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Fixed point class

Let X be a connected compact polyhedron, and f : X — X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes
Fixf = {x e X|f(x)=x}= || F
FeFpc(f)
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Fixed point class

Let X be a connected compact polyhedron, and f : X — X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes
Fixf = {x e X|f(x)=x}= || F
FeFpc(f)

Definition

Two fixed points x,x" € Fix(f) are in the same fixed point class
<= there is a path ¢ (called a Nielsen path) from x to x’ such that
¢ =~ f o ¢ rel endpoints.

v

There is a subtle notion of empty fixed point class with ind = 0.
We omit the definition in this talk.
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Fixed point class

Let X be a connected compact polyhedron, and f : X — X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes
Fixf = {x e X|f(x)=x}= || F
FeFpc(f)

Definition

Two fixed points x,x" € Fix(f) are in the same fixed point class
<= there is a path ¢ (called a Nielsen path) from x to x’ such that
¢ =~ f o ¢ rel endpoints.

The index of a fixed point class F is the sum

ind(F) := ind(f, F) Zmd (f,x)
x€eF

v

There is a subtle notion of empty fixed point class with ind = 0.
We omit the definition in this talk.
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Homotopy invariance

A homotopy H = {h¢} : fy ~ f : X — X gives rise to a natural
one-one correspondence

H:Foi—>F1

from the fixed point classes of fy to the fixed point classes of f;.
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Homotopy invariance

A homotopy H = {h¢} : fy ~ f : X — X gives rise to a natural
one-one correspondence

H:Foi—>F1

from the fixed point classes of fy to the fixed point classes of f;.
Remark. A homotopy may create or remove fixed point classes.
The correspondence is one-one only when empty fixed point classes
are taken into account.
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Homotopy invariance

A homotopy H = {h¢} : fy ~ f : X — X gives rise to a natural
one-one correspondence

H:Foi—>F1

from the fixed point classes of fy to the fixed point classes of f;.
Remark. A homotopy may create or remove fixed point classes.
The correspondence is one-one only when empty fixed point classes
are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

ind(ﬂ), Fo) = ind(ﬁ_, Fl).
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Commutation invariance

Suppose ¢ : X = Y and ¢ : Y — X are maps. Then ¢po ¢ : X —
X and ¢ oy : Y — Y are said to differ by a commutation. The
map ¢ sets up a natural one-one correspondence

Fx—>Fy

from the fixed point classes of ¢ o ¢ to the fixed point classes of

po.
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Commutation invariance

Suppose ¢ : X = Y and ¢ : Y — X are maps. Then ¢po ¢ : X —
X and ¢ oy : Y — Y are said to differ by a commutation. The
map ¢ sets up a natural one-one correspondence

Fx—>Fy

from the fixed point classes of ¢ o ¢ to the fixed point classes of

po.

Theorem (Commutation invariance)

Under the correspondence via commutation,

ind(¢ o ¢; Fx) = ind(¢ o ¥; Fy).
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Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation
generates an equivalence relation:
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Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation
generates an equivalence relation:

Definition

A sequence {f; : X; — Xj|i = 0,--- , k} of self-maps is a mutation
if for each i, either

Q@ Xiy1 =X and fip 1 = f; or

@ fiy1 is obtained from f; by commutation.
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Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation
generates an equivalence relation:

Definition

A sequence {f; : X; — Xj|i = 0,--- , k} of self-maps is a mutation
if for each i, either

Q@ Xiy1 =X and fip 1 = f; or

@ fiy1 is obtained from f; by commutation.

A mutation sets up a one-one correspondence between fixed point
classes of the end maps.
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Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation
generates an equivalence relation:

Definition

A sequence {f; : X; — Xj|i = 0,--- , k} of self-maps is a mutation
if for each i, either

Q@ Xiy1 =X and fip 1 = f; or

@ fiy1 is obtained from f; by commutation.

A mutation sets up a one-one correspondence between fixed point
classes of the end maps.

