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Hanna Neumann Conjecture

For a f.g. (finitely generated) group G , let rk(G ) denote the rank
(i.e., the minimal number of generators) of G . There are lots of
research on the intersection of subgroups in the literature.

For any free group, Mineyev and Friedman proved the following
theorem conjectured by [Neumann, 1957] independently. Dicks gave
two versions of simplified proofs. A. Jaikin gave another new proof
recently.

Let rk := max{0, rk(G )− 1}.

Theorem (Mineyev, Friedman, 2011)

Let Fn be a f.g. free group, and H, K any two f.g. subgroups of
Fn. Then

rk(H ∩ K ) ≤ rk(H) · rk(K ).
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H. N. Conjectureµa special case

m and n are relatively prime
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Intersection of subgroups: surface groups

Let G be a surface group, namely, G ∼= π1(S) for a closed (possibly
non-orientable) surface S with χ(S) < 0.

Theorem (Soma, 1991)

Let G be a f.g. surface group, and H, K any two f.g. subgroups
of G . Then

rk(H ∩ K ) ≤ 1161 · rk(H) · rk(K ).

Question 1

For any subgroups H, K of a surface group, does

rk(H ∩ K ) ≤ rk(H) · rk(K ) ?

Mineyev claimed that the answer of the question above is affirmative.
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Intersection of subgroups: one-relator groups

Let G = 〈X |r〉 be a one-relator group where r is a cyclically
reduced word in the free group on the generating set X .

A subset Y ⊂ X is called a Magnus subset if Y omits a generator
which appears in the relator r . A subgroup H of G is called a
Magnus subgroup if H = 〈Y 〉 for some Magnus subset Y of X , and
hence by the Magnus Freiheitssatz, H is free of rank |Y |.

Theorem (Collins, 2004)

The intersection 〈Y 〉 ∩ 〈Z 〉 of two Magnus subgroups of the one-
relator group G is either 〈Y ∩ Z 〉 or the free product of 〈Y ∩ Z 〉
with an infinite cyclic group and thus of rank |Y ∩ Z |+ 1.
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Fixed subgroups: definitions

For any group G , denote the set of endomorphisms of G by End(G ).

Definition

For an endomorphism φ ∈ End(G ), the fixed subgroup of φ is

Fixφ := {g ∈ G |φ(g) = g}.

For a family B of endomorphisms of G (i.e., B ⊆ End(G )), the
fixed subgroup of B is

FixB := {g ∈ G |φ(g) = g , ∀φ ∈ B} =
⋂
φ∈B

Fixφ.
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Fixed subgroups: free groups

Theorem (Dyer-Scott, 1975)

Let φ ∈ Aut(Fn) be an automorphism with finite order of Fn. Then

rkFixφ ≤ rkFn.

Theorem (Bestvina-Handel, 1992)

Let φ be an automorphism of Fn. Then rkFixφ ≤ rkFn.

Other alternative proofs (Sela, Paulin, Gaboriau-Jaeger-Levitt-Lustig,...)
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Fixed subgroups: free groups

Theorem (Dicks-Ventura, 1996)

Let B be a family of injective endomorphisms of Fn, then

rkFixB ≤ rkFn.

They also showed that FixB is inert in Fn.

Definition

A subgroup A is inert in G if for every subgroup B 6 G ,

rk(A ∩ B) ≤ rkB.
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Fixed subgroups & fixed points on graphs & surfaces

Let chr(F) := 1− rkFix(fπ,F) (or 2− rkFix(fπ,F) for some cases).

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected compact
hyperbolic surface, and f : X → X is a selfmap. Then

1 ind(F) ≤ chr(F) for every fixed point class F of f ;

2 when X is not a tree,∑
ind(F)+chr(F)<0

{ind(F) + chr(F)} ≥ 2χ(X ).

Corollary

Bestvina-Handel results for free groups (Scott Conjecture).
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Fixed subgroups: surface groups

Let G be a f.g. surface group.

Theorem (Jiang-Wang-Z., 2011)

Let φ be an endomorphism of G . Then

1 rkFixφ ≤ rkG , with equality if and only if φ = id;

2 rkFixφ ≤ 1
2rkG if φ is not epimorphic.

[Nielsen,1929]: For any closed orientable surface S and automor-
phism φ of π1(S), rkFixφ ≤ rkG .

