Bounds for fixed points on some manifolds

Zhang, Qiang 张 强

Xi'an Jiaotong University 西安交通大学

International workshop on Fixed point theory and its applications (IWFPTA-2016) Chonbuk National University, Jeonju, Korea June 20, 2016

Fixed point class

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class ${\bf F}$ is the sum

$$\operatorname{ind}(\mathsf{F}) := \operatorname{ind}(f, \mathsf{F}) := \sum_{x \in \mathsf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Fixed point class

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{nd}(\mathsf{F}) := \operatorname{ind}(f, \mathsf{F}) := \sum_{x \in \mathsf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Qiang Zhang

Fixed point class

Let X be a connected compact polyhedron, and $f : X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk. For any group G, denote the set of endomorphisms of G by End(G).

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$\operatorname{Fix} \phi := \{ g \in G | \phi(g) = g \}.$$

For a family \mathcal{B} of endomorphisms of G (i.e., $\mathcal{B} \subseteq \text{End}(G)$), the fixed subgroup of \mathcal{B} is

$$\mathrm{Fix}\mathcal{B}:=\{g\in G|\phi(g)=g, orall\phi\in\mathcal{B}\}=igcap_{\phi\in\mathcal{B}}\mathrm{Fix}\phi.$$

For a fixed point $x \in \mathbf{F}$, let

$$\mathrm{Stab}(f,x) := \{\gamma \in \pi_1(X,x) | \gamma = f_\pi(\gamma)\} \subset \pi_1(X,x),$$

where $f_{\pi} : \pi_1(X, x) \to \pi_1(X, x)$ is the induced endomorphism. It is independent of the choice of $x \in F$, up to isomorphism. For a fixed point class **F** of f, define the rank to be

$$\operatorname{rk}(\mathbf{F}) := \operatorname{rk}(f, x) := \operatorname{rkStab}(f, x), \quad \forall x \in \mathbf{F}.$$

For an empty fixed point class \mathbf{F} , we can make it nonempty by deforming f.

A (1) > < 3</p>

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

 $\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \quad \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1).$

A (B) > A (B) > A (B) >

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance) Under the correspondence via a homotopy H,

```
\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \quad \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1).
```

A (10) A (10)

A homotopy $H = \{h_t\} : f_0 \simeq f_1 : X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \quad \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1).$$

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

 $\mathbf{F}_X \to \mathbf{F}_Y$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Theorem (Commutation invariance)

Under the correspondence via commutation,

 $\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y), \quad \operatorname{rk}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{rk}(\phi \circ \psi; \mathbf{F}_Y).$

▲□→ ▲ 国 → ▲ 国 →

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathbf{F}_X \to \mathbf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_{X}) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_{Y}), \quad \operatorname{rk}(\psi \circ \phi; \mathbf{F}_{X}) = \operatorname{rk}(\phi \circ \psi; \mathbf{F}_{Y}).$$

Definition

A sequence $\{f_i : X_1 \rightarrow X_i | i = 0, \dots, k\}$ of self-maps is a mutation if for each *i*, either

2) f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $ind(\mathbf{F})$ and the rank $rk(\mathbf{F})$ are mutation invariants.

Definition

A sequence $\{f_i : X_1 \to X_i | i = 0, \dots, k\}$ of self-maps is a mutation if for each *i*, either

$$\ \, {\bf 0} \ \, X_{i+1} = X_i \ \, {\rm and} \ \, f_{i+1} \simeq f_i, \ \, {\rm or} \ \,$$

2 f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $ind(\mathbf{F})$ and the rank $rk(\mathbf{F})$ are mutation invariants.

Definition

A sequence $\{f_i : X_1 \to X_i | i = 0, \cdots, k\}$ of self-maps is a mutation if for each *i*, either

$$\ \, {\bf 0} \ \, X_{i+1} = X_i \ \, {\rm and} \ \, f_{i+1} \simeq f_i, \ \, {\rm or} \ \,$$

2 f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $ind(\mathbf{F})$ and the rank $rk(\mathbf{F})$ are mutation invariants.

