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Fixed point class

Let X be a connected compact polyhedron, and f : X → X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes

Fixf := {x ∈ X |f (x) = x} =
⊔

F∈Fpc(f )

F

Definition

Two fixed points x , x ′ ∈ Fix(f ) are in the same fixed point class
⇐⇒ there is a path c (called a Nielsen path) from x to x ′ such that
c ' f ◦ c rel endpoints.

The index of a fixed point class F is the sum

ind(F) := ind(f ,F) :=
∑
x∈F

ind(f , x) ∈ Z.

There is a subtle notion of empty fixed point class with ind = 0.
We omit the definition in this talk.
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Fixed subgroups: definitions

For any group G , denote the set of endomorphisms of G by End(G ).

Definition

For an endomorphism φ ∈ End(G ), the fixed subgroup of φ is

Fixφ := {g ∈ G |φ(g) = g}.

For a family B of endomorphisms of G (i.e., B ⊆ End(G )), the
fixed subgroup of B is

FixB := {g ∈ G |φ(g) = g , ∀φ ∈ B} =
⋂
φ∈B

Fixφ.
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Rank of a fixed point class

Definition

For a fixed point x ∈ F, let

Stab(f , x) := {γ ∈ π1(X , x)|γ = fπ(γ)} ⊂ π1(X , x),

where fπ : π1(X , x)→ π1(X , x) is the induced endomorphism. It is
independent of the choice of x ∈ F , up to isomorphism. For a fixed
point class F of f , define the rank to be

rk(F) := rk(f , x) := rkStab(f , x), ∀x ∈ F.

For an empty fixed point class F, we can make it nonempty by
deforming f .
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Homotopy invariance

A homotopy H = {ht} : f0 ' f1 : X → X gives rise to a natural
one-one correspondence

H : F0 7→ F1

from the fixed point classes of f0 to the fixed point classes of f1.
Remark. A homotopy may create or remove fixed point classes.
The correspondence is one-one only when empty fixed point classes
are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

ind(f0,F0) = ind(f1,F1), rk(f0,F0) = rk(f1,F1).
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Commutation invariance

Suppose φ : X → Y and ψ : Y → X are maps. Then ψ ◦ φ : X →
X and φ ◦ ψ : Y → Y are said to differ by a commutation. The
map φ sets up a natural one-one correspondence

FX → FY

from the fixed point classes of ψ ◦ φ to the fixed point classes of
φ ◦ ψ.

Theorem (Commutation invariance)

Under the correspondence via commutation,

ind(ψ ◦ φ; FX ) = ind(φ ◦ ψ; FY ), rk(ψ ◦ φ; FX ) = rk(φ ◦ ψ; FY ).
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Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation
generates an equivalence relation:

Definition

A sequence {fi : X1 → Xi |i = 0, · · · , k} of self-maps is a mutation
if for each i , either

1 Xi+1 = Xi and fi+1 ' fi , or

2 fi+1 is obtained from fi by commutation.

A mutation sets up a one-one correspondence between fixed point
classes of the end maps.

Theorem (Mutation invariance)

The index ind(F) and the rank rk(F) are mutation invariants.
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Characteristic of a fixed point class

From now on, unless otherwise stated, we always assume X to be a
graph, a surface or a Seifert manifold, and f : X → X is a selfmap.
For convenience, we define another term.

Definition

The characteristic of a fixed point class F is defined as

chr(F) := 1− rk(F).

with the exception is when Stab(f ,F) = π1(S) for some closed
hyperbolic surface S ⊂ X , in this case

chr(F) := χ(S) = 2− rk(F).
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Nielsen number & Lefschetz number

Definition

A fixed point class F of f is essential if ind(f ,F) 6= 0.

Nielsen number N(f ) := #{essential fixed point classes of f}.
Lefschetz number

L(f ) :=
∑
q

(−1)qTrace(f∗ : Hq(X ;Q)→ Hq(X ;Q)).

Lefschetz Fixed Point Theorem

∑
F∈Fpc(f )

ind(f ,F) =
∑
q

(−1)qTrace(f∗ : Hq(X ;Q)→ Hq(X ;Q)).
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Bounds for graphs and surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected com-
pact hyperbolic surface, and f : X → X is a selfmap. Then
(A) ind(F) ≤ chr(F) for every fixed point class F of f ;
(B) when X is not a tree,∑

ind(F)+chr(F)<0

{ind(F) + chr(F)} ≥ 2χ(X ),

where the sum is taken over all fixed point classes F with ind(F) +
chr(F) < 0.