Theorem (Wu-Z.,2014)

Let B be a family of endomorphisms of G . Then

1 rkFixB ≤ rkG , with equality if and only if B = {id};
2 rkFixB ≤ 1

2rkG , if B contains a non-epimorphic endomorphism
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Geometric subgroups of surface groups

A connected subsurface F of a connected surface S is called in-
compressible if the natural homomorphism π1(F )→ π1(S) induced
by the inclusion F ↪→ S is injective. We can think of π1(F ) as a
subgroup of π1(S). Subgroups which arise in this way are called
geometric.
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Geometric subgroups: inertia

Theorem (Nielsen, Jaco-Shalen)

The fixed subgroup of an automorphism of a surface group is either
cyclic or geometric.

For geometric subgroups of a surface group, we prove that

Theorem* (Wu-Z., 2014)

If A is a geometric subgroup of a surface group G , then A is inert
in G , i.e., for any subgroup B of G , we have rk(A ∩ B) ≤ rkB.

Corollary (Wu-Z., 2014)

The fixed subgroup of any family of epimorphisms of a surface group
G is inert in G .
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Sketch of the proof of Theorem*

Using covering theory:

A is a geometric subgroup of G ⇐⇒ ∃ incomp. subsurface F
of a closed surface S , s.t. A = π1(F , ∗) ≤ π1(S , ∗) = G .

We have two maps: the inclusion i : F ↪→ S , and the covering
k : K → S associated to B (i,e., k∗(π1(K , ∗̃)) = B).

Consider the commutative diagram

F0 ⊂ F̃
i ′−−−−→ K

p

y k

y
F

i−−−−→ S

where p : F̃ → F is the pull back map of k via i , and
F0 is the component of F̃ containing the base point.

i∗p∗(π1(F0)) = A ∩ B =⇒ rk(A ∩ B) = rkπ1(F0) ≤ rkB.
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Equalizers and Retracts: definitions

Suppose G and H are two groups, φ : G → H is an
epimorphism. A section of φ is a homomorphism σ : H → G
such that

φσ = id : H → H.

For any family B of sections of φ, the equalizer of B is

Eq(B) := {h ∈ H|σ1(h) = σ2(h), ∀σ1, σ2 ∈ B} ≤ H.

id ∈ B =⇒ Eq(B) = Fix(B).

Suppose H is a subgroup of a group G . If there is a homomor-
phism π : G → G such that π(G ) ≤ H and

π|H = id : H → H,

we say that H is a retract of G . If H 6= G , it is called a proper
retract.
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Equalizers and Retracts: results

We have the following relation between equalizers and retracts:

Lemma

Let G ,H be two groups, and φ : G → H an epimorphism. If B is a
family of sections of φ, then for any section σ ∈ B, σ(H) is a retract
of G , and

σ|Eq(B) : Eq(B)→
⋂
α∈B

α(H)

is an isomorphism.

For free groups, Bergman showed

Proposition (Bergman, 1999)

1 Any intersection of retracts of a f.g. free group is also a retract;

2 If φ : G → H is an epimorphism of free groups with H f.g.,
then the equalizer of any family of sections of φ is a free factor
in H.
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Retracts on surface groups

For a surface group G , we have

Proposition (Wu-Z., 2014)

1 Any proper retract of G is free of rank ≤ 1
2rkG .

2 If H1,H2 are two proper retracts of G , and H = 〈H1,H2〉 ≤ G ,
the subgroup generated by H1 and H2, then
(1) If H < G , then H1∩H2 is a retract of both H1 and H2, and

rk(H1 ∩ H2) ≤ min{rkH1, rkH2}.

(2) If H = G , then H1 ∩ H2 is cyclic (possibly trivial).

3 If R is a family retracts of G, then

rk(
⋂
H∈R

H) ≤ min{rkH|H ∈ R} ≤
{

rkG , R = {G}
1
2rkG , R 6= {G} .
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Retracts: further questions

Question 2

Is every retract H of a surface/free group G inert in G ? Namely, is

rk(H ∩ K ) ≤ rk(K )

for any subgroup K ≤ G ?
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Fixed subgroups & fixed points on Seifert manifolds

M: a comp. orient. Seifert 3-manifold with hyperbolic orbifold,

Theorem (Z., 2012)

Suppose f : M → M is a homeomorphism. Then

1 ind(F) ≤ chr(F) for every essential fixed point class F of f ;

2
∑

ind(F)+chr(F)<0{ind(F) + chr(F)} ≥ B,
where B = 4

(
2− rkπ1(M)

)
.

