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We study static kink configurations in a type of two-dimensional higher derivative scalar field theory 
whose Lagrangian contains second-order derivative terms of the field. The linear fluctuation around 
arbitrary static kink solutions is analyzed. We find that, the linear spectrum can be described by a 
supersymmetric quantum mechanics problem, and the criteria for stable static solutions can be given 
analytically. We also construct a superpotential formalism for finding analytical static kink solutions. 
Using this formalism we first reproduce some existed solutions and then offer a new solution. The 
properties of our solution is studied and compared with those preexisted. We also show the possibility 
in constructing twinlike model in the higher derivative theory, and give the consistency conditions for 
twinlike models corresponding to the canonical scalar field theory.
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1. Introduction

Kink is the simplest topological defect. It exists in nonlinear 
scalar field theories with at least two degenerated vacua, and has 
been studied in many branches of physics [1]. In the early study 
of kinks, the scalar field theory is assumed to be canonical, and its 
Lagrangian can be written as L0 = X − V (φ). Here X ≡ − 1

2 (∂μφ)2

represents the standard kinetic term. In this simple theory, kink 
solutions can be obtained by choosing suitable scalar potentials. 
Two well-known solutions are the Z2 symmetric φ4 kink and the 
periodic sine-Gordon kink [1].

These two solutions have many differences. For example, the 
sine-Gordon model supports the interesting breather solution, 
while in the φ4 model one can only find an approximation to the 
breather solution called oscillon, which emits radiation [2,3]. The 
oscillon solutions can also be found numerically in many other 
models with higher-order polynomial scalar potentials, such as 
φ6 [4] and φ8 potentials [5]. Another difference between the two 
models lies in their linear perturbation spectra. The φ4 model has 
two bound states: a zero mode and a massive excitation, but the 
sine-Gordon model only has a zero mode. The massive excitation 
of the φ4 model leads to the bounce windows when two kinks 
collide [2].

Recently, with the development of cosmology, many non-
canonical scalar field theories were proposed [6–10]. In a typi-
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cal noncanonical scalar field theory (dubbed as the K-field the-
ory), the Lagrangian is assumed to be an arbitrary function of φ
and X . This theory was originally applied in cosmology [11–13], 
and later was used to construct kink solutions either in two-
dimensional Minkowski space [14–18], or in five-dimensional 
warped space [19–23]. In order to find analytical kink solutions 
in K-field theory, one can use the superpotential method, which 
rewrites the original second-order differential equations into some 
first-order ones by introducing the so-called superpotential (see for 
example Refs. [18–20,22]). The linear perturbation of static K-field 
kinks was systematically investigated in Refs. [18,21].

The Lagrangian of K-field contains only φ and its first-order 
derivative X . It is natural to ask can we extend the K-field La-
grangian by adding the second-order derivatives of φ, such as 
Y ≡ ∂μ∂μφ? In fact, this is not a new idea. The study of higher-
order derivative theories dates back to the nineteenth century [24], 
and the result is now concluded as the Ostrogradski’s theorem, 
which states that all the Hamiltonians of non-degenerate higher 
time derivative theory suffer from linear instabilities (for more de-
tails see Refs. [25,26]). This instability can be avoided in some 
special models whose equations of motion are second order de-
spite the presence of higher-order derivatives in the Lagrangians. 
A well-known example is the Galileon field [27], whose Lagrangian 
takes the following form in 1 + 1 dimensions:

L = ∂μφ∂μφ + α∂μφ∂μφ�φ. (1)

Soliton solutions in Galileon field theory have been explored in 
Refs. [28–32]. Especially, by using a zero-mode argument, the au-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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thors of Ref. [28] showed that the Galileon field cannot give rise to 
static solitonic solutions.

Thus, in order to find static kink solutions in higher deriva-
tive theory, one needs to extend the Galileon theory. In four-
dimensional curved space–time, the most general scalar-tensor 
theory with second-order equations of motion is the Horndeski 
theory [33]. But later it was realized that second-order equation is 
not mandatory for avoiding the Ostrogradski’s instability. The Os-
trogradski’s instability can also be eliminated by introducing con-
straints [34,35], or in multifield models [36]. Nowadays, the most 
general extensions to the Horndeski’s theory are the so-called de-
generate higher-order scalar-tensor (DHOST) theories [37–39].