B. Jiang, S.D. Wang, Q. Zhang, Bounds for fixed points and fixed
subgroups on surfaces and graphs, Alg. Geom. Topology, 11(2011),
2297–2318.
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Fixed subgroups: free groups

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let φ be an automorphism of Fn. Then rkFixφ ≤ rkFn.

Theorem (Dicks-Ventura, 1996)

Let φ be an injective endomorphism of Fn. Then

rkFixφ ≤ rkFn.

[Bergman,1999] generalized this result to any family of endomor-
phisms.
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Fixed subgroups: surface groups

Corollary (Jiang, 1998)

Let X be either a connected finite graph(not a tree) or a connected
compact hyperbolic surface, and f : X → X a selfmap. Then

1 ind(F) ≤ 1, ∀F ∈ Fpc(f );

2 Almost all fixed point classes have index ≥ −1, in the sense∑
ind(F)<−1

{ind(F) + 1} ≥ 2χ(X ).

3 |L(f )− χ(X )| ≤ N(f )− χ(X ).

Theorem (Jiang-Wang-Z., 2011)

Let φ be an endomorphism of a surface group G . Then

1 rkFixφ ≤ rkG , with equality if and only if φ = id;

2 rkFixφ ≤ 1
2rkG if φ is not epimorphic.
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Fixed subgroups: surface groups

Theorem (Wu-Z.,2014)

Let B be a family of endomorphisms of G . Then

1 rkFixB ≤ rkG , with equality if and only if B = {id};
2 rkFixB ≤ 1

2rkG , if B contains a non-epimorphic endomorphism
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Bounds for 3-manifolds

Theorem (Jiang-Wang, 1992)

Suppose a closed aspherical 3-manifold M is finitely covered by
an orientable 3-manifold which is either a Seifert manifold, or a
hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition.
Let f : M → M is a homeomorphism. Then

1 ind(F) ≤ 1, ∀F ∈ Fpc(f ), hence L(f ) ≤ N(f );

2 If M is orientable and f is orientation-preserving, then

ind(F) ∈ {−1, 0, 1}, ∀ F ∈ Fpc(f ),

hence |L(f )| ≤ N(f ).

3 ∀ n > 3, ∃f on a closed aspherical n-manifold such that

L(f ) > N(f ).
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Bounds for Seifert 3-manifolds, I

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyper-
bolic orbifold, and f : M → M is a homeomorphism. Then
(A) ind(F) ≤ chr(F) for every essential fixed point class F of f ;
(B) ∑

ind(F)+chr(F)<0

{ind(F) + chr(F)} ≥ B,

where the sum is taken over all essential fixed point classes F with
ind(F) + chr(F) < 0, and

B =

{
4
(
3− rkπ1(M)

)
M is a closed surface F × S1

4
(
2− rkπ1(M)

)
others

.
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Bounds for Seifert 3-manifolds, II

As a corollary, we have

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyper-
bolic orbifold X (M), and f : M → M is a homeomorphism.
Then

1 ind(F) ≤ 1 for every fixed point class F of f ;

2
∑

ind(F)<−1{ind(F) + 1} ≥ B.
3 |L(f )− B/2| ≤ N(f )− B/2.

The bound above is analogous to the one on graphs and surfaces.
For f orient.-preserving, [Jiang-Wang, 1992]: ind(F) ∈ {−1, 0, 1}.
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Bounds on rank

Proposition (Z., 2012)

Suppose f : M → M is a homeomorphism of a compact orientable
Seifert 3-manifold with hyperbolic orbifold. Let fπ : π1(M, x) →
π1(M, x) be the induced automorphism and Fix(fπ) := {γ ∈
π1(M, x)|γ = fπ(γ)} ⊂ π1(M, x), where x is in an essential fixed
point class. Then

rkFix(fπ) < 2rkπ1(M).

Theorem (Z., 2013)

Suppose M is a compact orientable Seifert 3-manifold, and fπ :
π1(M) → π1(M) is an automorphism induced by an orientation-
reversing homeomorphism f : M → M. Then

rkFix(fπ) < 2rkπ1(M).
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Hyperbolic n-manifolds

By a hyperbolic n-manifold (n ≥ 2) we mean a quotient space

M = Hn/Γ,

where Hn is the hyperbolic n-space, that is, the connected, sim-
ply connected Riemanian manifold of constant curvature −1,
and Γ is a cocompact torsion-free discrete subgroup of the group
Isom(Hn) of all the isometries of Hn.

A hyperbolic manifold (in this talk) is compact and has empty
boundary.

The isometry group Isom(M) of a hyperbolic n-manifold M of
n ≥ 2 is finite.

