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@ Intersection of subgroups in free/surface groups
@ Fixed subgroups in free groups

© Fixed subgroups in surface groups

@ Geometric subgroups & retracts in surface groups
© Fixed subgroups in 3-manifold groups

O Fixed subgroups in product groups
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Hanna Neumann Conjecture

For a f.g. (finitely generated) group G, let rk(G) denote the rank
(i.e., the minimal number of generators) of G. There are lots of
research on the intersection of subgroups in the literature.
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Hanna Neumann Conjecture

For a f.g. (finitely generated) group G, let rk(G) denote the rank
(i.e., the minimal number of generators) of G. There are lots of
research on the intersection of subgroups in the literature.

For any free group, Mineyev and Friedman proved the following
theorem conjectured by [Neumann, 1957] independently. Dicks gave
two versions of simplified proofs. A. Jaikin gave another new proof
recently.

Let tk := max{0,1k(G) — 1}.

Theorem (Mineyev, Friedman, 2011)

Let F, be a f.g. free group, and H, K any two f.g. subgroups of
F,. Then
tk(H N K) < tk(H) - 1k(K).
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Intersection of subgroups: surface groups

Let G be a surface group, namely, G = 71(S) for a closed (possibly

=7
non-orientable) surface S with x(S) < 0.
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Intersection of subgroups: surface groups

Let G be a surface group, namely, G = 71(S) for a closed (possibly
non-orientable) surface S with x(S) < 0.

Theorem (Soma, 1991)

Let G be a f.g. surface group, and H, K any two f.g. subgroups
of G. Then

Tk(H N K) < 1161 - tk(H) - tk(K).
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Intersection of subgroups: surface groups

Let G be a surface group, namely, G = 71(S) for a closed (possibly
non-orientable) surface S with x(S) < 0.

Theorem (Soma, 1991)

Let G be a f.g. surface group, and H, K any two f.g. subgroups
of G. Then

Tk(H N K) < 1161 - tk(H) - tk(K).

v

For any subgroups H, K of a surface group, does

tk(H N K) < tk(H) - TR(K) ?

4

Mineyev claimed that the answer of the question above is affirmative.
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Fixed subgroups: definitions

For any group G, denote the set of endomorphisms of G by End(G).

Definition
For an endomorphism ¢ € End(G), the fixed subgroup of ¢ is

Fix¢ = {g € G|#(g) = g}

For a family B of endomorphisms of G (i.e., B C End(G)), the
fixed subgroup of B is

FixB := {g € G|¢(g) = g,V € B} = [ | Fix¢.
PeEB
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Fixed subgroups: free groups

Theorem (Dyer-Scott, 1975)
Let ¢ € Aut(F,) be an automorphism with finite order of F,. Then

rkFix¢ < rkF,.
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Fixed subgroups: free groups

Theorem (Dyer-Scott, 1975)
Let ¢ € Aut(F,) be an automorphism with finite order of F,. Then

rkFix¢ < rkF,.

Theorem (Bestvina-Handel, 1992)
Let ¢ be an automorphism of F,,. Then rkFix¢ < rkF,,.

Other alternative proofs (Sela, Paulin, Gaboriau-Jaeger-Levitt-Lustig,...)
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Fixed subgroups: free groups

Theorem (Dicks-Ventura, 1996)

Let B be a family of injective endomorphisms of F,, then

rkFixB < rkF,.
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Fixed subgroups: free groups

Theorem (Dicks-Ventura, 1996)

Let B be a family of injective endomorphisms of F,, then

rkFixB < rkF,.

They also showed that FixB is inert in F,.

Definition

A subgroup A is inert in G if for every subgroup B < G,

rk(AN B) < rkB.
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Fixed subgroups & fixed points on graphs & surfaces

Let chr(F) := 1 — rkFix(f; ) (or 2 — rkFix(f; g) for some cases).

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact
hyperbolic surface, and f : X — X is a selfmap. Then

@ ind(F) < chr(F) for every fixed point class F of f;

@ when X is not a tree,

> {ind(F) + chr(F)} > 2x(X).
ind(F)+chr(F)<0
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Fixed subgroups & fixed points on graphs & surfaces

Let chr(F) := 1 — rkFix(f; ) (or 2 — rkFix(f; g) for some cases).