Theorem (Mutation invariance)

The index ind(F) is a mutation invariant.
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Nielsen number & Lefschetz number

o A fixed point class F of f is essential if ind(f, F) # 0.
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Nielsen number & Lefschetz number

o A fixed point class F of f is essential if ind(f, F) # 0.

o Nielsen number N(f) := #{essential fixed point classes of f}.
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Nielsen number & Lefschetz number

o A fixed point class F of f is essential if ind(f, F) # 0.

o Nielsen number N(f) := #{essential fixed point classes of f}.

@ Lefschetz number

L(F) =" (—1)TTrace(f. : Hy(X; Q) = Hq(X; Q)).

q
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Nielsen number & Lefschetz number

@ A fixed point class F of f is essential if ind(f, F) # 0.

o Nielsen number N(f) := #{essential fixed point classes of f}.

@ Lefschetz number

L(F) =" (—1)TTrace(f. : Hy(X; Q) = Hq(X; Q)).

q

v

Lefschetz Fixed Point Theorem

> ind(f,F) =) (—1)Trace(f : Hy(X; Q) = Hq(X;Q)).

FeFpc(f) q
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Bounds for graphs and surfaces

Theorem (Jiang, 1998)

Let X be either a connected finite graph(not a tree) or a connected
compact hyperbolic surface, and f : X — X a selfmap. Then

@ ind(F) <1, VF € Fpc(f),
@ Almost all fixed point classes have index > —1, in the sense

> {ind(F) + 1} > 2x(X).

ind(F)<—1

Q [L(F) — x(X)| < N(f) — x(X).
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Open problems

A compact polyhedron X is said to have the Bounded Index Property
(BIP) if there is an integer B > 0 such that for any map  : X — X
and any fixed point class F of f, the index |ind(f,F)| < B. X has
the Bounded Index Property for Homeomorphisms (BIPH) if there
is such a bound for all homeomorphisms f : X — X.
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Open problems

A compact polyhedron X is said to have the Bounded Index Property
(BIP) if there is an integer B > 0 such that for any map  : X — X
and any fixed point class F of f, the index |ind(f,F)| < B. X has
the Bounded Index Property for Homeomorphisms (BIPH) if there
is such a bound for all homeomorphisms f : X — X.

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. m;j(X) = 0 for
all i > 1). Does X have BIP or BIPH?
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Positive examples

e [McCord, 1992]: Infra-solvmanifolds have BIP;
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Positive examples

e [McCord, 1992]: Infra-solvmanifolds have BIP;

e [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH
for orientation preserving self-homeomorphisms;
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Positive examples

e [McCord, 1992]: Infra-solvmanifolds have BIP;

e [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH
for orientation preserving self-homeomorphisms;

e [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with
x < 0 have BIP;
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Positive examples

e [McCord, 1992]: Infra-solvmanifolds have BIP;

e [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH
for orientation preserving self-homeomorphisms;

e [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with
x < 0 have BIP;

@ [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold
have BIPH;
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Positive examples

e [McCord, 1992]: Infra-solvmanifolds have BIP;

e [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH
for orientation preserving self-homeomorphisms;

e [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with

x < 0 have BIP;

@ [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold
have BIPH;

e [Z., 2015]: Compact hyperbolic n-manifolds (n > 2) have
BIPH.
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Bounds for products of hyperbolic surfaces

Suppose S1 and Sp are two connected compact surfaces with Euler
characteristics x1 := x(51) < x2 = x(52) < 0, then S; x Sy has
BIPH. More precisely,
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Bounds for products of hyperbolic surfaces

Suppose S1 and Sp are two connected compact surfaces with Euler
characteristics x1 := x(51) < x2 = x(52) < 0, then S; x Sy has
BIPH. More precisely,

Theorem (Z.-Zhao)

Let f: 51 x Sp — S1 X So be a homeomorphism. Then the indices
of the Nielsen fixed point classes of f are bounded:
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Bounds for products of hyperbolic surfaces

Suppose S1 and Sp are two connected compact surfaces with Euler
characteristics x1 := x(51) < x2 = x(52) < 0, then S; x Sy has
BIPH. More precisely,

Theorem (Z.-Zhao)

Let f: 51 x Sp — S1 X So be a homeomorphism. Then the indices
of the Nielsen fixed point classes of f are bounded:

© For every fixed point class F of f, we have

2x1 — 1 <ind(f,F) < (2x1 — 1)(2x2 — 1);
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Bounds for products of hyperbolic surfaces