< □ > < □ >

Definition

A sequence $\{f_i : X_1 \to X_i | i = 0, \cdots, k\}$ of self-maps is a mutation if for each *i*, either

$$\ \, {\bf 0} \ \, X_{i+1} = X_i \ \, {\rm and} \ \, f_{i+1} \simeq f_i, \ \, {\rm or} \ \,$$

2 f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index ind(F) and the rank rk(F) are mutation invariants.

A (1) < (1)</p>

From now on, unless otherwise stated, we always assume X to be a graph, a surface or a Seifert manifold, and $f : X \to X$ is a selfmap. For convenience, we define another term.

Definition

The characteristic of a fixed point class **F** is defined as

$$\operatorname{chr}(\mathbf{F}) := 1 - \operatorname{rk}(\mathbf{F}).$$

with the exception is when $\operatorname{Stab}(f, \mathbf{F}) = \pi_1(S)$ for some closed hyperbolic surface $S \subset X$, in this case

$$\operatorname{chr}(\mathbf{F}) := \chi(S) = 2 - \operatorname{rk}(\mathbf{F}).$$

From now on, unless otherwise stated, we always assume X to be a graph, a surface or a Seifert manifold, and $f : X \to X$ is a selfmap. For convenience, we define another term.

Definition

The characteristic of a fixed point class **F** is defined as

$$\operatorname{chr}(\mathbf{F}) := 1 - \operatorname{rk}(\mathbf{F}).$$

with the exception is when $\operatorname{Stab}(f, \mathbf{F}) = \pi_1(S)$ for some closed hyperbolic surface $S \subset X$, in this case

$$\operatorname{chr}(\mathbf{F}) := \chi(S) = 2 - \operatorname{rk}(\mathbf{F}).$$

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}$.
- Lefschetz number

$$L(f) := \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

・ロト ・回ト ・ヨト

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := #\{essential fixed point classes of f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q}))$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

・ロト ・回ト ・ヨト

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := #\{essential fixed point classes of f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = \sum_{q} (-1)^{q} \operatorname{Trace}(f_{*} : H_{q}(X; \mathbb{Q}) \to H_{q}(X; \mathbb{Q})).$$

æ

<⊡> < ⊒>

- A fixed point class **F** of f is essential if $ind(f, F) \neq 0$.
- Nielsen number $N(f) := #\{essential fixed point classes of f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

Lefschetz Fixed Point Theorem

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_{q}(-1)^{q}\mathrm{Trace}(f_{*}:H_{q}(X;\mathbb{Q})\rightarrow H_{q}(X;\mathbb{Q})).$$

A⊒ ▶ ∢ ∃

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact hyperbolic surface, and $f : X \to X$ is a selfmap. Then (A) $ind(F) \leq chr(F)$ for every fixed point class F of f; (B) when X is not a tree,

$$\sum_{\mathrm{nd}(\mathbf{F})+\mathrm{chr}(\mathbf{F})<0} {\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})} \ge 2\chi(X),$$

where the sum is taken over all fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0.$

B. Jiang, S.D. Wang, Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11(2011), 2297–2318.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact hyperbolic surface, and $f : X \to X$ is a selfmap. Then (A) $ind(F) \leq chr(F)$ for every fixed point class F of f; (B) when X is not a tree,

$$\sum_{\operatorname{ad}(\mathsf{F})+\operatorname{chr}(\mathsf{F})<0} \{\operatorname{ind}(\mathsf{F})+\operatorname{chr}(\mathsf{F})\} \ge 2\chi(X),$$

where the sum is taken over all fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0.$

B. Jiang, S.D. Wang, Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11(2011), 2297–2318.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theorem (Jiang-Wang-Z., 2011)

iı

Suppose X is either a connected finite graph or a connected compact hyperbolic surface, and $f : X \to X$ is a selfmap. Then (A) $ind(F) \leq chr(F)$ for every fixed point class F of f; (B) when X is not a tree,

$$\sum_{\mathrm{nd}(\mathbf{F})+\mathrm{chr}(\mathbf{F})<0} \{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})\} \ge 2\chi(X),$$

where the sum is taken over all fixed point classes F with $\mathrm{ind}(F)+\mathrm{chr}(F)<0.$

B. Jiang, S.D. Wang, Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11(2011), 2297–2318.

A (20) A (20) A (20) A

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of F_n . Then $\operatorname{rkFix} \phi \leq \operatorname{rk} F_n$.