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact
hyperbolic surface, and f : X — X is a selfmap. Then

@ ind(F) < chr(F) for every fixed point class F of f;

@ when X is not a tree,

> {ind(F) + chr(F)} > 2x(X).
ind(F)+chr(F)<0

v

Bestvina-Handel results for free groups (Scott Conjecture). \
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Fixed subgroups: surface groups

Let G be a f.g. surface group.

Theorem (Jiang-Wang-Z., 2011)

Let ¢ be an endomorphism of G. Then
©Q rkFix¢ < rkG , with equality if and only if ¢ = id;
@ 1kFix¢ < 3rkG if ¢ is not epimorphic.

[Nielsen,1929]: For any closed orientable surface S and automor-
phism ¢ of 71(S), rkFix¢ < rkG.
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Fixed subgroups: surface groups

Let G be a f.g. surface group.

Theorem (Jiang-Wang-Z., 2011)

Let ¢ be an endomorphism of G. Then
©Q rkFix¢ < rkG , with equality if and only if ¢ = id;
@ 1kFix¢ < 3rkG if ¢ is not epimorphic.

[Nielsen,1929]: For any closed orientable surface S and automor-
phism ¢ of 71(S), rkFix¢ < rkG.

Theorem (Wu-Z.,2014)
Let B be a family of endomorphisms of G. Then
@ 1kFixB < rkG, with equality if and only if B = {id};
Q rkFixB < %rkG , if B contains a non-epimorphic endomorphism

Qiang Zhang Fixed subgroups in direct products of free and surface groups



Geometric subgroups of surface groups

A connected subsurface F of a connected surface S is called in-
compressible if the natural homomorphism 71(F) — 71(S) induced
by the inclusion F < S is injective. We can think of 71(F) as a
subgroup of m1(S). Subgroups which arise in this way are called
geometric.
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Geometric subgroups: inertia

Theorem (Nielsen, Jaco-Shalen)

The fixed subgroup of an automorphism of a surface group is either
cyclic or geometric.
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Geometric subgroups: inertia

Theorem (Nielsen, Jaco-Shalen)

The fixed subgroup of an automorphism of a surface group is either
cyclic or geometric.

For geometric subgroups of a surface group, we prove that

Theorem (Wu-Z., 2014)

Any geometric subgroup A of a surface group G is inert in G, i.e.,

k(AN B) <rkB for VB <G.

Corollary (Wu-Z., 2014)

The fixed subgroup of any family of epimorphisms of a surface group
G isinert in G.

v
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Equalizers and Retracts: definitions

@ Suppose G and H are two groups, ¢ : G — H is an
epimorphism. A section of ¢ is a homomorphism ¢ : H — G
such that

¢o =id : H— H.

For any family B of sections of ¢, the equalizer of B is

Eq(B) := {h € H|o1(h) = 02(h),Yo1,02 € B} < H.
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Equalizers and Retracts: definitions

@ Suppose G and H are two groups, ¢ : G — H is an

Qiang Zhang

epimorphism. A section of ¢ is a homomorphism ¢ : H — G
such that
¢o =id : H— H.

For any family B of sections of ¢, the equalizer of B is

Eq(B) := {h € H|o1(h) = 02(h),Yo1,02 € B} < H.

id € B = Eq(B) = Fix(B).
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Equalizers and Retracts: definitions

Suppose G and H are two groups, ¢ : G — H is an
epimorphism. A section of ¢ is a homomorphism ¢ : H — G
such that

¢o =id : H— H.

For any family B of sections of ¢, the equalizer of B is

Eq(B) := {h € H|o1(h) = 02(h),Yo1,02 € B} < H.

id € B = Eq(B) = Fix(B).

@ Suppose H is a subgroup of a group G. If there is a homomor-

Qiang Zhang

phism 7 : G — G such that 7(G) < H and
mlp=1id: H— H,

we say that H is a retract of G. If H # G, it is called a proper
retract.
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Equalizers and Retracts: results

We have the following relation between equalizers and retracts:

Lemma

Let G, H be two groups, and ¢ : G — H an epimorphism. If B is a
family of sections of ¢, then for any section o € B, o(H) is a retract
of G, and

oleqp) : Ea(B) — ﬂ a(H)

a€eB

is an isomorphism.
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Equalizers and Retracts: results

We have the following relation between equalizers and retracts:

Lemma

Let G, H be two groups, and ¢ : G — H an epimorphism. If B is a
family of sections of ¢, then for any section o € B, o(H) is a retract
of G, and

oleqp) : Ea(B) — ﬂ a(H)

a€eB

is an isomorphism.