Suppose S1 and Sp are two connected compact surfaces with Euler
characteristics x1 := x(51) < x2 = x(52) < 0, then S; x Sy has
BIPH. More precisely,

Theorem (Z.-Zhao)

Let f: 51 x Sp — S1 X So be a homeomorphism. Then the indices
of the Nielsen fixed point classes of f are bounded:

© For every fixed point class F of f, we have
2x1 — 1 <ind(f,F) < (2x1 —1)(2x2 — 1);

Q |L(F) — 2xax2| < (1 —2x1)N(F) + 2(x1x2 — x1)-
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Bounds for products of hyperbolic surfaces

Suppose S1 and Sp are two connected compact surfaces with Euler
characteristics x1 := x(51) < x2 = x(52) < 0, then S; x Sy has
BIPH. More precisely,

Theorem (Z.-Zhao)

Let f: 51 x Sp — S1 X So be a homeomorphism. Then the indices
of the Nielsen fixed point classes of f are bounded:

© For every fixed point class F of f, we have

2x1 — 1 <ind(f,F) < (2x1 — 1)(2x2 — 1);

Q |L(F) — 2xax2| < (1 —2x1)N(F) + 2(x1x2 — x1)-

4

To prove the above Theorem, we first consider two good forms
of selfmaps called fiber-preserving maps and alternating home-
omorphisms, and then show that any homeomorphism f can be
homotoped to one of the two good forms.
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Case 1: Fiber-preserving maps

Definition

A selfmap f: 51 X Sp — 51 X Sy is called a fiber-preserving map, if
f=fAxh:5 x5 =5 x5, (ab)— (f(a), (b)),

where f; is a selfmap of S;(i =1, 2).
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Case 1: Fiber-preserving maps

Definition

A selfmap f: 51 X Sp — 51 X Sy is called a fiber-preserving map, if
f=fAxh:5 x5 =5 x5, (ab)— (f(a), (b)),

where f; is a selfmap of S;(i =1, 2).

For any fiber-preserving map f, we have Fixf = Fixf; x Fixf, and
each fixed point class F of f splits into a product of some fixed point
classes of f;, i.e.,

Q@ F=F, xF,, ind(f,F) = ind(f;, F1) - ind(f, F3),
where F; is a fixed point class of f; for i = 1, 2.

Q@ L(f) = L()-L(f), N(f)=N(f)- N(%).
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Case 1: Fiber-preserving maps

By the Lemma above, we can show that the product S; x Sy has
BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If f: 51 xS — 51 xS, is a fiber-preserving map, then
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Case 1: Fiber-preserving maps

By the Lemma above, we can show that the product S; x Sy has
BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If f: 51 xS — 51 xS, is a fiber-preserving map, then

@ For every fixed point class F of f, we have

2x1 — 1 <ind(f,F) < (2x1 — 1)(2x2 — 1);
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Case 1: Fiber-preserving maps

By the Lemma above, we can show that the product S; x Sy has
BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If f: 51 xS — 51 xS, is a fiber-preserving map, then

@ For every fixed point class F of f, we have

2x1 — 1 <ind(f,F) < (2x1 — 1)(2x2 — 1);

Q [L(f) — 2xaxal < (1 —2x1)N(f) + 2(xax2 — x1)-
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Case 2: Alternating homeomorphisms

Let S; = S, be two copies of a connected compact hyperbolic sur-
face S, and hence, their Euler characteristics x1 = x2 = x(S) < 0.
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Case 2: Alternating homeomorphisms

Let S; = S, be two copies of a connected compact hyperbolic sur-
face S, and hence, their Euler characteristics x1 = x2 = x(S) < 0.

Definition
A self-homeomorphism f : S xS, — 51 X S5 is called an alternating
homeomorphism, if

f:TO(f1X6)251X52—>51><52

(a, b) = (f2(b), f(a)),

where fi, f, are two self-homeomorphisms of S, and 7 is a transpo-
sition.

