Supplementary Material of Low-rank Matrix Factorization under General Mixture Noise Distributions

Paper 1291

1. Proof of Theorem 1

Theorem 1. Let $l_{P}^{G}(\boldsymbol{\Theta})=l(\boldsymbol{\Theta})-P(\boldsymbol{\pi} ; \lambda)$, where $l(\Theta)$ is defined in (8). If we assume that $\left\{\boldsymbol{\Theta}^{(t)}\right\}$ is the sequence generated by Algorithm 1 and the sequence of likelihood values $\left\{l_{P}^{G}\left(\boldsymbol{\Theta}^{(t)}\right)\right\}$ is bounded above, then there exits a constant l^{\star} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} l_{P}^{G}\left(\boldsymbol{\Theta}^{(t)}\right)=l^{\star} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Theta}^{(t)}=\underset{\boldsymbol{\Theta}}{\arg \max }\left\{\Omega\left(\boldsymbol{\Theta} \mid \boldsymbol{\Theta}^{(t-1)}\right)+P\left(\boldsymbol{\pi}^{(t-1)} ; \lambda\right)-P(\boldsymbol{\pi} ; \lambda)\right\}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega\left(\boldsymbol{\Theta} \mid \boldsymbol{\Theta}^{(t-1)}\right)=\sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t-1)}\right) \log \frac{\mathbb{P}(\mathbf{E}, \mathbf{Z} ; \boldsymbol{\Theta})}{\mathbb{P}\left(\mathbf{E}, \mathbf{Z} ; \boldsymbol{\Theta}^{(t-1)}\right)} \tag{3}
\end{equation*}
$$

Proof. (i) First, we calculate that

$$
\begin{aligned}
l_{P}^{G}(\boldsymbol{\Theta})-l_{P}^{G}\left(\boldsymbol{\Theta}^{(t)}\right) & =l(\boldsymbol{\Theta})-l\left(\mathbf{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P(\pi ; \lambda) \\
& \left.=\log \sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \frac{\mathbb{P}(\mathbf{E} \mid \mathbf{Z} ; \boldsymbol{\Theta}) \mathbb{P}(\mathbf{Z} ; \boldsymbol{\Theta})}{\mathbb{P}(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}(t)}\right) \\
& -\log \mathbb{P}\left(\mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P(\pi ; \lambda) \\
& \geq \sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \log \frac{\mathbb{P}(\mathbf{E} \mid \mathbf{Z} ; \boldsymbol{\Theta}) \mathbb{P}(\mathbf{Z} ; \boldsymbol{\Theta})}{\mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right)} \\
& -\log \mathbb{P}\left(\mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P(\pi ; \lambda) \\
& =\sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \log \frac{\mathbb{P}(\mathbf{E} \mid \mathbf{Z} ; \boldsymbol{\Theta}) \mathbb{P}(\mathbf{Z} ; \boldsymbol{\Theta})}{\mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \mathbb{P}\left(\mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right)} \\
& +P\left(\pi^{(t)} ; \lambda\right)-P(\pi ; \lambda) .
\end{aligned}
$$

Let $\Omega\left(\boldsymbol{\Theta} \mid \boldsymbol{\Theta}^{(t)}\right)=\sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \log \frac{\mathbb{P}(\mathbf{E} \mid \mathbf{Z} ; \boldsymbol{\Theta}) \mathbb{P}(\mathbf{Z} ; \boldsymbol{\Theta})}{\mathbb{P}(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}(t)) \mathbb{P}\left(\mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right)}$, then

$$
\begin{equation*}
l_{P}^{G}(\boldsymbol{\Theta}) \geq l_{P}^{G}\left(\mathbf{\Theta}^{(t)}\right)+\Omega\left(\boldsymbol{\Theta} \mid \boldsymbol{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P(\pi ; \lambda) . \tag{4}
\end{equation*}
$$

(ii) In the M step of Algorithm 1, it is obvious that

$$
\begin{aligned}
\boldsymbol{\Theta}^{(t+1)} & =\underset{\boldsymbol{\Theta}}{\arg \max }\left\{\sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \log \mathbb{P}(\mathbf{E}, \mathbf{Z} ; \boldsymbol{\Theta})-P(\pi ; \lambda)\right\} \\
& =\underset{\boldsymbol{\Theta}}{\arg \max }\left\{\sum_{\mathbf{Z}} \mathbb{P}\left(\mathbf{Z} \mid \mathbf{E} ; \boldsymbol{\Theta}^{(t)}\right) \frac{\log \mathbb{P}(\mathbf{E}, \mathbf{Z} ; \boldsymbol{\Theta})}{\log \mathbb{P}\left(\mathbf{E}, \mathbf{Z} ; \boldsymbol{\Theta}^{(t)}\right)}-P(\pi ; \lambda)\right\} \\
& =\underset{\boldsymbol{\Theta}}{\arg \max }\left\{\Omega\left(\boldsymbol{\Theta} \mid \boldsymbol{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P(\pi ; \lambda)\right\} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \Omega\left(\boldsymbol{\Theta}^{(t+1)} \mid \boldsymbol{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P\left(\pi^{(t+1)} ; \lambda\right) \\
& \geq \Omega\left(\boldsymbol{\Theta}^{(t)} \mid \boldsymbol{\Theta}^{(t)}\right)+P\left(\pi^{(t)} ; \lambda\right)-P\left(\pi^{(t)} ; \lambda\right) \\
& =0
\end{aligned}
$$