For free groups, Bergman showed

Proposition (Bergman, 1999)

© Any intersection of retracts of a f.g. free group is also a retract;

@ If 9 : G — H is an epimorphism of free groups with H f.g.,
then the equalizer of any family of sections of ¢ is a free factor
in H.
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Retracts on surface groups

For a surface group G, we have

Proposition (Wu-Z., 2014)

@ Any proper retract of G is free of rank < %rkG.
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Retracts on surface groups

For a surface group G, we have

Proposition (Wu-Z., 2014)

@ Any proper retract of G is free of rank < %rkG.

@ If Hi, Hy are two proper retracts of G, and H = (Hy, H2) < G,
the subgroup generated by Hy and H», then
(1) If H < G, then Hi N Hy is a retract of both Hy and Ha, and

rk(H1 N Hy) < min{rkH;,rkH,}.

(2) If H= G, then H1 N Ha is cyclic (possibly trivial).
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Retracts on surface groups

For a surface group G, we have

Proposition (Wu-Z., 2014)

@ Any proper retract of G is free of rank < %rkG.

@ If Hi, Hy are two proper retracts of G, and H = (Hy, H2) < G,
the subgroup generated by Hy and H», then
(1) If H < G, then Hi N Hy is a retract of both Hy and Ha, and

rk(H1 N Hy) < min{rkH;,rkH,}.

(2) If H= G, then H1 N Ha is cyclic (possibly trivial).
© IfR is a family retracts of G, then

rk( (1) H) < min{rkH|H € R} <

{ kG, R ={G}
HeR

kG, R#{G} ~
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Retracts: further questions

Is every retract H of a surface/free group G inert in G? Namely, is

rk(H N K) < rk(K)

for any subgroup K < G?
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Fixed subgroups & fixed points on Seifert manifolds

M: a comp. orient. Seifert 3-manifold with hyperbolic orbifold,
Theorem (Z., 2012)

Suppose f : M — M is a homeomorphism. Then

@ ind(F) < chr(F) for every essential fixed point class F of f;

Q > ind(F)+ohr(F)<o{ind(F) 4 chr(F)} > B,
where B =4(2 — rkmi(M)).
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Fixed subgroups & fixed points on Seifert manifolds

M: a comp. orient. Seifert 3-manifold with hyperbolic orbifold,

Theorem (Z., 2012)

Suppose f : M — M is a homeomorphism. Then

@ ind(F) < chr(F) for every essential fixed point class F of f;

Q > ind(F)+ohr(F)<o{ind(F) 4 chr(F)} > B,
where B = 4(2 — rkm1(M)).

A\

Corollary (Z., 2012)
Let f; : m1(M, x) — m1(M, x) be the induced automorphism and

Fix(f,) := {v € m(M, x)ly = £ (1)} C m(M, ),
where x is in an essential fixed point class. Then

rkFix(f;) < 2rkmi(M).
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Fixed subgroups: Seifert manifold groups

Theorem (Z., 2013)

Suppose M is a compact orientable Seifert 3-manifold, and f, :
m1(M) — 71(M) is an automorphism induced by an orientation-
reversing homeomorphism f : M — M. Then

rkFix(f;) < 2rkm (M).
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Fixed subgroups: Seifert manifold groups

Theorem (Z., 2013)

Suppose M is a compact orientable Seifert 3-manifold, and f, :
m1(M) — 71(M) is an automorphism induced by an orientation-
reversing homeomorphism f : M — M. Then

rkFix(f;) < 2rkm (M).

Remark. Analogue as above does NOT hold for orient.-preserving
automorphism of Seifert manifold groups.
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Fixed subgroups: Seifert manifold groups

Theorem (Z., 2013)

Suppose M is a compact orientable Seifert 3-manifold, and f, :
m1(M) — 71(M) is an automorphism induced by an orientation-
reversing homeomorphism f : M — M. Then

rkFix(f;) < 2rkm (M).

Remark. Analogue as above does NOT hold for orient.-preserving
automorphism of Seifert manifold groups.