4
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Case 2: Alternating homeomorphisms

Lemma

If f : 51 x So — S1 X S, is an alternating homeomorphism, then the

nature map
p:S51— 51 xS, a—(a fi(a))

induces an index-preserving one-to-one corresponding between the
set Fpc(f o f1) of fixed point classes of f, o f; and the set Fpc(f)
of fixed point classes of f.
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Case 2: Alternating homeomorphisms

If f : 51 x So — S1 X S, is an alternating homeomorphism, then the
nature map

p:S51— 51 xS, a—(a fi(a))

induces an index-preserving one-to-one corresponding between the
set Fpc(f o f1) of fixed point classes of f, o f; and the set Fpc(f)
of fixed point classes of f.

<

Proof: Let M = Dfi(a) and N = Dfa(b) for b = fi(a). Then the

differential Df(a, b) of f at (a, b) is < I\(il ,(;l > . Hence

ind(f,(a, b)) = sgndet(l4—<,\oﬂ I(\)I>)
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Case 2: Alternating homeomorphisms

If f =70 (fixh):S xSy — S xS is an alternating homeo-
morphism, then by the above lemma, we have

N(f) = N(f o) = N(fLo ), L(f)=L(faof)=L(foh)
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Case 2: Alternating homeomorphisms

If f =70 (fixh):S xSy — S xS is an alternating homeo-
morphism, then by the above lemma, we have

N(f) = N(f o) = N(fLo ), L(f)=L(faof)=L(foh)

Proposition (BIPH for alternating homeomorphisms)
Q 2x; — 1 <ind(f,F) <1, VF € Fpc(f);

@ Almost all fixed point classes have index > —1, in the sense

ST {ind(f,F) + 1} > 2;
ind(f,F)<—1

Q |L(F) —xa| < N(f) —xa-
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Good forms of self-homeomorphisms of S; x S,

Recall that S; and S, be two compact hyperbolic surfaces.

Lemma (Z.-Ventura-Wu, 2015)

Let G = 71(51) x m1(S2) and ¢ € Aut(G) be an automorphism.
Then there exist automorphisms ¢; € Aut(m1(S;)) such that ¢ must
have one of the following forms:

(4 ] ifSl 2 52, then ¢ = gbl X ¢2,‘

0 isixstms={ , ik

where T is a transposition.
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Good forms of self-homeomorphisms of S; x S,

Let f: 51 X So — S1 X S, be a homeomorphism, where S1, 5, are
two compact hyperbolic surfaces. Then
Q ifSg 2 Sy, then f can be homotoped to a fiber-preserving
homeomorphism fi X f;
@ ifS; = Sy, then f can be homotoped to either a fiber-preserving
homeomorphism or an alternating homeomorphism.

4
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Good forms of self-homeomorphisms of S; x S,

Let f: 51 X So — S1 X S, be a homeomorphism, where S1, 5, are
two compact hyperbolic surfaces. Then
Q ifSg 2 Sy, then f can be homotoped to a fiber-preserving
homeomorphism fi X f;

@ ifS; = Sy, then f can be homotoped to either a fiber-preserving
homeomorphism or an alternating homeomorphism.

4

Proof: f homeomorphism = f; = ¢1 X ¢ or fr = 7 o (1 X ¢2),
where ¢; € Aut(mS;). By Dehn-Nielsen-Bar Thm for hyperbolic
surfaces, ¢; can be induced by a self-homeomorphism f; of S;. Hence

fo=(Axh)e o fr=(ro(hxh).
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Good forms of self-homeomorphisms of S; x S,

Let f: 51 X So — S1 X S, be a homeomorphism, where S1, 5, are
two compact hyperbolic surfaces. Then
Q ifSg 2 Sy, then f can be homotoped to a fiber-preserving
homeomorphism fi X f;

@ ifS; = Sy, then f can be homotoped to either a fiber-preserving
homeomorphism or an alternating homeomorphism.

4

Proof: f homeomorphism = f; = ¢1 X ¢ or fr = 7 o (1 X ¢2),
where ¢; € Aut(mS;). By Dehn-Nielsen-Bar Thm for hyperbolic
surfaces, ¢; can be induced by a self-homeomorphism f; of S;. Hence

fo=(Axh)e o fr=(ro(hxh).

fixh
To(flez)
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S; hyperbolic = 51 x S, aspherical =  ~ {
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