mapsto (f_1(a),f_2(b)),$$

where f_i is a selfmap of S_i (i = 1, 2).

For any fiber-preserving map f, we have $\operatorname{Fix} f = \operatorname{Fix} f_1 \times \operatorname{Fix} f_2$, and each fixed point class **F** of f splits into a product of some fixed point classes of f_i , i.e.,

Lemma

æ

- 4 回 2 4 日 2 4 日 2

By the Lemma above, we can show that the product $S_1 \times S_2$ has BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If $f: S_1 \times S_2 \rightarrow S_1 \times S_2$ is a fiber-preserving map, then

I For every fixed point class F of f, we have

 $2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$

 $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

By the Lemma above, we can show that the product $S_1 \times S_2$ has BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If $f: S_1 \times S_2 \rightarrow S_1 \times S_2$ is a fiber-preserving map, then

• For every fixed point class F of f, we have

 $2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq (2\chi_1 - 1)(2\chi_2 - 1);$

 $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

By the Lemma above, we can show that the product $S_1 \times S_2$ has BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If $f: S_1 \times S_2 \rightarrow S_1 \times S_2$ is a fiber-preserving map, then

● For every fixed point class **F** of f, we have

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq (2\chi_1 - 1)(2\chi_2 - 1);$$

② $|L(f) - 2\chi_1\chi_2| ≤ (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

Let $S_1 = S_2$ be two copies of a connected compact hyperbolic surface S, and hence, their Euler characteristics $\chi_1 = \chi_2 = \chi(S) < 0$.

Definition

A self-homeomorphism $f: S_1 \times S_2 \to S_1 \times S_2$ is called an alternating homeomorphism, if

$$f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$$

 $(a,b)\mapsto (f_2(b),f_1(a)),$

where f_1 , f_2 are two self-homeomorphisms of S, and τ is a transposition.

Let $S_1 = S_2$ be two copies of a connected compact hyperbolic surface S, and hence, their Euler characteristics $\chi_1 = \chi_2 = \chi(S) < 0$.

Definition

A self-homeomorphism $f: S_1 \times S_2 \to S_1 \times S_2$ is called an alternating homeomorphism, if

$$f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$$

 $(a,b)\mapsto (f_2(b),f_1(a)),$

where f_1 , f_2 are two self-homeomorphisms of S, and τ is a transposition.

Lemma

If $f: S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then the nature map

$$\rho: S_1 \to S_1 \times S_2, \quad a \mapsto (a, f_1(a))$$

induces an index-preserving one-to-one corresponding between the set $\operatorname{Fpc}(f_2 \circ f_1)$ of fixed point classes of $f_2 \circ f_1$ and the set $\operatorname{Fpc}(f)$ of fixed point classes of f.

Proof: Let $M = Df_1(a)$ and $N = Df_2(b)$ for $b = f_1(a)$. Then the differential Df(a, b) of f at (a, b) is $\begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix}$. Hence

$$\operatorname{ind}(f,(a,b)) = \operatorname{sgn}\det(I_4 - \begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix})$$
$$= \operatorname{sgn}\det(I_2 - NM)$$

fi a) (D) (B) (E) (E) E

Lemma

If $f:S_1\times S_2\to S_1\times S_2$ is an alternating homeomorphism, then the nature map

$$\rho: S_1 \to S_1 \times S_2, \quad a \mapsto (a, f_1(a))$$

induces an index-preserving one-to-one corresponding between the set $\operatorname{Fpc}(f_2 \circ f_1)$ of fixed point classes of $f_2 \circ f_1$ and the set $\operatorname{Fpc}(f)$ of fixed point classes of f.

Proof: Let $M = Df_1(a)$ and $N = Df_2(b)$ for $b = f_1(a)$. Then the differential Df(a, b) of f at (a, b) is $\begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix}$. Hence

$$\operatorname{ind}(f,(a,b)) = \operatorname{sgn}\det(I_4 - \begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix})$$
$$= \operatorname{sgn}\det(I_2 - NM)$$

A brief survey on Bounded Index Property

 $\operatorname{ind}(f_2 \circ f_1, a), \stackrel{\triangleleft}{\longrightarrow} \stackrel{1}{\longrightarrow} \stackrel{1}{\rightarrow$

If $f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then by the previous lemma, we have

Lemma

$$N(f) = N(f_2 \circ f_1) = N(f_1 \circ f_2), \quad L(f) = L(f_2 \circ f_1) = L(f_1 \circ f_2).$$

Proposition (BIPH for alternating homeomorphisms)

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq 1, \, \forall \mathbf{F} \in Fpc(f);$$

② Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(f,\mathbf{F})<-1} \{\mathrm{ind}(f,\mathbf{F})+1\} \ge 2\chi_1;$$

3
$$|L(f) - \chi_1| \le N(f) - \chi_1.$$

A (1)

If $f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then by the previous lemma, we have

Lemma

$$N(f) = N(f_2 \circ f_1) = N(f_1 \circ f_2), \quad L(f) = L(f_2 \circ f_1) = L(f_1 \circ f_2).$$

Proposition (BIPH for alternating homeomorphisms)

$$2\chi_1 - 1 \leq \operatorname{ind}(f, \mathbf{F}) \leq 1, \, \forall \mathbf{F} \in Fpc(f);$$

2 Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(f,\mathbf{F})<-1} \{\mathrm{ind}(f,\mathbf{F})+1\} \geq 2\chi_1;$$

③
$$|L(f) - \chi_1| ≤ N(f) - \chi_1.$$

Recall that S_1 and S_2 be two compact hyperbolic surfaces.

Lemma (Z.-Ventura-Wu, 2015)

Let $G = \pi_1(S_1) \times \pi_1(S_2)$ and $\phi \in Aut(G)$ be an automorphism. Then there exist automorphisms $\phi_i \in Aut(\pi_1(S_i))$ such that ϕ must have one of the following forms:

• if
$$S_1 \ncong S_2$$
, then $\phi = \phi_1 \times \phi_2$;

2 if
$$S_1 \cong S_2$$
, then $\phi = \begin{cases} \phi_1 \times \phi_2 \\ \tau \circ (\phi_1 \times \phi_2) \end{cases}$
where τ is a transposition.

Good forms of self-homeomorphisms of $S_1 imes S_2$

Proposition

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism, where S_1, S_2 are two compact hyperbolic surfaces. Then

- if $S_1 \ncong S_2$, then f can be homotoped to a fiber-preserving homeomorphism $f_1 \times f_2$;
- ② if $S_1 \cong S_2$, then f can be homotoped to either a fiber-preserving homeomorphism or an alternating homeomorphism.

Proof: f homeomorphism $\implies f_{\pi} = \phi_1 \times \phi_2$ or $f_{\pi} = \tau \circ (\phi_1 \times \phi_2)$, where $\phi_i \in Aut(\pi_1 S_i)$. By Dehn-Nielsen-Bar Thm for hyperbolic surfaces, ϕ_i can be induced by a self-homeomorphism f_i of S_i . Hence

$$f_{\pi} = (f_1 \times f_2)_{\pi}$$
 or $f_{\pi} = (\tau \circ (f_1 \times f_2))_{\pi}$.

 S_i hyperbolic $\Longrightarrow S_1 \times S_2$ aspherical $\Longrightarrow f \simeq \begin{cases} t_1 \times t_2 \\ \tau \circ (f_1 \times f_2) \end{cases}$

Good forms of self-homeomorphisms of $S_1 imes S_2$

Proposition

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism, where S_1, S_2 are two compact hyperbolic surfaces. Then

• if $S_1 \ncong S_2$, then f can be homotoped to a fiber-preserving homeomorphism $f_1 \times f_2$;

② if $S_1 \cong S_2$, then f can be homotoped to either a fiber-preserving homeomorphism or an alternating homeomorphism.

Proof: f homeomorphism $\implies f_{\pi} = \phi_1 \times \phi_2$ or $f_{\pi} = \tau \circ (\phi_1 \times \phi_2)$, where $\phi_i \in Aut(\pi_1 S_i)$. By Dehn-Nielsen-Bar Thm for hyperbolic surfaces, ϕ_i can be induced by a self-homeomorphism f_i of S_i . Hence

$$f_{\pi} = (f_1 imes f_2)_{\pi}$$
 or $f_{\pi} = (au \circ (f_1 imes f_2))_{\pi}.$

 S_i hyperbolic $\Longrightarrow S_1 \times S_2$ aspherical $\Longrightarrow f \simeq \begin{cases} t_1 \times t_2 \\ \tau \circ (f_1 \times f_2) \end{cases}$

Good forms of self-homeomorphisms of $S_1 imes S_2$

Proposition

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism, where S_1, S_2 are two compact hyperbolic surfaces. Then

• if $S_1 \ncong S_2$, then f can be homotoped to a fiber-preserving homeomorphism $f_1 \times f_2$;

② if $S_1 \cong S_2$, then f can be homotoped to either a fiber-preserving homeomorphism or an alternating homeomorphism.

