Bounds for fixed points on products of hyperbolic surfaces

ZHANG, Qiang 张 强 (joint with Xuezhi Zhao)

> Xi'an Jiaotong University 西安交通大学

The 13th East Asian School of Knots and Related Topics KAIST, Daejeon, Korea Jan 30, 2018

Fixed point class

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in \operatorname{Fix}(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class F is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Fixed point class

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class F is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Fixed point class

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point** classes

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0. We omit the definition in this talk.

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1).$$

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1).$$

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1).$$

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathbf{F}_X o \mathbf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Theorem (Commutation invariance

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y).$$

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\textbf{F}_X \to \textbf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi$.

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y).$$

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ① $X_{i+1} = X_i$ and $f_{i+1} \simeq f_i$, or
- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{F}\in\mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_{q}(-1)^{q}\mathrm{Trace}(f_{*}:H_{q}(X;\mathbb{Q})\to H_{q}(X;\mathbb{Q})).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{F}\in\mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_{q}(-1)^{q}\mathrm{Trace}(f_{*}:H_{q}(X;\mathbb{Q})\to H_{q}(X;\mathbb{Q})).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{F}\in\mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_{q}(-1)^{q}\mathrm{Trace}(f_{*}:H_{q}(X;\mathbb{Q})\to H_{q}(X;\mathbb{Q})).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=\sum_q(-1)^q\mathrm{Trace}(f_*:H_q(X;\mathbb{Q})\to H_q(X;\mathbb{Q})).$$

Bounds for graphs and surfaces

Theorem (Jiang, 1998)

Let X be either a connected finite $graph(not\ a\ tree)$ or a connected compact hyperbolic surface, and $f: X \to X$ a selfmap. Then

- **2** Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\operatorname{ind}(\mathbf{F})<-1} \{\operatorname{ind}(\mathbf{F})+1\} \geq 2\chi(X).$$

 $|L(f) - \chi(X)| \le N(f) - \chi(X).$

Open problems

A compact polyhedron X is said to have the Bounded Index Property (BIP) if there is an integer B>0 such that for any map $f:X\to X$ and any fixed point class $\mathbf F$ of f, the index $|\mathrm{ind}(f,\mathbf F)|\le B$. X has the Bounded Index Property for Homeomorphisms (BIPH) if there is such a bound for all homeomorphisms $f:X\to X$.

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

Open problems

A compact polyhedron X is said to have the Bounded Index Property (BIP) if there is an integer B>0 such that for any map $f:X\to X$ and any fixed point class $\mathbf F$ of f, the index $|\operatorname{ind}(f,\mathbf F)|\le B$. X has the Bounded Index Property for Homeomorphisms (BIPH) if there is such a bound for all homeomorphisms $f:X\to X$.

Question (Jiang, 1998)

Suppose a compact polyhedron X is aspherical (i.e. $\pi_i(X) = 0$ for all i > 1). Does X have BIP or BIPH?

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH.
- · · · · · · ·

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH.
- · · · · · · ·

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH.
- · · · · · · ·

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH.
- · · · · · · ·

- [McCord, 1992]: Infra-solvmanifolds have BIP;
- [Jiang-Wang, 1992]: Closed aspherical 3-manifolds have BIPH for orientation preserving self-homeomorphisms;
- [Jiang, 1998; Jiang-Wang-Z., 2011]: Graphs & surfaces with $\chi < 0$ have BIP;
- [Z., 2012]: Orientable Seifert 3-manifolds with hyp. orbifold have BIPH;
- [Z., 2015]: Compact hyperbolic n-manifolds ($n \ge 2$) have BIPH.
-

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1:=\chi(S_1)\leq \chi_2:=\chi(S_2)<0$, then $S_1\times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao)

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

 $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1:=\chi(S_1)\leq \chi_2:=\chi(S_2)<0$, then $S_1\times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao)

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

• For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

 $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao)

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

$$|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$$

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao)

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

$$|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$$

Suppose S_1 and S_2 are two connected compact surfaces with Euler characteristics $\chi_1 := \chi(S_1) \le \chi_2 := \chi(S_2) < 0$, then $S_1 \times S_2$ has BIPH. More precisely,

