The fixed subgroups of homeomorphisms of Seifert manifolds

张 强 Zhang, Qiang

西安交通大学 Xi'an Jiaotong University

The 10th East Asian School of Knots and Related Topics Science Building A, ECNU, Shanghai, Jan 28, 2015

Fixed subgroup: definition

For a finitely generated group G, let $\operatorname{rk} G$ denote the rank of G, which means the minimal number of the generators of G.

Fixed subgroup: definition

For a finitely generated group G, let rkG denote the rank of G, which means the minimal number of the generators of G.

Definition

For a group G and an endomorphism $\phi:G\to G$, the fixed subgroup of ϕ is

$$Fix(\phi) := \{g \in G | \phi(g) = g\} \leq G,$$

which is a subgroup of G.

Fixed subgroup: definition

For a finitely generated group G, let rkG denote the rank of G, which means the minimal number of the generators of G.

Definition

For a group G and an endomorphism $\phi:G\to G$, the fixed subgroup of ϕ is

$$Fix(\phi) := \{ g \in G | \phi(g) = g \} \le G,$$

which is a subgroup of G.

For a free group, Bestvina and Handel solved the well-known Scott's conjecture:

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of a finitely generated free group G. Then $\mathrm{rkFix}(\phi) \leq \mathrm{rk}G$.

Fixed subgroup: surface and hyperbolic 3-manifold groups

For the fundamental group of a compact surface, B. Jiang, S. D. Wang and Q. Zhang proved that

Theorem (Jiang-Wang-Z., 2011)

Let S be a compact surface and ϕ be an endomorphism of $\pi_1(S)$. Then

$$\operatorname{rkFix}(\phi) \leq \operatorname{rk}\pi_1(S).$$

Fixed subgroup: surface and hyperbolic 3-manifold groups

For the fundamental group of a compact surface, B. Jiang, S. D. Wang and Q. Zhang proved that

Theorem (Jiang-Wang-Z., 2011)

Let S be a compact surface and ϕ be an endomorphism of $\pi_1(S)$. Then

$$\operatorname{rkFix}(\phi) \leq \operatorname{rk}\pi_1(S).$$

Later, J. Lin and S. C. Wang showed that

Theorem (Lin-Wang, 2012)

Let M be a compact orientable hyperbolic 3-manifold with finite volume and ϕ be an automorphism of $\pi_1(M)$. Then

$$\operatorname{rkFix}(\phi) < 2\operatorname{rk}\pi_1(M).$$

Now we consider the fixed subgroups of automorphisms of the fundamental groups of Seifert 3-manifolds.

Now we consider the fixed subgroups of automorphisms of the fundamental groups of Seifert 3-manifolds.

A compact orientable 3-manifold M is called a Seifert manifold, if M possesses a Seifert fibration which is a decomposition of M into disjoint simple closed curves, called fibers, such that each fiber has a solid torus neighborhood consisting of a union of fibers. Identifying each fiber of M to a point, we get a set B_M , called the orbifold of M, which has a natural 2-orbifold structure with singular points consisting of cone points.

Now we consider the fixed subgroups of automorphisms of the fundamental groups of Seifert 3-manifolds.

A compact orientable 3-manifold M is called a Seifert manifold, if M possesses a Seifert fibration which is a decomposition of M into disjoint simple closed curves, called fibers, such that each fiber has a solid torus neighborhood consisting of a union of fibers. Identifying each fiber of M to a point, we get a set B_M , called the orbifold of M, which has a natural 2-orbifold structure with singular points consisting of cone points.

A Seifert manifold can be think as a circle bundle over an orbifold.

• An orbifold (or surface) is called hyperbolic if it has negative Euler characteristics.

- An orbifold (or surface) is called hyperbolic if it has negative Euler characteristics.
- A hyperbolic orbifold is orbifold covered by a hyperbolic surface and admits a hyperbolic structure with totally geodesic boundary.

