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Fixed point class

Let X be a connected compact polyhedron, and f : X — X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes
Fixf = {x e X|f(x)=x}= || F
FeFpc(f)
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Fixed point class

Let X be a connected compact polyhedron, and f : X — X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes
Fixf = {x e X|f(x)=x}= || F
FeFpc(f)

Definition

Two fixed points x,x" € Fix(f) are in the same fixed point class
<= there is a path ¢ (called a Nielsen path) from x to x’ such that
¢ =~ f o ¢ rel endpoints.
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Fixed point class

Let X be a connected compact polyhedron, and f : X — X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes
Fixf = {x e X|f(x)=x}= || F
FeFpc(f)

Definition

Two fixed points x,x" € Fix(f) are in the same fixed point class
<= there is a path ¢ (called a Nielsen path) from x to x’ such that
¢ =~ f o ¢ rel endpoints.

The index of a fixed point class F is the sum

ind(F) := ind(f, F) Zmd (f,x)
x€eF

v

There is a subtle notion of empty fixed point class with ind = 0.
We omit the definition in this talk.
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Homotopy invariance

A homotopy H = {h;} : fy ~ f : X — X gives rise to a natural
one-one correspondence

HZFoi—>F1

from the fixed point classes of fy to the fixed point classes of f;.
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Homotopy invariance

A homotopy H = {h;} : fo ~ f; : X — X gives rise to a natural
one-one correspondence

HZFoi—>F1

from the fixed point classes of fy to the fixed point classes of f;.

Remark. A homotopy may create or remove fixed point classes.
The correspondence is one-one only when empty fixed point classes
are taken into account.
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Homotopy invariance

A homotopy H = {h;} : fo ~ f; : X — X gives rise to a natural
one-one correspondence

HZFoi—>F1

from the fixed point classes of fy to the fixed point classes of f;.

Remark. A homotopy may create or remove fixed point classes.
The correspondence is one-one only when empty fixed point classes
are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

ind(fy, Fo) = ind(f, F1).
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Commutation invariance

Suppose ¢ : X = Y and ¢ : Y — X are maps. Then ¢po ¢ : X —
X and ¢ oy : Y — Y are said to differ by a commutation. The
map ¢ sets up a natural one-one correspondence

Fx—>Fy

from the fixed point classes of ¢ o ¢ to the fixed point classes of

po.
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Commutation invariance

Suppose ¢ : X = Y and ¢ : Y — X are maps. Then ¢po ¢ : X —
X and ¢ oy : Y — Y are said to differ by a commutation. The
map ¢ sets up a natural one-one correspondence

Fx—>Fy

from the fixed point classes of ¢ o ¢ to the fixed point classes of

po.

Theorem (Commutation invariance)

Under the correspondence via commutation,

ind(¢ o ¢; Fx) = ind(¢ o ¥; Fy).
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Nielsen number & Lefschetz number

o A fixed point class F of f is essential if ind(f, F) # 0.

Qiang Zhang Bounds for fixed points on hyperbolic manifolds



Nielsen number & Lefschetz number

o A fixed point class F of f is essential if ind(f, F) # 0.

o Nielsen number N(f) := #{essential fixed point classes of f}.
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Nielsen number & Lefschetz number

o A fixed point class F of f is essential if ind(f, F) # 0.

o Nielsen number N(f) := #{essential fixed point classes of f}.

@ Lefschetz number

L(F) =" (—1)TTrace(f. : Hy(X; Q) = Hq(X; Q)).

q
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Nielsen number & Lefschetz number

@ A fixed point class F of f is essential if ind(f, F) # 0.

o Nielsen number N(f) := #{essential fixed point classes of f}.

@ Lefschetz number

L(F) =" (—1)TTrace(f. : Hy(X; Q) = Hq(X; Q)).

q

v

Lefschetz Fixed Point Theorem

> ind(f,F) =) (—1)Trace(f : Hy(X; Q) = Hq(X;Q)).

FeFpc(f) q
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Bounds for graphs and surfaces

Theorem (Jiang, 1998, Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected com-
pact hyperbolic surface, and f : X — X is a selfmap. Then

© ind(F) < 1, VF € Fpc(f);
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Bounds for graphs and surfaces

Theorem (Jiang, 1998, Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected com-
pact hyperbolic surface, and f : X — X is a selfmap. Then

@ ind(F) <1, VF € Fpc(f),
@ when X is not a tree,

> {ind(F) + 1} > 2x(X).

ind(F)<—1
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Bounds for graphs and surfaces

Theorem (Jiang, 1998, Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected com-
pact hyperbolic surface, and f : X — X is a selfmap. Then

@ ind(F) <1, VF € Fpc(f),
@ when X is not a tree,

> {ind(F) + 1} > 2x(X).