Theorem (Dicks-Ventura, 1996)

Let ϕ be an injective endomorphism of F_n . Then

 $\operatorname{rkFix}\phi \leq \operatorname{rk}F_n.$

[**Bergman,1999**] generalized this result to any family of endomorphisms.

||◆同 || ◆ 臣 || ◆ 臣 ||

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of F_n . Then $\operatorname{rkFix} \phi \leq \operatorname{rk} F_n$.

Theorem (Dicks-Ventura, 1996)

Let ϕ be an injective endomorphism of F_n . Then

 $\mathrm{rkFix}\phi\leq\mathrm{rk}F_{n}.$

[**Bergman,1999**] generalized this result to any family of endomorphisms.

||◆同 || ◆ 臣 || ◆ 臣 ||

As corollaries, we have

Theorem (Bestvina-Handel, 1992)

Let ϕ be an automorphism of F_n . Then $\operatorname{rkFix} \phi \leq \operatorname{rk} F_n$.

Theorem (Dicks-Ventura, 1996)

Let ϕ be an injective endomorphism of F_n . Then

 $\mathrm{rkFix}\phi \leq \mathrm{rk}F_n$.

[Bergman,1999] generalized this result to any family of endomorphisms.

→ 同 → → 目 → → 目 →

Corollary (Jiang, 1998)

Let X be either a connected finite graph(not a tree) or a connected compact hyperbolic surface, and $f : X \to X$ a selfmap. Then

- $\operatorname{ind}(\mathbf{F}) \leq 1, \forall \mathbf{F} \in \operatorname{Fpc}(f);$
- 2 Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(\mathbf{F})<-1} \{\mathrm{ind}(\mathbf{F})+1\} \ge 2\chi(X).$$

$$|L(f) - \chi(X)| \leq N(f) - \chi(X).$$

Theorem (Jiang-Wang-Z., 2011)

Let ϕ be an endomorphism of a surface group G. Then

- ${f 0}~{
 m rkFix}\phi\leq{
 m rk}$, with equality if and only if $\phi={
 m id}$;
- 2) $\operatorname{rkFix}\phi \leq \frac{1}{2}\operatorname{rk}G$ if ϕ is not epimorphic.

Corollary (Jiang, 1998)

Let X be either a connected finite graph(not a tree) or a connected compact hyperbolic surface, and $f : X \to X$ a selfmap. Then

- $\operatorname{ind}(\mathbf{F}) \leq 1, \forall \mathbf{F} \in \operatorname{Fpc}(f);$
- 2 Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(\mathbf{F})<-1} \{\mathrm{ind}(\mathbf{F})+1\} \geq 2\chi(X).$$

3
$$|L(f) - \chi(X)| ≤ N(f) - \chi(X).$$

Theorem (Jiang-Wang-Z., 2011)

Let ϕ be an endomorphism of a surface group G. Then

- **1** $\operatorname{rkFix}\phi \leq \operatorname{rk} G$, with equality if and only if $\phi = \operatorname{id}$;
- 2 $\operatorname{rkFix}\phi \leq \frac{1}{2}\operatorname{rk}G$ if ϕ is not epimorphic.

Theorem (Wu-Z.,2014)

Let \mathcal{B} be a family of **endomorphisms** of G. Then

- $\operatorname{rkFix}\mathcal{B} \leq \operatorname{rk}G$, with equality if and only if $\mathcal{B} = \{id\}$;
- 2 $\operatorname{rkFix}\mathcal{B} \leq \frac{1}{2}\operatorname{rk}G$, if \mathcal{B} contains a non-epimorphic endomorphism

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- **1** $\operatorname{ind}(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in \operatorname{Fpc}(f)$, hence $L(f) \leq N(f)$;
- **2** If *M* is orientable and *f* is **orientation-preserving**, then

 $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \mathbf{F} \in \operatorname{Fpc}(f),$

hence $|L(f)| \leq N(f)$.