Theorem (Lin-Wang, 2012)

Suppose ¢ is an automorphism of G = 71(M), where M is a compact
orientable hyperbolic 3-manifold with finite volume. Then

rkFixg < 2rkG.
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Inert, compressed and bounded

For a subgroup A < G,

@ Ais called inert in G, if for every subgroup B < G,
rk(AN B) <rkB.
@ Ais called compressed in G, if for every subgroup A < B < G,
rkA < rkB.
@ Ais called c-bounded in G, if
rkA < ¢ - rkG.

A is called bounded in G, if it is 1-bounded in G.
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Inert, compressed and bounded

For a subgroup A < G,

@ Ais called inert in G, if for every subgroup B < G,
rk(AN B) <rkB.
@ Ais called compressed in G, if for every subgroup A < B < G,
rkA < rkB.
@ Ais called c-bounded in G, if
rkA < ¢ - rkG.

A is called bounded in G, if it is 1-bounded in G.

Remark: Inert = Compressed = Bounded.
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Fixed subgroups of endomorphisms

For any family B C End(G),

Theorem (Bergman, 1999)
FixB is bounded in F,.

Question (Bergman, 1999)
Is FixB inert in F,?
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Fixed subgroups of endomorphisms

For any family B C End(G),

Theorem (Bergman, 1999)
FixB is bounded in F,.

Question (Bergman, 1999)
Is FixB inert in F,?

Theorem (Martino-Ventura, 2004)

FixB is compressed in F,.
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Fixed subgroups of endomorphisms

For any family B C End(G),

Theorem (Bergman, 1999)
FixB is bounded in F,.

Question (Bergman, 1999)
Is FixB inert in F,?

Theorem (Martino-Ventura, 2004)

FixB is compressed in F,.

Theorem (Z.-Ventura-Wu, 2015)

FixB is compressed in any surface group.
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Fixed subgroups in product groups: most are bounded

Let G = G; X Gy x --- X Gy, each G; is a f.g. free group or m1(S)
for a closed surface S (maybe RP?,2RP? or a torus). We call it a
product group.
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Fixed subgroups in product groups: most are bounded

Let G = G; X Gy x --- X Gy, each G; is a f.g. free group or m1(S)
for a closed surface S (maybe RP?,2RP? or a torus). We call it a
product group.

Theorem A (Z.-Ventura-Wu, 2015)

rkFix¢ < rkG for every ¢ € Aut(G)
<= All G; are of the same type (Euclidean or hyperbolic).

Euclidean type: Z, m1(S) for x(S) > 0.
Hyperbolic type: F, (n > 1), m1(S) for x(S) < 0.
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Fixed subgroups in product groups: most are bounded

Let G = G; X Gy x --- X Gy, each G; is a f.g. free group or m1(S)
for a closed surface S (maybe RP?,2RP? or a torus). We call it a
product group.

Theorem A (Z.-Ventura-Wu, 2015)

rkFix¢ < rkG for every ¢ € Aut(G)
<= All G; are of the same type (Euclidean or hyperbolic).

Euclidean type: Z, m1(S) for x(S) > 0.
Hyperbolic type: F, (n > 1), m1(S) for x(S) < 0.

Example (NOT satisfying the conditions of Theorem A)
Let G = F, X Z = (a, b) x (t) and

¢ € Aut(G) :ar> at,b— b, t > t.

Then Fix¢ = (t,a~"ba™|m € Z).
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Fixed subgroups in product groups: few are compressed

Theorem B (Z.-Ventura-Wu, 2015)

Let G = Gy X --- X G, be a product group. If Fix¢ is compressed
in G for every ¢ € Aut(G), then G must be of one of the following
forms:

(eucl) G = 7P x (Z/2Z)9 for some p,q > 0; or

(euc2) G = NSy x (Z/2Z)9 for some q > 0 or

(euc3) G = NS, x ZP x (Z/2Z) for some p > 1; or

(eucd) G = NS x ZP for some £ > 1, p > 0; or

(hypl) G = F, x NS{ for some r > 2, £ > 0; or

(hyp2) G = S5 x NS3€ forsome g > 2, £ > 0; or

(hyp3) G = NSk x NS for some k >3, £ > 0.
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Fixed subgroups in product groups: few are compressed

Theorem B (Z.-Ventura-Wu, 2015)

Let G = Gy X --- X G, be a product group. If Fix¢ is compressed
in G for every ¢ € Aut(G), then G must be of one of the following
forms:

(eucl) G = 7P x (Z/2Z)9 for some p,q > 0; or

(euc2) G = NSy x (Z/2Z)9 for some q > 0 or

(euc3) G = NS, x ZP x (Z/2Z) for some p > 1; or

(eucd) G = NS x ZP for some £ > 1, p > 0; or

(hypl) G = F, x NS{ for some r > 2, £ > 0; or

(hyp2) G = S5 x NS3€ forsome g > 2, £ > 0; or

(hyp3) G = NSk x NS for some k >3, £ > 0.

