Bounds for fixed points on hyperbolic manifolds

Zhang, Qiang 张 强

Xi'an Jiaotong University 西安交通大学

The 11th East Asian School of Knots and Related Topics Osaka City University, Osaka, Japan Jan 28, 2016

Fixed point class

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Fixed point class

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

Fixed point class

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point** classes

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class F is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Homotopy invariance

A homotopy $H = \{h_t\}: f_0 \simeq f_1: X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1).$$

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathsf{F}_X o \mathsf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathsf{F}_X o \mathsf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi$.

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y).$$

Definition

• A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_{q}(-1)^{q}\mathrm{Trace}(f_{*}:H_{q}(X;\mathbb{Q})\to H_{q}(X;\mathbb{Q})).$$

Bounds for graphs and surfaces

Theorem (Jiang, 1998, Jiang-Wang-Z., 2011)

Suppose X is either a connected **finite graph** or a connected compact **hyperbolic surface**, and $f:X\to X$ is a **selfmap**. Then

Bounds for graphs and surfaces

Theorem (Jiang, 1998, Jiang-Wang-Z., 2011)

Suppose X is either a connected **finite graph** or a connected compact **hyperbolic surface**, and $f: X \to X$ is a **selfmap**. Then

- 2 when X is not a tree,

$$\sum_{\mathrm{ind}(\mathbf{F})<-1}\{\mathrm{ind}(\mathbf{F})+1\}\geq 2\chi(X).$$

Bounds for graphs and surfaces

Theorem (Jiang, 1998, Jiang-Wang-Z., 2011)

Suppose X is either a connected **finite graph** or a connected compact **hyperbolic surface**, and $f: X \to X$ is a **selfmap**. Then

- 2 when X is not a tree,

$$\sum_{\mathrm{ind}(\mathbf{F})<-1}\{\mathrm{ind}(\mathbf{F})+1\}\geq 2\chi(X).$$

When f is a self-homeomorphism of a hyperbolic surface, the same bound was given by [Jiang-Guo, 1993].

Bounded Index Property: 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in \operatorname{Fpc}(f)$, hence $L(f) \leq N(f)$;

Bounded Index Property: 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- **1** ind(**F**) ≤ 1, \forall **F** ∈ Fpc(f), hence $L(f) \leq N(f)$;
- 2 If M is orientable and f is orientation-preserving, then

$$\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \ \mathbf{F} \in \operatorname{Fpc}(f),$$

hence $|L(f)| \leq N(f)$.

Bounded Index Property: 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- **1** ind(**F**) ≤ 1, \forall **F** ∈ Fpc(f), hence $L(f) \leq N(f)$;
- ② If M is orientable and f is orientation-preserving, then

$$\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \ \mathbf{F} \in \operatorname{Fpc}(f),$$

hence $|L(f)| \leq N(f)$.

③ \forall *n* > 3, \exists *f* on a closed aspherical n-manifold such that

$$L(f) > N(f)$$
.

Bounds for Seifert manifolds

Theorem (Z., 2012)

Suppose M is a compact connected orientable **Seifert manifold** (closed or with boundary) with hyperbolic orbifold X(M), and $f: M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every essential fixed point class \mathbf{F} of f;

Bounds for Seifert manifolds

Theorem (Z., 2012)

Suppose M is a compact connected orientable **Seifert manifold** (closed or with boundary) with hyperbolic orbifold X(M), and $f: M \to M$ is a homeomorphism. Then

1 $\operatorname{ind}(\mathbf{F}) \leq 1$ for every essential fixed point class \mathbf{F} of f;

2

$$\sum_{\mathrm{ind}(\textbf{F})<-1}\{\mathrm{ind}(\textbf{F})+1\}\geq \mathcal{B},$$

where

$$\mathcal{B} = \left\{ egin{array}{ll} 4ig(3-\mathrm{rk}\pi_1(extbf{ extit{M}}ig) & extit{ extit{M} is a closed surface $F imes S^1$} \ 4ig(2-\mathrm{rk}\pi_1(extbf{ extit{M}}ig)) & extit{others} \end{array}
ight.$$

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}$.

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M = \mathbb{H}^n/\Gamma$$
,

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\mathrm{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M=\mathbb{H}^n/\Gamma$$
,

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\mathrm{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

 A hyperbolic manifold (in this talk) is compact and has empty boundary.

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M = \mathbb{H}^n/\Gamma$$
,

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\mathrm{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

- A hyperbolic manifold (in this talk) is compact and has empty boundary.
- The isometry group Isom(M) of a hyperbolic *n*-manifold M of $n \geq 2$ is finite.

ullet By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M=\mathbb{H}^n/\Gamma$$
,

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\mathrm{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

- A hyperbolic manifold (in this talk) is compact and has empty boundary.
- The isometry group Isom(M) of a hyperbolic *n*-manifold M of $n \geq 2$ is finite.
- [Belolipetsky-Lubotzky, 2005]: $\forall n \geq 2$ and every finite group G, \exists infinitely many n-dimensional hyperbolic manifolds M with

$$\mathrm{Isom}(M)\cong G.$$

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f: M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

$$|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$$

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f: M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

$$|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$$

Proof:

• n = 2, [Jiang, 1998];

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f: M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

$$|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$$

Proof:

- n = 2, [Jiang, 1998];
- $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f: M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

$$|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$$

Proof:

- n = 2, [Jiang, 1998];
- $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.