③ \forall n > 3, ∃f on a closed aspherical n-manifold such that

$$L(f) > N(f).$$

(4 同) (4 回) (4 回)

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- $ind(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in Fpc(f)$, hence $L(f) \leq N(f)$;
- **2** If *M* is orientable and *f* is **orientation-preserving**, then

 $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \ \mathbf{F} \in \operatorname{Fpc}(f),$

hence $|L(f)| \leq N(f)$.

③ \forall n > 3, ∃f on a closed aspherical n-manifold such that

L(f) > N(f).

イロト イポト イヨト イヨト

Theorem (Jiang-Wang, 1992)

Suppose a closed **aspherical 3-manifold** M is finitely covered by an orientable 3-manifold which is either a Seifert manifold, or a hyperbolic 3-manifold, or admits a non-trivial JSJ-decomposition. Let $f: M \to M$ is a homeomorphism. Then

- $ind(\mathbf{F}) \leq 1$, $\forall \mathbf{F} \in Fpc(f)$, hence $L(f) \leq N(f)$;
- **2** If M is orientable and f is **orientation-preserving**, then

 $\operatorname{ind}(\mathbf{F}) \in \{-1, 0, 1\}, \quad \forall \ \mathbf{F} \in \operatorname{Fpc}(f),$

hence $|L(f)| \leq N(f)$.

③ \forall *n* > 3, ∃*f* on a closed aspherical *n*-manifold such that

L(f) > N(f).

æ

イロト イポト イヨト イヨト

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyperbolic orbifold, and $f : M \to M$ is a homeomorphism. Then (A) $ind(F) \leq chr(F)$ for every essential fixed point class F of f; (B)

$$\sum_{\mathrm{d}(F)+\mathrm{chr}(F)<0}\{\mathrm{ind}(F)+\mathrm{chr}(F)\}\geq\mathcal{B},$$

where the sum is taken over all essential fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0,$ and

$$\mathcal{B} = \begin{cases} 4(3 - \mathrm{rk}\pi_1(M)) & M \text{ is a closed surface } F \times S^1\\ 4(2 - \mathrm{rk}\pi_1(M)) & others \end{cases}$$

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyperbolic orbifold, and $f : M \to M$ is a homeomorphism. Then (A) $ind(F) \leq chr(F)$ for every essential fixed point class F of f; (B)

where the sum is taken over all essential fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0,$ and

 $\mathcal{B} = \begin{cases} 4(3 - \mathrm{rk}\pi_1(M)) & M \text{ is a closed surface } F \times S^2 \\ 4(2 - \mathrm{rk}\pi_1(M)) & others \end{cases}$

< 🗇 > < 🖃 >

ind

Theorem (Z., 2012)

Suppose M is a compact orientable Seifert 3-manifold with hyperbolic orbifold, and $f : M \to M$ is a homeomorphism. Then (A) $ind(F) \leq chr(F)$ for every essential fixed point class F of f; (B)

$$\sum_{\mathrm{d}(F)+\mathrm{chr}(F)<0} \{\mathrm{ind}(F)+\mathrm{chr}(F)\}\geq \mathcal{B},$$

where the sum is taken over all essential fixed point classes F with $\mathrm{ind}(F) + \mathrm{chr}(F) < 0,$ and

$$\mathcal{B} = \begin{cases} 4(3 - \mathrm{rk}\pi_1(M)) & \text{M is a closed surface $F \times S^1$} \\ 4(2 - \mathrm{rk}\pi_1(M)) & \text{$others$} \end{cases}$$

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

○ ∑_{ind(F)<-1}{ind(F) + 1} ≥ B.
○ |L(f) - B/2| ≤ N(f) - B/2.

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $ind(F) \in \{-1, 0, 1\}$.

→ 同 → → 目 → → 目 →

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

1 $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class **F** of f;

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $\operatorname{ind}(\mathsf{F}) \in \{-1, 0, 1\}$.

(日本) (日本) (日本)

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

2
$$\sum_{ind(\mathbf{F}) < -1} \{ind(\mathbf{F}) + 1\} \geq \mathcal{B}$$

$$|L(f) - \mathcal{B}/2| \le N(f) - \mathcal{B}/2.$$

The bound above is analogous to the one on graphs and surfaces. For f orient.-preserving, [Jiang-Wang, 1992]: $\operatorname{ind}(\mathsf{F}) \in \{-1,0,1\}$.