Corollary (Z., 2012)

Let fπ : π1(M, x)→ π1(M, x) is the induced automorphism and

Fix(fπ) := {γ ∈ π1(M, x)|γ = fπ(γ)} ⊂ π1(M, x),

where x is in an essential fixed point class. Then

rkFix(fπ) < 2rkπ1(M).
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Fixed subgroups: Seifert manifold groups

Theorem (Z., 2013)

Suppose fπ : π1(M) → π1(M) is an automorphism induced by an
orientation-reversing homeomorphism f : M → M. Then

rkFix(fπ) < 2rkπ1(M).

However, an analogue as above does not hold for a generic auto-
morphism of Seifert manifold groups.

Example

Let G = F2 × Z = 〈a, b〉 × 〈t〉 and

φ ∈ Aut(G ) : a 7→ at, b 7→ b, t 7→ t.

Then Fixφ = 〈t, a−mbam|m ∈ Z〉.
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Fixed subgroups: hyperbolic 3-manifold groups

Theorem (Lin-Wang, 2012)

Suppose φ is an automorphism of G = π1(M), where M is a compact
orientable hyperbolic 3-manifold with finite volume. Then

rkFixφ < 2rkG .

”<” is sharp. They also proved

Theorem (Lin-Wang, 2012)

There exists a sequence of automorphism φn : π1(Mn) → π1(Mn)
of closed hyperbolic 3-manifolds Mn such that Fixφn is the group
of a closed surface and

rkFixφn
rkπ1(Mn)

> 2− ε as n→ +∞

for any ε > 0.
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Inert, compressed and bounded

Definition

For a subgroup A 6 G ,

A is called inert in G , if for every subgroup B 6 G ,

rk(A ∩ B) ≤ rkB.

A is called compressed in G , if for every subgroup A 6 B 6 G ,

rkA ≤ rkB.

A is called c-bounded in G , if

rkA ≤ c · rkG .

A is called bounded in G , if it is 1-bounded in G .

Remark: Inert =⇒ Compressed =⇒ Bounded.
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Fixed subgroups of endomorphisms

For any family B ⊆ End(G ),

Theorem (Bergman, 1999)

FixB is bounded in Fn.

Question (Bergman, 1999)

Is FixB inert in Fn?

Theorem (Martino-Ventura, 2004)

FixB is compressed in Fn.

Theorem (Z.-Ventura-Wu, 2015)

FixB is compressed in any surface group.
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Fixed subgroups in product groups: most are bounded

Let G = G1 × G2 × · · · × Gn, each Gi is a f.g. free group or π1(S)
for a closed surface S (maybe RP2, 2RP2 or a torus). We call it a
product group.

Theorem A (Z.-Ventura-Wu, 2015)

rkFixφ ≤ rkG for every φ ∈ Aut(G )
⇐⇒ All Gi are of the same type (Euclidean or hyperbolic).

Euclidean type: Z, π1(S) for χ(S) ≥ 0.
Hyperbolic type: Fn (n > 1), π1(S) for χ(S) < 0.

Example (NOT satisfying the conditions of Theorem A)

Let G = F2 × Z = 〈a, b〉 × 〈t〉 and

φ ∈ Aut(G ) : a 7→ at, b 7→ b, t 7→ t.

Then Fixφ = 〈t, a−mbam|m ∈ Z〉.
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Fixed subgroups in product groups: few are compressed

Theorem B (Z.-Ventura-Wu, 2015)

Let G = G1 × · · · × Gn be a product group. If Fixφ is compressed
in G for every φ ∈ Aut(G ), then G must be of one of the following
forms:

(euc1) G = Zp × (Z/2Z)q for some p, q > 0; or
(euc2) G = NS2 × (Z/2Z)q for some q > 0; or
(euc3) G = NS2 × Zp × (Z/2Z) for some p > 1; or
(euc4) G = NS `

2 × Zp for some ` > 1, p > 0; or

(hyp1) G = Fr × NS `
3 for some r > 2, ` > 0; or

(hyp2) G = Sg × NS `
3 for some g > 2, ` > 0; or

(hyp3) G = NSk × NS `
3 for some k > 3, ` > 0.