F: a compact hyperbolic submanifold, $|\operatorname{ind}(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f: M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

$$|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$$

Proof:

- n = 2, [Jiang, 1998];
- $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.

F: a compact hyperbolic submanifold, $|\operatorname{ind}(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fix f is compact $\Longrightarrow f$ has finitely many nonempty f.p.c. $\Longrightarrow \exists \mathcal{B}_f < \infty$, s.t. $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in \operatorname{Fpc}(f)$.

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f: M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

$$|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$$

Proof:

- n = 2, [Jiang, 1998];
- $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.

F: a compact hyperbolic submanifold, $|\operatorname{ind}(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

 $\operatorname{Fix} f$ is compact $\Longrightarrow f$ has finitely many nonempty f.p.c.

$$\Longrightarrow \exists \ \mathcal{B}_f < \infty$$
, s.t. $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in \operatorname{Fpc}(f)$.

$$\operatorname{Isom}(M)$$
 finite $\Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

$$|\mathrm{ind}(f,\mathsf{F})| \leq \mathcal{B} < \infty$$
 , and also be seen as

Bounds for hyperbolic 3-manifolds

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M^3 be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f: M \to M$,

1 $\operatorname{ind}(f, \mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

Bounds for hyperbolic 3-manifolds

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M^3 be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f: M \to M$,

1 ind(f, **F**) ≤ 1 for every fixed point class **F** of f;

2

$$\sum_{\mathrm{ind}(f,\mathbf{F})<0}\mathrm{ind}(f,\mathbf{F})>1-2\mathrm{rk}\pi_1(M),$$

where the sum is taken over all fixed point classes ${\bf F}$ with ${\rm ind}(f,{\bf F})<0$.

Bounds for hyperbolic 4-manifolds

For any compact hyperbolic 4-manifold

Theorem (Z., 2015)

Let M^4 be a hyperbolic 4-manifold. Then for any homeomorphism $f:M\to M$, we have

$$\max\{N(f), |L(f)|\} \leq \sum_{\mathbf{F} \in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}(M),$$

where $\mathcal{B}(M) = \max\{\dim H_*(M; \mathbb{Z}_p)|p \text{ is a prime}\}$. In particular, if f is not homotopic to the identity, then

$$\operatorname{ind}(f, \mathbf{F}) \leq 1, \qquad L(f) \leq N(f).$$

Bounds for hyperbolic n-manifolds

Theorem (Z., 2015)

Let M^n be a hyperbolic n-manifold $(n \ge 5)$. If the isometry group $\mathrm{Isom}(M)$ is a **p-group** $(|\mathrm{Isom}(M)|$ is a power of some prime p), then for any homeomorphism $f: M \to M$, we have

$$\max\{N(f),|L(f)|\} \leq \sum_{\mathbf{F}\in\operatorname{Fpc}(f)} |\operatorname{ind}(f,\mathbf{F})| \leq \dim H_*(M;\mathbb{Z}_p),$$

where dim $H_*(M; \mathbb{Z}_p)$ denotes the dimension of the \mathbb{Z}_p -linear space

$$H_*(M; \mathbb{Z}_p) = \bigcup_{r>0} H_r(M; \mathbb{Z}_p).$$

Bounds for hyperbolic n-manifolds

Theorem (Z., 2015)

Let M^n be a hyperbolic n-manifold $(n \ge 5)$. If the isometry group $\mathrm{Isom}(M)$ is a **p-group** $(|\mathrm{Isom}(M)|$ is a power of some prime p), then for any homeomorphism $f: M \to M$, we have

$$\max\{N(f),|L(f)|\} \leq \sum_{\mathbf{F} \in \operatorname{Fpc}(f)} |\operatorname{ind}(f,\mathbf{F})| \leq \dim H_*(M;\mathbb{Z}_p),$$

where dim $H_*(M; \mathbb{Z}_p)$ denotes the dimension of the \mathbb{Z}_p -linear space

$$H_*(M; \mathbb{Z}_p) = \bigcup_{r>0} H_r(M; \mathbb{Z}_p).$$

Question

Is there an analogous explicit bound for any compact hyperbolic n-manifold with n > 5?

Key points of Proofs of the three Theorems above

• $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.

Key points of Proofs of the three Theorems above

- $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.
- **F**: a compact hyperbolic submanifold, $|\operatorname{ind}(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Key points of Proofs of the three Theorems above

- $n \ge 3$, Mostow Rigidity Thm $\implies f$ can be homotopied to a unique **isometry** g of finite order.
- **F**: a compact hyperbolic submanifold, $|\operatorname{ind}(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and $t: X \to X$ a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x=tx). The projection $X \to X'$ maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

$$\dim H_*(F;\mathbb{Z}_p) \leq \dim H_*(X;\mathbb{Z}_p).$$

Thanks!

谢.谢!