ind(F)<—1

v

When f is a self-homeomorphism of a hyperbolic surface, the same
bound was given by [Jiang-Guo, 1993].
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Bounded Index Property: 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed aspherical 3-manifold M is finitely covered by
an orientable 3-manifold which is either a Seifert manifold, or a
hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition.
Let f: M — M is a homeomorphism. Then

@ ind(F) <1, VF € Fpc(f), hence L(f) < N(f);

Qiang Zhang Bounds for fixed points on hyperbolic manifolds



Bounded Index Property: 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed aspherical 3-manifold M is finitely covered by
an orientable 3-manifold which is either a Seifert manifold, or a
hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition.
Let f: M — M is a homeomorphism. Then

@ ind(F) <1, VF € Fpc(f), hence L(f) < N(f);

@ If M is orientable and f is orientation-preserving, then

ind(F) € {—1,0,1}, V F € Fpc(f),

hence |L(f)| < N(f).
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Bounded Index Property: 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed aspherical 3-manifold M is finitely covered by
an orientable 3-manifold which is either a Seifert manifold, or a
hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition.
Let f: M — M is a homeomorphism. Then

@ ind(F) <1, VF € Fpc(f), hence L(f) < N(f);

@ If M is orientable and f is orientation-preserving, then

ind(F) € {—1,0,1}, V F € Fpc(f),

hence |L(f)| < N(f).
© V n > 3, 3f on a closed aspherical n-manifold such that

L(F) > N(f).
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Bounds for Seifert manifolds

Theorem (Z., 2012)

Suppose M is a compact connected orientable Seifert manifold

(closed or with boundary) with hyperbolic orbifold X(M), and
f: M — M is a homeomorphism. Then

@ ind(F) <1 for every essential fixed point class F of f;

Qiang Zhang
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Bounds for Seifert manifolds

Theorem (Z., 2012)

Suppose M is a compact connected orientable Seifert manifold

(closed or with boundary) with hyperbolic orbifold X(M), and
f: M — M is a homeomorphism. Then

@ ind(F) <1 for every essential fixed point class F of f;

> {ind(F)+1} > B,

ind(F)<—1

B_ 4(3 —rkm1(M)) M is a closed surface F x S*
| 4(2 -tk (M)) others :

The bound above is analogous to the one on graphs and surfaces.
For f orient.-preserving, [Jiang-Wang, 1992]: ind(F) € {—1,0,1}.

Qiang Zhang
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Hyperbolic n-manifolds

By a hyperbolic n-manifold (n > 2) we mean a quotient space
M=H"/T,

where H" is the hyperbolic n-space, that is, the connected, sim-
ply connected Riemanian manifold of constant curvature —1,
and I is a cocompact torsion-free discrete subgroup of the group
Isom(H") of all the isometries of H".

Qiang Zhang
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Hyperbolic n-manifolds

@ By a hyperbolic n-manifold (n > 2) we mean a quotient space
M=H"/T,

where H" is the hyperbolic n-space, that is, the connected, sim-
ply connected Riemanian manifold of constant curvature —1,
and I is a cocompact torsion-free discrete subgroup of the group
Isom(H") of all the isometries of H".

@ A hyperbolic manifold (in this talk) is compact and has empty
boundary.
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Hyperbolic n-manifolds

@ By a hyperbolic n-manifold (n > 2) we mean a quotient space
M=H"/T,

where H" is the hyperbolic n-space, that is, the connected, sim-
ply connected Riemanian manifold of constant curvature —1,
and I is a cocompact torsion-free discrete subgroup of the group
Isom(H") of all the isometries of H".

@ A hyperbolic manifold (in this talk) is compact and has empty
boundary.

@ The isometry group Isom(M) of a hyperbolic n-manifold M of
n > 2 is finite.
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Hyperbolic n-manifolds

@ By a hyperbolic n-manifold (n > 2) we mean a quotient space
M=H"/T,

where H" is the hyperbolic n-space, that is, the connected, sim-
ply connected Riemanian manifold of constant curvature —1,
and I is a cocompact torsion-free discrete subgroup of the group
Isom(H") of all the isometries of H".

@ A hyperbolic manifold (in this talk) is compact and has empty
boundary.

@ The isometry group Isom(M) of a hyperbolic n-manifold M of
n > 2 is finite.

@ [Belolipetsky-Lubotzky, 2005]: V¥ n > 2 and every finite group
G, Jinfinitely many n-dimensional hyperbolic manifolds M with

Isom(M) = G.
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Bounded Index Property: hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold M" (n > 2), 3 a bound B, such that
for any self-homeomorphism f : M — M and any F € Fpc(f),

lind(f, F)| < B.
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Bounded Index Property: hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold M" (n > 2), 3 a bound B, such that
for any self-homeomorphism f : M — M and any F € Fpc(f),

lind(f, F)| < B.