Theorem (Z.-Zhao)

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism. Then the indices of the Nielsen fixed point classes of f are bounded:

For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

$$|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$$

Definition

A selfmap $f: S_1 \times S_2 \to S_1 \times S_2$ is called a fiber-preserving map, if

$$f = f_1 \times f_2 : S_1 \times S_2 \rightarrow S_1 \times S_2, \quad (a, b) \mapsto (f_1(a), f_2(b)),$$

where f_i is a selfmap of S_i (i = 1, 2).

For any fiber-preserving map f, we have $Fixf = Fixf_1 \times Fixf_2$, and each fixed point class \mathbf{F} of f splits into a product of some fixed point classes of f_i , i.e.,

Lemma

- $\mathbf{F} = \mathbf{F}_1 \times \mathbf{F}_2$, $\operatorname{ind}(f, \mathbf{F}) = \operatorname{ind}(f_1, \mathbf{F}_1) \cdot \operatorname{ind}(f_2, \mathbf{F}_2)$, where \mathbf{F}_i is a fixed point class of f_i for i = 1, 2.
- ② $L(f) = L(f_1) \cdot L(f_2), \quad N(f) = N(f_1) \cdot N(f_2).$

Definition

A selfmap $f: S_1 \times S_2 \to S_1 \times S_2$ is called a fiber-preserving map, if

$$f = f_1 \times f_2 : S_1 \times S_2 \rightarrow S_1 \times S_2, \quad (a,b) \mapsto (f_1(a), f_2(b)),$$

where f_i is a selfmap of S_i (i = 1, 2).

For any fiber-preserving map f, we have $\operatorname{Fix} f = \operatorname{Fix} f_1 \times \operatorname{Fix} f_2$, and each fixed point class \mathbf{F} of f splits into a product of some fixed point classes of f_i , i.e.,

Lemma

- $\mathbf{F} = \mathbf{F}_1 \times \mathbf{F}_2$, $\operatorname{ind}(f, \mathbf{F}) = \operatorname{ind}(f_1, \mathbf{F}_1) \cdot \operatorname{ind}(f_2, \mathbf{F}_2)$, where \mathbf{F}_i is a fixed point class of f_i for i = 1, 2.
- ② $L(f) = L(f_1) \cdot L(f_2), \quad N(f) = N(f_1) \cdot N(f_2).$

By the Lemma above, we can show that the product $S_1 \times S_2$ has BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If $f: S_1 \times S_2 \to S_1 \times S_2$ is a fiber-preserving map, then

lacktriangledown For every fixed point class lacktriangledown of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

 $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

By the Lemma above, we can show that the product $S_1 \times S_2$ has BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If $f: S_1 \times S_2 \to S_1 \times S_2$ is a fiber-preserving map, then

For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

 $|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$

By the Lemma above, we can show that the product $S_1 \times S_2$ has BIP for fiber-preserving maps.

Proposition (BIP for fiber-preserving maps)

If $f: S_1 \times S_2 \to S_1 \times S_2$ is a fiber-preserving map, then

For every fixed point class F of f, we have

$$2\chi_1 - 1 \le \operatorname{ind}(f, \mathbf{F}) \le (2\chi_1 - 1)(2\chi_2 - 1);$$

$$|L(f) - 2\chi_1\chi_2| \le (1 - 2\chi_1)N(f) + 2(\chi_1\chi_2 - \chi_1).$$

Let $S_1 = S_2$ be two copies of a connected compact hyperbolic surface S, and hence, their Euler characteristics $\chi_1 = \chi_2 = \chi(S) < 0$.

Definition

A self-homeomorphism $f: S_1 \times S_2 \to S_1 \times S_2$ is called an alternating homeomorphism, if

$$f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$$

 $(a, b) \mapsto (f_2(b), f_1(a))$

where f_1 , f_2 are two self-homeomorphisms of S, and τ is a transposition.