Question 4

Is the implication in Theorem B an equivalence?
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Examples: fixed subgroups NOT compressed

Example 1:

Let G = F2 × F2 = 〈t, u〉 × 〈a, b〉, and

φ ∈ Aut(G ) : t 7→ t, u 7→ tu, a 7→ a, b 7→ ab.

Then
Fixφ = 〈t, u−1tu, a, b−1ab〉 6 〈t, bu, a〉.

Example 2:

Let G = F2 × NS4 = 〈t, u〉 × 〈a, b, c , d |aba−1bcdc−1d〉, and

φ ∈ Aut(G ) : t 7→ t, u 7→ tu, a 7→ ab, b 7→ b, c 7→ cd , d 7→ d .

Then

Fixφ = 〈t, u−1tu, b, aba−1, d , cdc−1〉 = 〈t, u−1tu〉 × 〈b, aba−1, d〉

but Fixφ 6 〈t, au, b, d〉 ∼= F4.
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Examples: fixed subgroups NOT compressed

Example 3:

Let G = NS2×NS2×Z2 = 〈a, b|aba−1b〉× 〈c , d |cdc−1d〉× 〈e|e2〉,

φ ∈ Aut(G ) : a 7→ a, b 7→ be, c 7→ cd , d 7→ d , e 7→ e.

Then
Fixφ = 〈a, b2, c2, d , e〉 6 〈a, bc, d , e〉

since c2 = a · bc · a−1 · bc and b2 = bc · bc · c−2.
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Examples: fixed subgroups NOT inert

Example 4:

Let G = F2 × NS3 = 〈t, u〉 × 〈a, b, c |aba−1bc2〉, and

φ ∈ Aut(G ) : t 7→ t, u 7→ u, a 7→ ab, b 7→ b, c 7→ c .

Then
Fixφ = 〈t, u, aba−1, b, c〉 = 〈t, u〉 × 〈b, c〉.

Let K = 〈at, u〉. Then

Fixφ ∩ K = 〈t−mutm|m ∈ Z〉

is infinite generated.
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Fixed subgroups in product groups: less are inert

Theorem C (Z.-Ventura-Wu, 2015)

Let G = G1 × · · · × Gn be a product group. If Fixφ is inert in G
for every φ ∈ Aut(G ), then G is of one of the forms

(euc1) G = Zp × (Z/2Z)q for some p, q > 0; or
(euc2) G = NS2 × (Z/2Z)q for some q > 0; or
(euc3) G = NS2 × Zp × (Z/2Z) for some p > 1; or
(euc4) G = NS `

2 × Zp for some ` > 1, p > 0; or

(hyp1’) G = Fr for some r > 2; or
(hyp2’) G = π1(S) for some closed surface χ(S) < 0
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New progress: Compressedness in Euclid type

Proposition (Ventura-Wu-Z.)

If G is of form (euc3), i.e. G = NS2×Zp × (Z/2Z) for p > 1, then
∃ φ ∈ Aut(G ), s.t. Fixφ is NOT compressed, hence NOT inert.

Proof: Let G = 〈a, b|bab−1a〉×
∏p

i=1〈ci 〉×〈d |d2〉 and φ ∈ Aut(G ):

a 7→ ad , b 7→ ba, c1 7→ c1d , ci 7→ c−1i , (i = 2, ..., p), d 7→ d .

=⇒ Fixφ = 〈a2, b2, ac1, d〉 ∼= Z3×(Z/2Z), while Fixφ 6 〈ac1, b, d〉.

Theorem B’ (Ventura-Wu-Z.)

Let G be a product group of Euclidean type. Then, Fixφ is com-
pressed in G for every φ ∈ End(G ) ⇐⇒Fixφ is compressed in G
for every φ ∈ Aut(G ) ⇐⇒ G is of one of the following forms:

(euc1) G = Zp × (Z/2Z)q for some p, q > 0; or
(euc2) G = NS2 × (Z/2Z)q for some q > 0; or
(euc4) G = NS `

2 × Zp for some ` > 1, p > 0.
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New progress: Compressedness in hyp. type

Proposition (5 factors)

If G = G1×· · ·×G5, each Gi is Fr (r ≥ 2) , Sg (g ≥ 2) or NSk(k ≥ 3),
then ∃ φ ∈ Aut(G ) s.t. Fixφ is NOT compressed in G .