- An orbifold (or surface) is called hyperbolic if it has negative Euler characteristics.
- A hyperbolic orbifold is orbifold covered by a hyperbolic surface and admits a hyperbolic structure with totally geodesic boundary.
- A map f on a Seifert manifold M is called fiber-preserving if it maps fibers to fibers. If f is fiber-preserving, then it induces a map $f': B_M \to B_M$ on the orbifold B_M .

- An orbifold (or surface) is called hyperbolic if it has negative Euler characteristics.
- A hyperbolic orbifold is orbifold covered by a hyperbolic surface and admits a hyperbolic structure with totally geodesic boundary.
- A map f on a Seifert manifold M is called fiber-preserving if it maps fibers to fibers. If f is fiber-preserving, then it induces a map $f': B_M \to B_M$ on the orbifold B_M .
- Suppose M is a compact orientable Seifert manifold and $p: M \to B_M$ is a Seifert fibration with hyperbolic orbifold B_M . Then any homeomorphism on M is isotopic to a fiber-preserving homeomorphism with respect to this fibration.

Theorem

Let M be a compact orientable Seifert manifold with hyperbolic orbifold B_M , and f_π an automorphism of $\pi_1(M)$ induced by an **orientation-reversing** homeomorphism $f:M\to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

Theorem

Let M be a compact orientable Seifert manifold with hyperbolic orbifold B_M , and f_π an automorphism of $\pi_1(M)$ induced by an orientation-reversing homeomorphism $f:M\to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

• M is a Seifert manifold with hyperbolic orbifold $B_M \iff M$ admits a geometric structure of $\mathbb{H}^2 \times \mathbb{R}$ or $\widetilde{SL(2,\mathbb{R})}$.

Theorem

Let M be a compact orientable Seifert manifold with hyperbolic orbifold B_M , and f_π an automorphism of $\pi_1(M)$ induced by an **orientation-reversing** homeomorphism $f:M\to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

- M is a Seifert manifold with hyperbolic orbifold $B_M \iff M$ admits a geometric structure of $\mathbb{H}^2 \times \mathbb{R}$ or $\widehat{SL(2,\mathbb{R})}$.
- The condition that f is **orientation-reversing** is necessary: If f is orientation-preserving, then the fixed subgroup $Fix(f_{\pi})$ can be infinitely generated.

Theorem

Let M be a compact orientable Seifert manifold with hyperbolic orbifold B_M , and f_π an automorphism of $\pi_1(M)$ induced by an **orientation-reversing** homeomorphism $f:M\to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

- M is a Seifert manifold with hyperbolic orbifold $B_M \iff M$ admits a geometric structure of $\mathbb{H}^2 \times \mathbb{R}$ or $SL(2,\mathbb{R})$.
- The condition that f is **orientation-reversing** is necessary: If f is orientation-preserving, then the fixed subgroup $Fix(f_{\pi})$ can be infinitely generated.
- The constant 2 is sharp: $\forall \varepsilon > 0$, \exists a Seifert manifold M_n and an orientation-reversing homeomorphism f of M_n , such that

$$\frac{\operatorname{rkFix}(f_{\pi})}{\operatorname{rk}\pi_{1}(M_{n})} = \frac{4n-2}{2n+1} > 2-\varepsilon.$$

Fixed point class: classical definition

Suppose $f: X \to X$ is a selfmap of a path-connected space, and $\operatorname{Fix} f := \{x \in X | f(x) = x\}$ is the set of fixed points.

Fixed point class: classical definition

Suppose $f: X \to X$ is a selfmap of a path-connected space, and $\operatorname{Fix} f := \{x \in X | f(x) = x\}$ is the set of fixed points.

Definition

Two fixed points $x, x' \in \operatorname{Fix} f$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

A fixed point class \mathbf{F} is essential if $\operatorname{ind}(\mathbf{F}) \neq 0$. Otherwise, it is called inessential.

Fixed point class: classical definition

Suppose $f: X \to X$ is a selfmap of a path-connected space, and $\operatorname{Fix} f := \{x \in X | f(x) = x\}$ is the set of fixed points.