(日本) (日本) (日本)

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold X(M), and $f : M \to M$ is a homeomorphism. Then

• $\operatorname{ind}(\mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f;

2
$$\sum_{ind(\mathbf{F})<-1} \{ind(\mathbf{F})+1\} \geq \mathcal{B}$$

$$|L(f) - \mathcal{B}/2| \le N(f) - \mathcal{B}/2.$$

The bound above is analogous to the one on graphs and surfaces. For *f* orient.-preserving, [Jiang-Wang, 1992]: $ind(F) \in \{-1, 0, 1\}$.

< 🗇 > < 🖃 >

Proposition (Z., 2012)

Suppose $f : M \to M$ is a homeomorphism of a compact orientable Seifert 3-manifold with hyperbolic orbifold. Let $f_{\pi} : \pi_1(M, x) \to \pi_1(M, x)$ be the induced automorphism and $\operatorname{Fix}(f_{\pi}) := \{\gamma \in \pi_1(M, x) | \gamma = f_{\pi}(\gamma)\} \subset \pi_1(M, x)$, where x is in an essential fixed point class. Then

$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$

Theorem (Z., 2013)

Suppose *M* is a compact orientable **Seifert** 3-manifold, and f_{π} : $\pi_1(M) \to \pi_1(M)$ is an automorphism induced by an orientationreversing homeomorphism $f : M \to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

Proposition (Z., 2012)

Suppose $f : M \to M$ is a homeomorphism of a compact orientable Seifert 3-manifold with hyperbolic orbifold. Let $f_{\pi} : \pi_1(M, x) \to \pi_1(M, x)$ be the induced automorphism and $\operatorname{Fix}(f_{\pi}) := \{\gamma \in \pi_1(M, x) | \gamma = f_{\pi}(\gamma)\} \subset \pi_1(M, x)$, where x is in an essential fixed point class. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

Theorem (Z., 2013)

Suppose M is a compact orientable Seifert 3-manifold, and f_{π} : $\pi_1(M) \to \pi_1(M)$ is an automorphism induced by an orientationreversing homeomorphism $f : M \to M$. Then

$$\operatorname{rkFix}(f_{\pi}) < 2\operatorname{rk}\pi_1(M).$$

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M=\mathbb{H}^n/\Gamma,$$

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\operatorname{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

- A hyperbolic manifold (in this talk) is **compact** and has **empty boundary**.
- The isometry group Isom(M) of a hyperbolic n-manifold M of n ≥ 2 is finite.
- [Belolipetsky-Lubotzky, 2005]: $\forall n \ge 2$ and every finite group G, \exists infinitely many *n*-dimensional hyperbolic manifolds *M* with

$$\operatorname{Isom}(M) \cong G.$$

▲冊▶ ▲屋▶ ▲屋≯

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M=\mathbb{H}^n/\Gamma,$$

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\operatorname{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

- A hyperbolic manifold (in this talk) is **compact** and has **empty boundary**.
- The isometry group Isom(M) of a hyperbolic n-manifold M of n ≥ 2 is finite.
- [Belolipetsky-Lubotzky, 2005]: $\forall n \ge 2$ and every finite group G, \exists infinitely many *n*-dimensional hyperbolic manifolds *M* with

$$\operatorname{Isom}(M) \cong G.$$

▲冊▶ ▲屋▶ ▲屋≯

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M=\mathbb{H}^n/\Gamma,$$

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\operatorname{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

- A hyperbolic manifold (in this talk) is **compact** and has **empty boundary**.
- The isometry group Isom(M) of a hyperbolic *n*-manifold *M* of $n \ge 2$ is finite.
- [Belolipetsky-Lubotzky, 2005]: $\forall n \ge 2$ and every finite group G, \exists infinitely many *n*-dimensional hyperbolic manifolds *M* with

$$\operatorname{Isom}(M) \cong G.$$

(日本) (日本) (日本)

• By a hyperbolic n-manifold $(n \ge 2)$ we mean a quotient space

$$M=\mathbb{H}^n/\Gamma,$$

where \mathbb{H}^n is the hyperbolic *n*-space, that is, the connected, simply connected Riemanian manifold of constant curvature -1, and Γ is a cocompact torsion-free discrete subgroup of the group $\operatorname{Isom}(\mathbb{H}^n)$ of all the isometries of \mathbb{H}^n .