[Belolipetsky-Lubotzky, 2005]: ∀ n ≥ 2 and every finite group
G , ∃ infinitely many n-dimensional hyperbolic manifolds M with

Isom(M) ∼= G .
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Bounds for hyperbolic n-manifolds

Theorem (Z., 2015)

For any hyperbolic n-manifold Mn (n ≥ 2), ∃ a bound B, such that
for any self-homeomorphism f : M → M and any F ∈ Fpc(f ),

|ind(f ,F)| ≤ B.

Proof:

n = 2, [Jiang, 1998];
n ≥ 3, Mostow Rigidity Thm =⇒ f can be homotopied to a
unique isometry g of finite order.

F: a compact hyperbolic submanifold, |ind(F)| = |χ(F)| <∞.

Fixf is compact =⇒ f has finitely many nonempty f.p.c.
=⇒ ∃ Bf <∞, s.t. |ind(f ,F)| ≤ Bf for all F ∈ Fpc(f ).

Isom(M) finite =⇒ B := max{Bf |f ∈ Isom(M)} <∞ =⇒
|ind(f ,F)| ≤ B <∞.
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Bounds for hyperbolic 3-manifolds

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M3 be a compact hyperbolic 3-manifold (orientable or nonori-
entable). Then for any homeomorphism f : M → M,

1 ind(f ,F) ≤ 1 for every fixed point class F of f ;

2 ∑
ind(f ,F)<0

ind(f ,F) > 1− 2rkπ1(M),

where the sum is taken over all fixed point classes F with
ind(f ,F) < 0.

3 N(f ) ≥ L(f ) > 1− 2rkπ1(M).
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Bounds for hyperbolic 3-manifolds

As a corollary, we have a bound for hyperbolic 3-manifolds

Theorem (Lin-Wang, 2012)

Suppose φ is an automorphism of G = π1(M), where M is a compact
orientable hyperbolic 3-manifold with finite volume. Then

rkFixφ < 2rkG .
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Bounds for hyperbolic 4-manifolds

For any compact hyperbolic 4-manifold

Theorem (Z., 2015)

Let M4 be a hyperbolic 4-manifold. Then for any homeomorphism
f : M → M, we have

max{N(f ), |L(f )|} ≤
∑

F∈Fpc(f )

|ind(f ,F)| ≤ B(M),

where B(M) = max{dim H∗(M;Zp)|p is a prime}. In particular, if
f is not homotopic to the identity, then

ind(f ,F) ≤ 1, L(f ) ≤ N(f ).
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Bounds for hyperbolic n-manifolds

Theorem (Z., 2015)

Let Mn be a hyperbolic n-manifold (n ≥ 5). If the isometry group
Isom(M) is a p-group (|Isom(M)| is a power of some prime p),
then for any homeomorphism f : M → M, we have

max{N(f ), |L(f )|} ≤
∑

F∈Fpc(f )

|ind(f ,F)| ≤ dim H∗(M;Zp),

where dim H∗(M;Zp) denotes the dimension of the Zp-linear space

H∗(M;Zp) =
⋃
r≥0

Hr (M;Zp).

Question

Is there an analogous explicit bound for any compact hyperbolic
n-manifold with n ≥ 5?
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Key points of Proofs of the three Theorems above

n ≥ 3, Mostow Rigidity Thm =⇒ f can be homotopied to a
unique isometry g of finite order.

F: a compact hyperbolic submanifold, |ind(F)| = |χ(F)| <∞.

P.A. Smith Theory: Let X be a compact topological space and
t : X → X a transformation of order a prime p. Suppose X
has a triangulation in which t is simplicial. Let F denote the
set of fixed points of t, and X ′ be the quotient space X/(x =
tx). The projection X → X ′ maps F homeomorphically onto a
subset of X ′, which we again denote by F . Then for any q,

dim Hq(X ′,F ;Zp) +
∞∑
r=q

dim Hr (F ;Zp) ≤
∞∑
r=q

dim Hr (X ;Zp).

In particular,

dim H∗(F ;Zp) ≤ dim H∗(X ;Zp).
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Open problems

A compact polyhedron X is said to have the Bounded Index Property
(BIP) if there is an integer B > 0 such that for any map f : X → X
and any fixed point class F of f , the index |ind(f ,F)| ≤ B. X has
the Bounded Index Property for Homeomorphisms (BIPH) if there
is such a bound for all homeomorphisms f : X → X .

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. πi (X ) = 0 for
all i > 1). Does X have BIP or BIPH?

Positive Examples:

Graphs & surfaces with negative Euler characteristic have BIP;

Closed aspherical 3-manifolds have BIPH for orientation pre-
serving self-homeomorphisms;

Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;

Compact hyperbolic n-manifolds with n ≥ 2 have BIPH.
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