Definition

Two fixed points $x, x' \in \operatorname{Fix} f$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class \mathbf{F} is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

A fixed point class **F** is essential if $\operatorname{ind}(\mathbf{F}) \neq 0$. Otherwise, it is called inessential.

The more subtle definition of fixed point class which includes **empty** ones will be given below in this talk. Of course their $\mathrm{ind}=0$.

Definition

An *f*-route is a path $w: I \to X$ such that w(1) = f(w(0)).

Two f-routes w, w' are conjugate if \exists a path $q:I \to X$ from w(0) to w'(0) such that $qw' \simeq w(f \circ q)$ rel endpoints. An f-route class is an conjugacy class of f-routes.

Definition

An *f*-route is a path $w: I \to X$ such that w(1) = f(w(0)).

Two f-routes w, w' are conjugate if \exists a path $q:I \to X$ from w(0) to w'(0) such that $qw' \simeq w(f \circ q)$ rel endpoints. An f-route class is an conjugacy class of f-routes.

For each f-route w, a fixed point class \mathbf{F}_w is associated by the rule: a fixed point $x \in \operatorname{Fix} f$ belongs to $\mathbf{F}_w \iff$ the constant f-route at x is conjugate to w.

• Fixed point classes of f are labelled with f-route classes.

Definition

An *f*-route is a path $w: I \to X$ such that w(1) = f(w(0)).

Two f-routes w, w' are conjugate if \exists a path $q:I \to X$ from w(0) to w'(0) such that $qw' \simeq w(f \circ q)$ rel endpoints. An f-route class is an conjugacy class of f-routes.

- Fixed point classes of f are labelled with f-route classes.
- ullet Fixed point classes provide a disjoint decomposition of ${
 m Fix} f$.

Definition

An *f*-route is a path $w: I \to X$ such that w(1) = f(w(0)).

Two f-routes w, w' are conjugate if \exists a path $q:I \to X$ from w(0) to w'(0) such that $qw' \simeq w(f \circ q)$ rel endpoints. An f-route class is an conjugacy class of f-routes.

- Fixed point classes of f are labelled with f-route classes.
- ullet Fixed point classes provide a disjoint decomposition of ${\rm Fix} f$.
- A fixed point class could be empty.

Definition

An *f*-route is a path $w: I \to X$ such that w(1) = f(w(0)).

Two f-routes w, w' are conjugate if \exists a path $q:I \to X$ from w(0) to w'(0) such that $qw' \simeq w(f \circ q)$ rel endpoints. An f-route class is an conjugacy class of f-routes.

- Fixed point classes of f are labelled with f-route classes.
- ullet Fixed point classes provide a disjoint decomposition of ${
 m Fix} f$.
- A fixed point class could be empty.
- This definition is clearly equivalent to the classical one.

Fixed point class: rank

Definition

An f-route w gives rise to an endomorphism

$$f_w:\pi_1(X,w(0))\to\pi_1(X,w(0)),\quad [a]\mapsto [w(f\circ a)\bar{w}].$$

The rank of a fixed point class \mathbf{F}_w is

$$\operatorname{rk}(f,\mathbf{F}_w) := \operatorname{rkFix}(f_w)$$

which is well defined because conjugate f-routes induce isomorphic fixed subgroups.

Fixed point class: homotopy invariance

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Fixed point class: homotopy invariance

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Fixed point class: homotopy invariance

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathsf{F}_0) = \operatorname{ind}(f_1, \mathsf{F}_1), \quad \operatorname{rk}(f_0, \mathsf{F}_0) = \operatorname{rk}(f_1, \mathsf{F}_1).$$

Fixed point class: lifting

Let $p: \widetilde{M} \to M$ be a finite covering of a compact manifold M, and $f: M \to M$ be a homeomorphism.