Question (Z.-Ventura-Wu, 2015)

Is the implication in Theorem B an equivalence?
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Fixed subgroups in product groups: few are compressed

Proposition

If G is of form (euc3), i.e. G = NSy x ZP x (Z/2Z) for p > 1, then
3 ¢ € Aut(G), s.t. Fix¢ is NOT compressed, hence NOT inert.
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Fixed subgroups in product groups: few are compressed

Proposition

If G is of form (euc3), i.e. G = NSy x ZP x (Z/2Z) for p > 1, then
3 ¢ € Aut(G), s.t. Fix¢ is NOT compressed, hence NOT inert.

Proof: Let G = (a, b|bab~1a) x[[7_,(c;) x (d|d?) and ¢ € Aut(G):
arsad, b— ba, ¢c1 — c1d, C;I—>C,-_1,(i:2,...,p), dw—d.

= Fix¢ = (a2, b, acy, d) = Z3x(Z/27), while Fix¢ < {(acy, b, d).
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Fixed subgroups in product groups: few are compressed

Proposition

If G is of form (euc3), i.e. G = NSy x ZP x (Z/2Z) for p > 1, then
3 ¢ € Aut(G), s.t. Fix¢ is NOT compressed, hence NOT inert.

Proof: Let G = (a, b|bab~1a) x[[7_,(c;) x (d|d?) and ¢ € Aut(G):
arsad, b— ba, ¢c1 — c1d, C;I—>C,-_1,(i:2,...,p), dw—d.
= Fix¢ = (a2, b, acy, d) = Z3x(Z/27), while Fix¢ < {(acy, b, d).

Theorem C

Let G be a product group of Euclidean type. Then, Fix¢ is com-
pressed in G for every ¢ € End(G) <=Fix¢ is compressed in G
for every ¢ € Aut(G) <= G is of one of the following forms:
(eucl) G = 7P x (Z/27Z)9 for some p,q > 0; or

(euc2) G = NS, x (Z/27Z)9 for some g > 0; or

(eucd) G = NS x ZP for some £ > 1, p > 0.
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Examples: fixed subgroups NOT compressed

Proposition (5 factors)

IfG = Gyx---xGs, each Gj is F.(r > 2), Sg(g > 2) or NS (k > 3),
then 3 ¢ € Aut(G) s.t. Fix¢ is NOT compressed in G.
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Examples: fixed subgroups NOT compressed

Proposition (5 factors)

IfG = Gyx---xGs, each Gj is F.(r > 2), Sg(g > 2) or NS (k > 3),
then 3 ¢ € Aut(G) s.t. Fix¢ is NOT compressed in G.

Proof: Let 1 # h; = [s;, tj] = s,-t,-sfltfl € G;, and
¢i € Aut(G)) : g+ hight.
Then Fix¢; = (hj). Let ¢ = ¢1 X -+ X ¢p5 € Aut(G). Then
Fixg = (sit1s; 't 1) x -+ X (sstssy ‘5 1) = Z°

while

Fix¢ < (s1554, t1t3ts, 253, S5ta),
because

[s15254, tit3ts] = [s1, t1], [s15254, t2s3] = [s2, to],

[tas3, titsts] = [s3, t3], [S152S4, S5ta] = [sa, ta], [Ssta, tit3ts] = [ss, t5].
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Examples: fixed subgroups NOT compressed

Proposition (4 factors)

Let G = Gy x NS{(¢ > 3), Gy is Fr(r > 2) , Sg(g > 2) or
NSk(k > 4). Then 3 ¢ € Aut(G) s.t. Fix¢p is NOT compressed in
G.
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Examples: fixed subgroups NOT compressed

Proposition (4 factors)

Let G = Gy x NS{(¢ > 3), Gy is Fr(r > 2) , Sg(g > 2) or
NSk(k > 4). Then 3 ¢ € Aut(G) s.t. Fix¢p is NOT compressed in
G.