- A hyperbolic manifold (in this talk) is **compact** and has **empty boundary**.
- The isometry group Isom(M) of a hyperbolic *n*-manifold *M* of $n \ge 2$ is finite.
- [Belolipetsky-Lubotzky, 2005]: $\forall n \ge 2$ and every finite group G, \exists infinitely many *n*-dimensional hyperbolic manifolds *M* with

 $\operatorname{Isom}(M)\cong G.$

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f : M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}.$

Proof:

- *n* = 2, [Jiang, 1998];
- *n* ≥ 3, Mostow Rigidity Thm ⇒ *f* can be homotopied to a unique isometry *g* of finite order.

F: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fixf is compact $\Longrightarrow f$ has finitely many nonempty f.p.c. $\Longrightarrow \exists \mathcal{B}_f < \infty$, s.t. $|ind(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in Fpc(f)$.

 $\operatorname{Isom}(M) \text{ finite} \Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

$|\mathrm{ind}(f,\mathbf{F})| \leq \mathcal{B} < \infty$ product at the equation of the second states of the second sta

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f : M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}.$

Proof:

- *n* = 2, [Jiang, 1998];
- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.

F: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fix *f* is compact \implies *f* has finitely many nonempty f.p.c. $\implies \exists \mathcal{B}_f < \infty$, s.t. $|ind(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in Fpc(f)$.

 $\operatorname{Isom}(M) \text{ finite} \Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

$|\mathrm{ind}(f,\mathbf{F})| \leq \mathcal{B} < \infty$ p \cdot (B) \cdot (E) \cdot (E) \cdot (E)

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f : M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

 $|\operatorname{ind}(f, \mathbf{F})| \leq \mathcal{B}.$

Proof:

- *n* = 2, [Jiang, 1998];
- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.

F: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fixf is compact $\implies f$ has finitely many nonempty f.p.c. $\implies \exists \mathcal{B}_f < \infty$, s.t. $|ind(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in Fpc(f)$.

 $\operatorname{Isom}(M) \text{ finite} \Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

 $|ind(f, \mathbf{F})| < \mathcal{B} < \infty \Rightarrow \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle$

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f : M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

 $|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$

Proof:

- *n* = 2, [Jiang, 1998];
- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.

F: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fix f is compact \Longrightarrow f has finitely many nonempty f.p.c. $\Longrightarrow \exists \mathcal{B}_f < \infty$, s.t. $|ind(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in Fpc(f)$.

 $\operatorname{Isom}(M) \text{ finite} \Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

 $|ind(f, \mathbf{F})| < \mathcal{B} < \infty \Rightarrow \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle$

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f : M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

 $|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$

Proof:

- *n* = 2, [Jiang, 1998];
- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.

F: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fix f is compact \Longrightarrow f has finitely many nonempty f.p.c. $\Longrightarrow \exists \mathcal{B}_f < \infty$, s.t. $|ind(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in Fpc(f)$.

 $\operatorname{Isom}(M) \text{ finite} \Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

 $|ind(f, \mathbf{F})| < \mathcal{B} < \infty \rightarrow \langle \mathbf{B} \rangle \langle \mathbf{B} \rangle$

Theorem (Z., 2015)

For any hyperbolic n-manifold M^n $(n \ge 2)$, \exists a bound \mathcal{B} , such that for any self-homeomorphism $f : M \to M$ and any $\mathbf{F} \in \operatorname{Fpc}(f)$,

 $|\operatorname{ind}(f,\mathbf{F})| \leq \mathcal{B}.$

Proof:

- *n* = 2, [Jiang, 1998];
- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.

F: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.

Fix f is compact \Longrightarrow f has finitely many nonempty f.p.c. $\Longrightarrow \exists \mathcal{B}_f < \infty$, s.t. $|ind(f, \mathbf{F})| \leq \mathcal{B}_f$ for all $\mathbf{F} \in Fpc(f)$.