Proof: f homeomorphism $\implies f_{\pi} = \phi_1 \times \phi_2$ or $f_{\pi} = \tau \circ (\phi_1 \times \phi_2)$, where $\phi_i \in Aut(\pi_1 S_i)$. By Dehn-Nielsen-Bar Thm for hyperbolic surfaces, ϕ_i can be induced by a self-homeomorphism f_i of S_i . Hence

$$f_{\pi} = (f_1 imes f_2)_{\pi}$$
 or $f_{\pi} = (au \circ (f_1 imes f_2))_{\pi}.$

 S_i hyperbolic $\Longrightarrow S_1 \times S_2$ aspherical $\Longrightarrow f \simeq \begin{cases} t_1 \times t_2 \\ \tau \circ (f_1 \times f_2) \end{cases}$. \Box

Fact: For a compact aspherical polyhedron X, then

$\operatorname{Out}(\pi_1(X))$ finite $\Longrightarrow X$ has BIPHE $\Longrightarrow X$ has BIPH.

Theorem (Ye-Z., 2019)

A closed Riemannian n—manifold Mⁿ with negative sectional curvature everywhere has BIPHE (and hence has BIPH).

Proof.

- n = 2, M^2 is a closed hyperbolic surface, and hyperbolic surfaces have BIP;
- $n \ge 3$, $\operatorname{Out}(\pi_1(M^n))$ is finite $\Longrightarrow M$ has BIPHE.

æ

・ロン ・回と ・ヨン・

Fact: For a compact aspherical polyhedron X, then

 $Out(\pi_1(X))$ finite $\Longrightarrow X$ has BIPHE $\Longrightarrow X$ has BIPH.

Theorem (Ye-Z., 2019)

A closed Riemannian n-manifold M^n with negative sectional curvature everywhere has BIPHE (and hence has BIPH).

Proof.

- n = 2, M^2 is a closed hyperbolic surface, and hyperbolic surfaces have BIP;
- $n \ge 3$, $Out(\pi_1(M^n))$ is finite $\Longrightarrow M$ has BIPHE.

æ

・ロン ・回 と ・ ヨ と ・ ヨ と

Fact: For a compact aspherical polyhedron X, then

 $Out(\pi_1(X))$ finite $\Longrightarrow X$ has BIPHE $\Longrightarrow X$ has BIPH.

Theorem (Ye-Z., 2019)

A closed Riemannian n-manifold M^n with negative sectional curvature everywhere has BIPHE (and hence has BIPH).

Proof.

• n = 2, M^2 is a closed hyperbolic surface, and hyperbolic surfaces have BIP;

• $n \ge 3$, $Out(\pi_1(M^n))$ is finite $\Longrightarrow M$ has BIPHE.

æ

イロト イヨト イヨト イヨト

Fact: For a compact aspherical polyhedron X, then

 $Out(\pi_1(X))$ finite $\Longrightarrow X$ has BIPHE $\Longrightarrow X$ has BIPH.

Theorem (Ye-Z., 2019)

A closed Riemannian n-manifold M^n with negative sectional curvature everywhere has BIPHE (and hence has BIPH).

Proof.

- n = 2, M^2 is a closed hyperbolic surface, and hyperbolic surfaces have BIP;
- $n \ge 3$, $Out(\pi_1(M^n))$ is finite $\implies M$ has BIPHE.

イロト イヨト イヨト イヨト

Theorem (Ye-Z., 2019)

Suppose $X_1, ..., X_n$ are compact aspherical polyhedra satisfying the following two conditions: (1) $\pi_1(X_i) \ncong \pi_1(X_i)$ for $i \neq j$, and all of them are **centerless** and

indecomposable;

(2) all of X_1, \ldots, X_n have BIPHE.

Then the product $X_1 \times \cdots \times X_n$ also has BIPHE (and hence has BIPH).

Theorem (Ye-Z., 2019)

Let $M = M_1 \times \cdots \times M_n$ be the product of finitely many closed Riemannian manifolds, each with **negative sectional curvature** everywhere but not necessarily with the same dimensions (in particular hyperbolic manifolds). Then M has BIPHE.

Theorem (Ye-Z., 2019)

Suppose $X_1, ..., X_n$ are compact aspherical polyhedra satisfying the following two conditions: (1) $\pi_1(X_i) \cong \pi_1(X_j)$ for $i \neq j$, and all of them are **centerless** and

indecomposable;

(2) all of X_1, \ldots, X_n have BIPHE.

Then the product $X_1 \times \cdots \times X_n$ also has BIPHE (and hence has BIPH).

Theorem (Ye-Z., 2019)

Let $M = M_1 \times \cdots \times M_n$ be the product of finitely many closed Riemannian manifolds, each with **negative sectional curvature** everywhere but not necessarily with the same dimensions (in particular hyperbolic manifolds). Then M has BIPHE.

Thanks ! 谢谢!

æ

《曰》《聞》《臣》《臣》