Proof:
e n =2, [Jiang, 1998];
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Bounded Index Property: hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold M" (n > 2), 3 a bound B, such that
for any self-homeomorphism f : M — M and any F € Fpc(f),

lind(f, F)| < B.

Proof:
e n =2, [Jiang, 1998];
@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.
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Bounded Index Property: hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold M" (n > 2), 3 a bound B, such that
for any self-homeomorphism f : M — M and any F € Fpc(f),

lind(f, F)| < B.

Proof:

e n =2, [Jiang, 1998];
@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.

F: a compact hyperbolic submanifold, |ind(F)| = |x(F)| < oo.
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Bounded Index Property: hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold M" (n > 2), 3 a bound B, such that
for any self-homeomorphism f : M — M and any F € Fpc(f),

lind(f, F)| < B.

Proof:

e n =2, [Jiang, 1998];
@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.

F: a compact hyperbolic submanifold, |ind(F)| = |x(F)| < oo.

Fixf is compact = f has finitely many nonempty f.p.c.
= 3 Bf < 00, s.t. |ind(f,F)| < By for all F € Fpc(f).
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Bounded Index Property: hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold M" (n > 2), 3 a bound B, such that
for any self-homeomorphism f : M — M and any F € Fpc(f),

lind(f, F)| < B.

Proof:

e n =2, [Jiang, 1998];
@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.

F: a compact hyperbolic submanifold, |ind(F)| = |x(F)| < oo.

Fixf is compact = f has finitely many nonempty f.p.c.
= 3 Bf < 00, s.t. |ind(f,F)| < By for all F € Fpc(f).

Isom(M) finite = B := max{B¢|f € Isom(M)} < co =
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Bounds for hyperbolic 3-manifolds

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M3 be a compact hyperbolic 3-manifold (orientable or nonori-
entable). Then for any homeomorphism f : M — M,

Q ind(f,F) <1 for every fixed point class F of f;
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Bounds for hyperbolic 3-manifolds

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M3 be a compact hyperbolic 3-manifold (orientable or nonori-
entable). Then for any homeomorphism f : M — M,

Q ind(f,F) <1 for every fixed point class F of f;
(2

> ind(f,F) > 1 — 2rkmy (M),
ind(f,F)<0

where the sum is taken over all fixed point classes F with
ind(f,F) < 0.

v
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Bounds for hyperbolic 4-manifolds

For any compact hyperbolic 4-manifold

Theorem (Z., 2015)

Let M* be a hyperbolic 4-manifold. Then for any homeomorphism
f: M — M, we have

max{N(f),|L(A)[} < > |ind(f,F)| < B(M),

FeFpc(f)

where B(M) = max{dim H.(M; Z,)|p is a prime}. In particular, if
f is not homotopic to the identity, then

ind(f,F) <1, L(f) < N(f).
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Bounds for hyperbolic n-manifolds

Theorem (Z., 2015)

Let M"™ be a hyperbolic n-manifold (n > 5). If the isometry group
Isom(M) is a p-group (|Isom(M)| is a power of some prime p),
then for any homeomorphism f : M — M, we have

max{N(F),IL(F)} < 3 [imd(F, F)| < dim H.(M; Z,),
FEFpc(f)

where dim H,(M; Z,) denotes the dimension of the Zy-linear space

Ho(M; Zp) = | H (M Z,).
r>0
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Bounds for hyperbolic n-manifolds

Theorem (Z., 2015)

Let M"™ be a hyperbolic n-manifold (n > 5). If the isometry group
Isom(M) is a p-group (|Isom(M)| is a power of some prime p),
then for any homeomorphism f : M — M, we have

max{N(F),IL(F)} < 3 [imd(F, F)| < dim H.(M; Z,),
FEFpc(f)

where dim H,(M; Z,) denotes the dimension of the Zy-linear space

Ho(M; Zp) = | H (M Z,).
r>0

v

Is there an analogous explicit bound for any compact hyperbolic
n-manifold with n > 57

V.
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Key points of Proofs of the three Theorems above

@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.
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@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.

e F: a compact hyperbolic submanifold, |ind(F)| = |x(F)| < oo.
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Key points of Proofs of the three Theorems above

@ n > 3, Mostow Rigidity Thm = f can be homotopied to a
unique isometry g of finite order.

e F: a compact hyperbolic submanifold, |ind(F)| = |x(F)| < oc.

@ P.A. Smith Theory: Let X be a compact topological space and
t : X — X a transformation of order a prime p. Suppose X
has a triangulation in which t is simplicial. Let F denote the
set of fixed points of t, and X’ be the quotient space X/(x =
tx). The projection X — X’ maps F homeomorphically onto a
subset of X’, which we again denote by F. Then for any g,

o0 [e.e]

dim Hy(X', F; Zp) + > dim H(F; Zp) <> dim H,(X; Zp).
r=q r=q

In particular,

dim H,(F: Z,) < dim H,(X; Z).
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Thanks !
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