Let $S_1 = S_2$ be two copies of a connected compact hyperbolic surface S, and hence, their Euler characteristics $\chi_1 = \chi_2 = \chi(S) < 0$.

Definition

A self-homeomorphism $f: S_1 \times S_2 \to S_1 \times S_2$ is called an alternating homeomorphism, if

$$f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \rightarrow S_1 \times S_2$$

 $(a, b) \mapsto (f_2(b), f_1(a)),$

where f_1 , f_2 are two self-homeomorphisms of S, and τ is a transposition.

Lemma

If $f: S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then the nature map

$$\rho: S_1 \to S_1 \times S_2, \quad a \mapsto (a, f_1(a))$$

induces an index-preserving one-to-one corresponding between the set $\operatorname{Fpc}(f_2 \circ f_1)$ of fixed point classes of $f_2 \circ f_1$ and the set $\operatorname{Fpc}(f)$ of fixed point classes of f.

Proof: Let $M=Df_1(a)$ and $N=Df_2(b)$ for $b=f_1(a)$. Then the differential Df(a,b) of f at (a,b) is $\begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix}$. Hence

$$\operatorname{ind}(f,(a,b)) = \operatorname{sgn} \det(I_4 - \begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix})$$

= $\operatorname{sgn} \det(I_2 - NM)$

Lemma

If $f: S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then the nature map

$$\rho: S_1 \to S_1 \times S_2, \quad a \mapsto (a, f_1(a))$$

induces an index-preserving one-to-one corresponding between the set $\operatorname{Fpc}(f_2 \circ f_1)$ of fixed point classes of $f_2 \circ f_1$ and the set $\operatorname{Fpc}(f)$ of fixed point classes of f.

Proof: Let $M = Df_1(a)$ and $N = Df_2(b)$ for $b = f_1(a)$. Then the differential Df(a,b) of f at (a,b) is $\begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix}$. Hence

$$\operatorname{ind}(f,(a,b)) = \operatorname{sgn} \det(I_4 - \begin{pmatrix} 0 & N \\ M & 0 \end{pmatrix})$$

$$= \operatorname{sgn} \det(I_2 - NM)$$

$$= \operatorname{ind}(f_2 \circ f_1, a), \quad \text{where } f_1 \in \mathbb{R}$$

If $f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then by the above lemma, we have

Lemma

$$N(f) = N(f_2 \circ f_1) = N(f_1 \circ f_2), \quad L(f) = L(f_2 \circ f_1) = L(f_1 \circ f_2).$$

Proposition (BIPH for alternating homeomorphisms)

- ② Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\mathrm{nd}(f,\mathbf{F})<-1} \{\mathrm{ind}(f,\mathbf{F})+1\} \ge 2\chi_1;$$

3 $|L(f) - \chi_1| \le N(f) - \chi_1$

If $f = \tau \circ (f_1 \times f_2) : S_1 \times S_2 \to S_1 \times S_2$ is an alternating homeomorphism, then by the above lemma, we have

Lemma

$$N(f) = N(f_2 \circ f_1) = N(f_1 \circ f_2), \quad L(f) = L(f_2 \circ f_1) = L(f_1 \circ f_2).$$

Proposition (BIPH for alternating homeomorphisms)

- **1** $2\chi_1 1 \le \operatorname{ind}(f, \mathbf{F}) \le 1, \forall \mathbf{F} \in \operatorname{Fpc}(f);$
- **2** Almost all fixed point classes have index ≥ -1 , in the sense

$$\sum_{\operatorname{ind}(f,\mathsf{F})<-1}\{\operatorname{ind}(f,\mathsf{F})+1\}\geq 2\chi_1;$$

3 $|L(f) - \chi_1| \leq N(f) - \chi_1$.

Recall that S_1 and S_2 be two compact hyperbolic surfaces.