 $\operatorname{Isom}(M) \text{ finite} \Longrightarrow \mathcal{B} := \max\{\mathcal{B}_f | f \in \operatorname{Isom}(M)\} < \infty \Longrightarrow$

 $|\mathrm{ind}(f,\mathbf{F})| < \mathcal{B} < \infty$. A case is the set of t

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M³ be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f: M \to M$, **1** $\operatorname{ind}(f, \mathbf{F}) < 1$ for every fixed point class **F** of f; $\sum \quad \operatorname{ind}(f, \mathbf{F}) > 1 - 2\operatorname{rk}\pi_1(M),$ where the sum is taken over all fixed point classes **F** with $\operatorname{ind}(f, \mathbf{F}) < 0.$

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M^3 be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f : M \to M$, a) $\operatorname{ind}(f, \mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f; a) $\sum_{\operatorname{ind}(f, \mathbf{F}) < 0} \operatorname{ind}(f, \mathbf{F}) > 1 - 2\operatorname{rk}\pi_1(M)$, where the sum is taken over all fixed point classes \mathbf{F} with $\operatorname{ind}(f, \mathbf{F}) < 0$.

3 $N(f) \ge L(f) > 1 - 2 \operatorname{rk} \pi_1(M)$.

< □ > < □ >

For any compact hyperbolic 3-manifold

Theorem (Z., 2013)

Let M^3 be a compact hyperbolic 3-manifold (orientable or nonorientable). Then for any homeomorphism $f : M \to M$, a) $\operatorname{ind}(f, \mathbf{F}) \leq 1$ for every fixed point class \mathbf{F} of f; b) $\sum_{\operatorname{ind}(f, \mathbf{F}) < 0} \operatorname{ind}(f, \mathbf{F}) > 1 - 2\operatorname{rk}\pi_1(M)$, where the sum is taken over all fixed point classes \mathbf{F} with $\operatorname{ind}(f, \mathbf{F}) < 0$.

3
$$N(f) \ge L(f) > 1 - 2 \operatorname{rk} \pi_1(M).$$

< 🗇 > < 🖃 >

As a corollary, we have a bound for hyperbolic 3-manifolds

Theorem (Lin-Wang, 2012)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a compact orientable hyperbolic 3-manifold with finite volume. Then

 $\operatorname{rkFix}\phi < 2\operatorname{rk}G.$

< 同 > < 三 > < 三 >

As a corollary, we have a bound for hyperbolic 3-manifolds

Theorem (Lin-Wang, 2012)

Suppose ϕ is an automorphism of $G = \pi_1(M)$, where M is a compact orientable **hyperbolic** 3-manifold with finite volume. Then

$\operatorname{rkFix}\phi < 2\operatorname{rk}G.$

For any compact hyperbolic 4-manifold

Theorem (Z., 2015)

Let M^4 be a hyperbolic 4-manifold. Then for any homeomorphism $f: M \to M$, we have

$$\max\{N(f), |L(f)|\} \le \sum_{\mathbf{F} \in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \le \mathcal{B}(M),$$

where $\mathcal{B}(M) = \max\{\dim H_*(M; \mathbb{Z}_p) | p \text{ is a prime}\}$. In particular, if f is not homotopic to the identity, then

$$\operatorname{ind}(f, \mathbf{F}) \leq 1, \qquad L(f) \leq N(f).$$

Theorem (Z., 2015)

Let M^n be a hyperbolic n-manifold $(n \ge 5)$. If the isometry group Isom(M) is a **p-group** (|Isom(M)| is a power of some prime p), then for any homeomorphism $f : M \to M$, we have

$$\max\{N(f), |L(f)|\} \leq \sum_{\mathbf{F} \in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \leq \dim H_*(M; \mathbb{Z}_p),$$

where dim $H_*(M; \mathbb{Z}_p)$ denotes the dimension of the \mathbb{Z}_p -linear space

$$H_*(M;\mathbb{Z}_p)=\bigcup_{r\geq 0}H_r(M;\mathbb{Z}_p).$$

Question

Is there an analogous explicit bound for any compact hyperbolic *n*-manifold with $n \ge 5$?