Lemma

If $\tilde{f}:\widetilde{M}\to\widetilde{M}$ is a lifting of f, and the \tilde{f} -route \tilde{w} is a lifting of the f-route w. Then the f-fixed point class \mathbf{F}_w is essential if and only if the \tilde{f} -fixed point class $\mathbf{F}_{\tilde{w}}$ is essential, moreover,

$$\operatorname{ind}(\tilde{f}, \mathbf{F}_{\tilde{w}}) = n \times \operatorname{ind}(f, \mathbf{F}_{w})$$

where n is a positive integer.

For a compact orientable Seifert manifold M with hyperbolic orbifold, let $f: M \to M$ be a homeomorphism, w an f-route, and $f_w: \pi_1(M, w(0)) \to \pi_1(M, w(0))$ the automorphism induced by f.

For a compact orientable Seifert manifold M with hyperbolic orbifold, let $f: M \to M$ be a homeomorphism, w an f-route, and $f_w: \pi_1(M, w(0)) \to \pi_1(M, w(0))$ the automorphism induced by f.

Proposition (Z., 2012)

If the fixed point class \mathbf{F}_w of f is essential, then

$$\operatorname{rkFix}(f_w) < 2\operatorname{rk}\pi_1(M).$$

For a compact orientable Seifert manifold M with hyperbolic orbifold, let $f: M \to M$ be a homeomorphism, w an f-route, and $f_w: \pi_1(M, w(0)) \to \pi_1(M, w(0))$ the automorphism induced by f.

Proposition (Z., 2012)

If the fixed point class \mathbf{F}_w of f is **essential**, then

$$\mathrm{rkFix}(f_w) < 2\mathrm{rk}\pi_1(M).$$

Below we will show that

Proposition (Fixed subgroups of inessential fixed point classes)

If the fixed point class \mathbf{F}_w of f is inessential, and f reverses the orientation of M, then $\mathrm{rkFix}(f_w) \leq 3$.

For a compact orientable Seifert manifold M with hyperbolic orbifold, let $f: M \to M$ be a homeomorphism, w an f-route, and $f_w: \pi_1(M, w(0)) \to \pi_1(M, w(0))$ the automorphism induced by f.

Proposition (Z., 2012)

If the fixed point class \mathbf{F}_w of f is **essential**, then

$$\operatorname{rkFix}(f_w) < 2\operatorname{rk}\pi_1(M).$$

Below we will show that

Proposition (Fixed subgroups of inessential fixed point classes)

If the fixed point class \mathbf{F}_w of f is inessential, and f reverses the orientation of M, then $\mathrm{rkFix}(f_w) \leq 3$.

The two propositions above \Longrightarrow MAIN THEOREM, i.e, \forall orientation-reversing f, we have $\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M)$.

Fixed subgroups on circle bundles

To prove Proposition for fixed subgroups of inessential fixed point class, we consider fixed subgroups of circle bundles at first.

Fixed subgroups on circle bundles

To prove Proposition for fixed subgroups of inessential fixed point class, we consider fixed subgroups of circle bundles at first.

Proposition (Fixed subgroups on circle bundles)

Let $p: M \to S$ be a compact orientable circle bundle over an orientable hyperbolic surface S, $f: M \to M$ an orientation-reversing fiber-preserving homeomorphism of M, and $f': S \to S$ the induced homeomorphism of f. If an f-route W corresponds to an **inessential** fixed point class \mathbf{F}_W . Then

- Fix $(f'_{p \circ w})$ is trivial or the free cyclic group \mathbb{Z} ;
- ② $Fix(f_w)$ is trivial or a free abelian group of rank ≤ 2 .

Proof of Proposition for circle bundles

• Some results of fixed subgroups on surface group in [Jiang-Wang-Z., 2011] $\Longrightarrow \operatorname{Fix}(f'_{p \circ w})$ is trivial or \mathbb{Z} .