Proof: For i =1,2,3, 3¢; € Aut(G;), s.t. Fixg; = (s,-t,-si_lti_l).

®© Go = F, = (a1,...,ar), po € Aut(Go) : a1 + araz, a; = aj,
i > 2, Fixgg = (32,3132351,33, ...yar) = F.. We have
Fixgox---xFix¢s < H = (aza151%, 3t3t1t2, 351 t2, a1 t3t152, a3, . . . .
@ Go = Sz or NSy, we can construct an analog ¢g € Aut(G).

Let ¢ = o X 1 X ¢pp X ¢p3 X Id x --- x Id € Aut(G). Then

Fix¢ = Fixgg X - X Fix¢ps3 X Gg X - X Gy < H X Gy x - -+ X G.

But rkFix¢ > rk(H x G4 x - -+ X Gp).
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Fixed subgroups in product groups: less are inert

Proposition

Let G = NSf X ZP for some £ > 1, p > 0. Then 3¢ € Aut(G), s.t
Fix¢ NOT inert in G.

Proof. For simple, let G = (a, b|bab™1a) x (c) and ¢ € Aut(G):
arra, b ba, ¢+ c. = Fix¢ = (a, b%,c) = Z3, while

Fix¢ N (ac, b) = (ac, a%, b*) = 73,
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Fixed subgroups in product groups: less are inert

Proposition

Let G = NS; X ZP for some £ > 1, p > 0. Then 3¢ € Aut(G), s.t
Fix¢ NOT inert in G.

Proof. For simple, let G = (a, b|bab™'a) x (c) and ¢ € Aut(G):
arsa, b ba, ¢+ c. = Fix¢ = (a, b?, c) = Z3, while

Fix¢ N (ac, b) = (ac, a%, b*) = 73,

Theorem C’

Let G be a product group of Euclidean type. Then, Fix¢ is inert
in G for every ¢ € End(G) <= Fix¢ is inert in G for every ¢ €
Aut(G) <= G is one of the following forms:

(eucl) G = 7P x (Z/27)9 for some p,q > 0; or

(euc2) G = NS, x (Z/27Z)9 for some g = 0.
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Theorem D

Let G = G; X --- X G, be a product group. Then, Fix¢ is inert in
G for every ¢ € Aut(G) <= G is one of the following forms:
(eucl) G =7ZP x (Z/27Z)9 for some p,q > 0; or

(euc2) G = NSy x (Z/2Z)9 for some q > 0 or

(hypl’) G = F, for some n > 2; or

(hyp2’) G = 71(S) for some closed surface x(S) < 0.
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Theorem D

Let G = G; X --- X G, be a product group. Then, Fix¢ is inert in
G for every ¢ € Aut(G) <= G is one of the following forms:
(eucl) G =7ZP x (Z/27Z)9 for some p,q > 0; or

(euc2) G = NS, x (Z/27Z)9 for some q > 0 or

(hyp1’) G = F, for some n > 2; or

(hyp2’) G = m1(S) for some closed surface x(S) < 0.

| A\

Inertia Conjecture

Let G be a product group. Then, the following are equivalent:
@ Every ¢ € End(G) satisfies that Fix¢ is inert in G,
@ Every ¢ € Aut(G) satisfies that Fix¢ is inert in G,
© G is one of the forms (eucl),(euc2), (hypl’) or (hyp2').
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Theorem D

Let G = G; X --- X G, be a product group. Then, Fix¢ is inert in
G for every ¢ € Aut(G) <= G is one of the following forms:
(eucl) G =7ZP x (Z/27Z)9 for some p,q > 0; or

(euc2) G = NS, x (Z/27Z)9 for some q > 0 or

(hyp1’) G = F, for some n > 2; or

(hyp2’) G = m1(S) for some closed surface x(S) < 0.

| A\

Inertia Conjecture

Let G be a product group. Then, the following are equivalent:
@ Every ¢ € End(G) satisfies that Fix¢ is inert in G,
@ Every ¢ € Aut(G) satisfies that Fix¢ is inert in G,
© G is one of the forms (eucl),(euc2), (hypl’) or (hyp2').

Remark B .
(1) trivial (2) Thm D, (3) (1)7

{(3) = (hypl) — (hyp2)} L2255 (1).
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