Theorem (Z., 2015)

Let M^n be a hyperbolic n-manifold $(n \ge 5)$. If the isometry group Isom(M) is a **p-group** (|Isom(M)| is a power of some prime p), then for any homeomorphism $f : M \to M$, we have

$$\max\{N(f), |L(f)|\} \leq \sum_{\mathbf{F} \in \operatorname{Fpc}(f)} |\operatorname{ind}(f, \mathbf{F})| \leq \dim H_*(M; \mathbb{Z}_p),$$

where dim $H_*(M; \mathbb{Z}_p)$ denotes the dimension of the \mathbb{Z}_p -linear space

$$H_*(M;\mathbb{Z}_p)=\bigcup_{r\geq 0}H_r(M;\mathbb{Z}_p).$$

Question

Is there an analogous explicit bound for any compact hyperbolic *n*-manifold with $n \ge 5$?

Key points of Proofs of the three Theorems above

- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.
- **F**: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and t : X → X a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x = tx). The projection X → X' maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

 $\dim H_*(F;\mathbb{Z}_p) \leq \dim H_*(X;\mathbb{Z}_p).$

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Key points of Proofs of the three Theorems above

- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.
- **F**: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and t : X → X a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x = tx). The projection X → X' maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

 $\dim H_*(F;\mathbb{Z}_p) \leq \dim H_*(X;\mathbb{Z}_p).$

Key points of Proofs of the three Theorems above

- n ≥ 3, Mostow Rigidity Thm ⇒ f can be homotopied to a unique isometry g of finite order.
- **F**: a compact hyperbolic submanifold, $|ind(\mathbf{F})| = |\chi(\mathbf{F})| < \infty$.
- P.A. Smith Theory: Let X be a compact topological space and t : X → X a transformation of order a prime p. Suppose X has a triangulation in which t is simplicial. Let F denote the set of fixed points of t, and X' be the quotient space X/(x = tx). The projection X → X' maps F homeomorphically onto a subset of X', which we again denote by F. Then for any q,

$$\dim H_q(X',F;\mathbb{Z}_p) + \sum_{r=q}^{\infty} \dim H_r(F;\mathbb{Z}_p) \leq \sum_{r=q}^{\infty} \dim H_r(X;\mathbb{Z}_p).$$

In particular,

$$\dim H_*(F;\mathbb{Z}_p) \leq \dim H_*(X;\mathbb{Z}_p).$$

Open problems

A compact polyhedron X is said to have the Bounded Index Property (BIP) if there is an integer B > 0 such that for any map $f : X \to X$ and any fixed point class **F** of f, the index $|ind(f, F)| \le B$. X has the Bounded Index Property for Homeomorphisms (BIPH) if there is such a bound for all homeomorphisms $f : X \to X$.

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive Examples:

- Graphs & surfaces with negative Euler characteristic have BIP;
- Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- Compact hyperbolic n-manifolds with $n \ge 2$ have BIPH.

2

ヘロン 人間と 人間と 人間と

Open problems

A compact polyhedron X is said to have the Bounded Index Property (BIP) if there is an integer B > 0 such that for any map $f : X \to X$ and any fixed point class **F** of f, the index $|ind(f, F)| \le B$. X has the Bounded Index Property for Homeomorphisms (BIPH) if there is such a bound for all homeomorphisms $f : X \to X$.

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive Examples:

- Graphs & surfaces with negative Euler characteristic have BIP;
- Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- Compact hyperbolic n-manifolds with $n \ge 2$ have BIPH.

2

ヘロン 人間と 人間と 人間と

Open problems

A compact polyhedron X is said to have the Bounded Index Property (BIP) if there is an integer B > 0 such that for any map $f : X \to X$ and any fixed point class **F** of f, the index $|ind(f, F)| \le B$. X has the Bounded Index Property for Homeomorphisms (BIPH) if there is such a bound for all homeomorphisms $f : X \to X$.

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Positive Examples:

.

- Graphs & surfaces with negative Euler characteristic have BIP;
- Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- Compact hyperbolic n-manifolds with $n \ge 2$ have BIPH.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

Thanks ! 谢谢!

æ