Proof: Let 1 6= hi = [si , ti ] = si ti s
−1
i t−1i ∈ Gi , and

φi ∈ Aut(Gi ) : g 7→ high−1i .

Then Fixφi = 〈hi 〉. Let φ = φ1 × · · · × φ5 ∈ Aut(G ). Then

Fixφ = 〈s1t1s−11 t−11 〉 × · · · × 〈s5t5s−15 t−15 〉 ∼= Z5

while
Fixφ 6 〈s1s2s4, t1t3t5, t2s3, s5t4〉,

because

[s1s2s4, t1t3t5] = [s1, t1], [s1s2s4, t2s3] = [s2, t2],

[t2s3, t1t3t5] = [s3, t3], [s1s2s4, s5t4] = [s4, t4], [s5t4, t1t3t5] = [s5, t5].
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New progress: Compressedness in hyp. type

Proposition (4 factors)

Let G = G0 × NS `
3 (` ≥ 3), G0 is Fr (r ≥ 2) , Sg (g ≥ 2) or

NSk(k ≥ 4). Then ∃ φ ∈ Aut(G ) s.t. Fixφ is NOT compressed in
G .

Proof: For i = 1, 2, 3, ∃φi ∈ Aut(Gi ), s.t. Fixφi = 〈si ti s−1i t−1i 〉.

G0 = Fr = 〈a1, . . . , ar 〉, φ0 ∈ Aut(G0) : a1 7→ a1a2, ai 7→ ai ,
i ≥ 2, Fixφ0 = 〈a2, a1a2a−11 , a3, . . . , ar 〉 ∼= Fr . We have
Fixφ0×· · ·×Fixφ3 6 H = 〈a2a1s1s2, s3t3t1t2, s3s1t2, a1t3t1s2, a3, . . . , ar 〉.
G0 = Sg or NSk , we can construct an analog φ0 ∈ Aut(G ).

Let φ = φ0 × φ1 × φ2 × φ3 × Id × · · · × Id ∈ Aut(G ). Then

Fixφ = Fixφ0 × · · · × Fixφ3 × G4 × · · · × G` 6 H × G4 × · · · × G`.

But rkFixφ > rk(H × G4 × · · · × G`).
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New progress: Inertia in Euclid type

Proposition (Ventura-Wu-Z.)

Let G = NS `
2 × Zp for some ` > 1, p > 0. Then ∃φ ∈ Aut(G ), s.t

Fixφ NOT inert in G .

Proof. For simple, let G = 〈a, b|bab−1a〉 × 〈c〉 and φ ∈ Aut(G ):
a 7→ a, b 7→ ba, c 7→ c . =⇒ Fixφ = 〈a, b2, c〉 ∼= Z3, while

Fixφ ∩ 〈ac, b〉 = 〈ac, a2, b2〉 ∼= Z3.

Theorem C’ (Ventura-Wu-Z.)

Let G be a product group of Euclidean type. Then, Fixφ is inert
in G for every φ ∈ End(G ) ⇐⇒ Fixφ is inert in G for every φ ∈
Aut(G ) ⇐⇒ G is one of the following forms:

(euc1) G = Zp × (Z/2Z)q for some p, q > 0; or
(euc2) G = NS2 × (Z/2Z)q for some q > 0.
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Theorem D (Ventura-Wu-Z.)

Let G = G1 × · · · × Gn be a product group. Then, Fixφ is inert in
G for every φ ∈ Aut(G ) ⇐⇒ G is one of the following forms:

(euc1) G = Zp × (Z/2Z)q for some p, q > 0; or
(euc2) G = NS2 × (Z/2Z)q for some q > 0; or
(hyp1’) G = Fn for some n ≥ 2; or
(hyp2’) G = π1(S) for some closed surface χ(S) < 0.

Inertia Conjecture (Ventura-Wu-Z.)

Let G be a product group. Then, the following are equivalent:

1 Every φ ∈ End(G ) satisfies that Fixφ is inert in G ,

2 Every φ ∈ Aut(G ) satisfies that Fixφ is inert in G ,

3 G is one of the forms (euc1),(euc2), (hyp1’) or (hyp2’).

Remark
(1)

trivial
===⇒ (2)

Thm D⇐===⇒ (3)
???

==⇒ (1),

{(3)− (hyp1′)− (hyp2′)} Thm C ′
⇐===⇒ (1).
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