Proof of Proposition for circle bundles

- Some results of fixed subgroups on surface group in [Jiang-Wang-Z., 2011] $\Longrightarrow \operatorname{Fix}(f'_{p \circ w})$ is trivial or \mathbb{Z} .
- 2 Let x = w(0). Consider the commutative diagram

$$\begin{array}{ccc}
\pi_1(M,x) & \xrightarrow{f_w} & \pi_1(M,x) \\
p_* \downarrow & & p_* \downarrow \\
\pi_1(S,p(x)) & \xrightarrow{f'_{p \circ w}} & \pi_1(S,p(x))
\end{array}$$

where

$$p_*: \pi_1(M,x) \to \pi_1(S,p(x)) \cong \pi_1(M,x)/\langle t \rangle$$

is the quotient map and $\langle t \rangle$ generated by a fiber of M is the center of $\pi_1(M,x)$. Hence

$$\operatorname{Fix}(f_w) \leq p_*^{-1} \operatorname{Fix}(f'_{p \circ w}) \cong \operatorname{Fix}(f'_{p \circ w}) \times \langle t \rangle \leq \mathbb{Z} \oplus \mathbb{Z}.$$

Therefore, $\operatorname{Fix}(f_w)$ is trivial or free abelian of rank ≤ 2 .

Proof of Prop. for inessential fixed point classes, I

Let $f: M \to M$ be a homeomorphism of a compact orientable Seifert manifold M, and $p: M \to B$ the Seifert fibration with hyperbolic orbifold B.

- Isotopy *f* to a fiber-preserving homeomorphism.
- B is hyperbolic $\Longrightarrow \exists$ a finite covering $q: S \to B$ with S an orientable hyperbolic surface.
- By pull back via the finite covering $q:S\to B$, we have a commutative diagram:

Proof of Prop. for inessential fixed point classes, II

• Let $H = p_* \operatorname{Fix}(f_w) \le \pi_1(B)$ and $H^d = \{h^d | h \in H\}$. Then H^d is contained in a free cyclic subgroup of the Fuchsian group $\pi_1(B)$.

Therefore, by group theory, H is a **metacyclic group** (i.e., an extension of a cyclic group by a cyclic group). Thus

$$rkH \leq 2$$
.

Proof of Prop. for inessential fixed point classes, II

• Let $H = p_* \operatorname{Fix}(f_w) \le \pi_1(B)$ and $H^d = \{h^d | h \in H\}$. Then H^d is contained in a free cyclic subgroup of the Fuchsian group $\pi_1(B)$.

Therefore, by group theory, H is a **metacyclic group** (i.e., an extension of a cyclic group by a cyclic group). Thus

$$rkH \leq 2$$
.

Consider the quotient map

$$p_*: \pi_1(M,x) \to \pi_1(M,x)/\langle t \rangle = \pi_1(B)$$

we have

$$\operatorname{Fix}(f_w) \le p_*^{-1}(H)$$

which is an extension of the metacyclic group H by $\langle t \rangle \cong \mathbb{Z}$. Therefore,

$$\operatorname{rkFix}(f_w) \leq 3.$$

Example

Let S_n be a closed orientable surface of genus $n \ge 2$. Define an orientation-reversing homeomorphism f as follows:

$$f = f_1 \times f_2 : S_n \times S^1 \to S_n \times S^1,$$

where $f_1:S_n\to S_n$ is a reflection on a simple closed curve γ , and $f_2:S^1\to S^1$ is a rotation. Then all the fixed point classes of f are inessential, and f induces an automorphism f_π of $\pi_1(S_n\times S^1)$ such that

$$\operatorname{Fix}(f_{\pi}) = \pi_1(\gamma \times S^1) \cong \mathbb{Z} \oplus \mathbb{Z}.$$

Namely, there is an inessential fixed point class which has

$$\operatorname{rkFix}(f_{\pi})=2.$$

Question

Question

Is there an orientation-reversing homeomorphism f of a Seifert manifold M whose inessential fixed point class has

$$rkFix(f_{\pi}) = 3$$
?

Namely, is the bound 3 in Proposition for inessential fixed point classes sharp?

谢 谢! Thanks!