Then, we can easily derive that

$$
\begin{equation*}
l_{P}^{G}\left(\boldsymbol{\Theta}^{(t+1)}\right) \geq l_{P}^{G}\left(\boldsymbol{\Theta}^{(t)}\right) \tag{5}
\end{equation*}
$$

Based on (5), the sequence $\left\{l_{P}^{G}\left(\boldsymbol{\Theta}^{(t)}\right)\right\}_{t=1}^{\infty}$ is nondecreasing and bounded above. Therefore, there exits a constant l^{\star} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} l_{P}^{G}\left(\boldsymbol{\Theta}^{(t)}\right)=l^{\star} \tag{6}
\end{equation*}
$$

2. Exponential Power Distribution

2.1. Three different forms of Exponential Power Distribution

The Exponential Power Distribution $(\mu=0)$ has the following three equvalent forms:

$$
\begin{equation*}
f_{p}(x ; 0, \sigma)=\frac{1}{2 \sigma p^{\frac{1}{p}} \Gamma\left(1+\frac{1}{p}\right)} \exp \left\{-\frac{|x|^{p}}{p \sigma^{p}}\right\} \tag{7}
\end{equation*}
$$

Let $\tau=\left(p \sigma^{p}\right)^{\frac{1}{p}}$, then

$$
\begin{equation*}
f_{p}(x ; 0, \tau)=\frac{1}{2 \tau \Gamma\left(1+\frac{1}{p}\right)} \exp \left\{-\left|\frac{x}{\tau}\right|^{p}\right\} \tag{8}
\end{equation*}
$$

Let $\eta=\frac{1}{\tau^{p}}$, then

$$
\begin{equation*}
f_{p}(x ; 0, \eta)=\frac{\eta^{\frac{1}{p}}}{2 \Gamma\left(1+\frac{1}{p}\right)} \exp \left\{-\eta|x|^{p}\right\} \tag{9}
\end{equation*}
$$

By making use of the property of Γ function $\Gamma(1+x)=$ $x \Gamma(x)$, we get

$$
\begin{equation*}
\Gamma\left(1+\frac{1}{p}\right)=\frac{1}{p} \Gamma\left(\frac{1}{p}\right) \tag{10}
\end{equation*}
$$

2.2. Draw Samples from Exponential Power Distribution

The second form of exponential power distribution is

$$
\begin{equation*}
f_{p}(x ; 0, \tau)=\frac{1}{2 \tau \Gamma\left(1+\frac{1}{p}\right)} \exp \left\{-\left|\frac{x}{\tau}\right|^{p}\right\} \tag{11}
\end{equation*}
$$

Sampling from the exponential power distribution contains two cases: $p \geq 1$ and $0<p<1$.

2.2.1 case 1: $p \geq 1$

We adopt the method proposed in [2, 3, 4].

2.2.2 case 2: $0<p<1$

When $0<p<1$, the method proposed in [5] is used. We sample the distribution in two steps:

$$
\begin{align*}
&(w \mid p) \sim \frac{1+p}{2} G a\left(2+\frac{1}{p}, 1\right)+\frac{1-p}{2} G a\left(1+\frac{1}{p}, 1\right), \tag{12}\\
&(\beta \mid \tau, w, p) \sim \frac{1}{\tau w^{\frac{1}{p}}}\left\{1-\left|\frac{\beta}{\tau w^{\frac{1}{p}}}\right|\right\}_{+} \tag{13}
\end{align*}
$$

where w is a intermediate variable. (12) can be sampled directly but (13) is difficult. Therefore, we adopt the slice sampling strategy in [1].

References

[1] C. M. Bishop et al. Pattern recognition and machine learning, volume 4. springer New York, 2006. 2
[2] M. Chiodi. Generation of pseudo random variates from a normal distribution of order p. Statistica Applicata (Italian Journal of Applied Statistics), 7(4):401-416, 1995. 2
[3] G. Marsaglia and T. A. Bray. A convenient method for generating normal variables. Siam Review, 6(3):260-264, 1964. 2
[4] A. M. Mineo, M. Ruggieri, et al. A software tool for the exponential power distribution: The normalp package. Journal of Statistical Software, 12(4):1-24, 2005. 2
[5] N. G. Polson, J. G. Scott, and J. Windle. The bayesian bridge. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4):713-733, 2014. 2