Lemma (Z.-Ventura-Wu, 2015)

Let $G = \pi_1(S_1) \times \pi_1(S_2)$ and $\phi \in \operatorname{Aut}(G)$ be an automorphism. Then there exist automorphisms $\phi_i \in \operatorname{Aut}(\pi_1(S_i))$ such that ϕ must have one of the following forms:

- **1** If $S_1 \ncong S_2$, then $\phi = \phi_1 \times \phi_2$;
- ② if $S_1 \cong S_2$, then $\phi = \begin{cases} \phi_1 \times \phi_2 \\ \tau \circ (\phi_1 \times \phi_2) \end{cases}$, where τ is a transposition.

Proposition

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism, where S_1, S_2 are two compact hyperbolic surfaces. Then

- if $S_1 \ncong S_2$, then f can be homotoped to a fiber-preserving homeomorphism $f_1 \times f_2$;
- ② if $S_1 \cong S_2$, then f can be homotoped to either a fiber-preserving homeomorphism or an alternating homeomorphism.

Proof: f homeomorphism $\Longrightarrow f_{\pi} = \phi_1 \times \phi_2$ or $f_{\pi} = \tau \circ (\phi_1 \times \phi_2)$, where $\phi_i \in \operatorname{Aut}(\pi_1 S_i)$. By Dehn-Nielsen-Bar Thm for hyperbolic surfaces, ϕ_i can be induced by a self-homeomorphism f_i of S_i . Hence

$$f_{\pi} = (f_1 \times f_2)_{\pi}$$
 or $f_{\pi} = (\tau \circ (f_1 \times f_2))_{\pi}$.

 S_i hyperbolic $\Longrightarrow S_1 \times S_2$ aspherical $\Longrightarrow f \simeq \begin{cases} f_1 \times f_2 \\ T \circ (f_1 \times f_2) \end{cases}$. \square

Proposition

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism, where S_1, S_2 are two compact hyperbolic surfaces. Then

- if $S_1 \ncong S_2$, then f can be homotoped to a fiber-preserving homeomorphism $f_1 \times f_2$;
- ② if $S_1 \cong S_2$, then f can be homotoped to either a fiber-preserving homeomorphism or an alternating homeomorphism.

Proof: f homeomorphism $\Longrightarrow f_{\pi} = \phi_1 \times \phi_2$ or $f_{\pi} = \tau \circ (\phi_1 \times \phi_2)$, where $\phi_i \in \operatorname{Aut}(\pi_1 S_i)$. By Dehn-Nielsen-Bar Thm for hyperbolic surfaces, ϕ_i can be induced by a self-homeomorphism f_i of S_i . Hence

$$f_{\pi} = (f_1 \times f_2)_{\pi}$$
 or $f_{\pi} = (\tau \circ (f_1 \times f_2))_{\pi}$.

 S_i hyperbolic $\Longrightarrow S_1 \times S_2$ aspherical $\Longrightarrow f \simeq \begin{cases} f_1 \times f_2 \\ \tau \circ (f_1 \times f_2) \end{cases}$.

Proposition

Let $f: S_1 \times S_2 \to S_1 \times S_2$ be a homeomorphism, where S_1, S_2 are two compact hyperbolic surfaces. Then

- if $S_1 \ncong S_2$, then f can be homotoped to a fiber-preserving homeomorphism $f_1 \times f_2$;
- ② if $S_1 \cong S_2$, then f can be homotoped to either a fiber-preserving homeomorphism or an alternating homeomorphism.

Proof: f homeomorphism $\Longrightarrow f_{\pi} = \phi_1 \times \phi_2$ or $f_{\pi} = \tau \circ (\phi_1 \times \phi_2)$, where $\phi_i \in \operatorname{Aut}(\pi_1 S_i)$. By Dehn-Nielsen-Bar Thm for hyperbolic surfaces, ϕ_i can be induced by a self-homeomorphism f_i of S_i . Hence

$$f_{\pi} = (f_1 \times f_2)_{\pi}$$
 or $f_{\pi} = (\tau \circ (f_1 \times f_2))_{\pi}$.

$$S_i$$
 hyperbolic $\Longrightarrow S_1 \times S_2$ aspherical $\Longrightarrow f \simeq \begin{cases} f_1 \times f_2 \\ \tau \circ (f_1 \times f_2) \end{cases}$.

Thanks! 谢谢!