It is interesting to study the static kink solutions in various 
kinds of higher derivative scalar field theories, and see how the 
higher derivative terms affect the well-known properties of the 
canonical kinks. Some successful examples can be found in [40,
41]. Both works considered the so-called generalized Galileon the-
ory [42], and the corresponding Lagrangian in two-dimensional 
Minkowski space reads

L = f1(φ, X) + f2(φ, X)Y . (2)

In this paper, we extend the works of Refs. [40,41] to a model with 
the following Lagrangian

L = L(φ, X, Y ). (3)

This Lagrangian can be regarded as a simple subclass of the DHOST 
theories, and the corresponding equation of motion reads

Lφ + ∂μ(LX∂μφ) + ∂μ∂μLY = 0. (4)

Here we have defined Lφ ≡ ∂L
∂φ

, and so on. Our aim is to find 
static kink solutions in a two-dimensional Minkowski space–time 
with line element ds2 = −dt2 + dx2.

The paper is organized as follows. In the next section, we firstly 
give a general discussion on the linear stability of an arbitrary 
static solution of Eq. (4). We will show that under some condi-
tions, the perturbation equation can be written as a factorizable 
Schrödinger-like equation, which ensures the stability of the solu-
tion. In Sec. 3, we construct the superpotential formalism corre-
sponding to our model. This formalism is powerful in finding kink 
solutions. As examples, we will apply it to reproduce some of the 
solutions of [40], and then give our own solution. After that, we 
will consider, in Sec. 4, a constrained system. The constraint forces 
the equation of the higher derivative theory taking the same form 
as the one of the canonical theory. In this case, nonlinear terms of 
Y are allowed if some conditions were satisfied. We will also de-
rive the equations that L(φ, X, Y ) has to satisfy in order to be a 
twinlike model of L0. Our results will be summarized in Sec. 5.

2. Linear stability of static configuration

Suppose we have obtained a static solution φc(x) of Eq. (4), 
it is important to consider the behavior of a small perturbation 
δφ(t, x) = ∑∞

n=0 ψn(x)eiωnt around φc(x). The spectrum of ωn can 
be obtained by solving the linear perturbation equation. Obviously, 
a real ωn corresponds to a stable oscillation δφ(t, x), with fre-
quency ω, around φc(x). While, an imaginary ωn corresponds to an 
exponentially growing perturbation, and would destroy the origi-
nal configuration φc(x). Therefore, when ω2

n ≥ 0 holds for all n, we 
say that the static configuration φc(x) is stable against small per-
turbation. Otherwise, φc(x) is unstable.

In Ref. [40], Bazeia et al. analyzed the linear perturbation of 
a model described by the Lagrangian (2). In this section, we will 
consider the linearization of static solution of model (3). To derive 
the linear equation of δφ(t, x), one can expand the action around 
φc(x) up to the second order of the perturbation:

δ(2)L = LXδ(2) X + 1

2
Lφφ(δφ)2 + 1

2
LX X (δ(1) X)2

+ 1

2
LY Y (δY )2 +Lφ Xδφδ(1) X +LXY δ(1) XδY

+ LφY δφδY +O(δφ3). (5)

Here we have defined the following quantities:

δ(1) X = −(∂μδφ)(∂μφ) = −δφ′φ′, (6)

δ(2) X = −1

2
(∂μδφ)(∂μδφ), (7)

δY = ∂μ∂μδφ. (8)

Obviously, the term 1
2LY Y (δY )2 inevitably leads to fourth-order 

derivatives terms in the linear perturbation equation. For simplic-
ity, in this work we only consider the case with LY Y = 0, so that 
the linear perturbation equation is second order. But it does not 
mean that L can only contain a linear term of Y . As we will see 
in Sec. 4, sometimes, LY Y is vanished after the background equa-
tion of motion is considered. In such case, nontrivial higher-order 
terms of Y are allowed, and do not change the final statements of 
this section.

At a first glance, the term LXY δ(1) XδY = −LXY (∂μδφ)×
(∂μφ)∂ν∂νδφ would also lead to a third-order derivative of δφ after 
an integration by parts. However, the higher-order derivative terms 
can be eliminated in the following sense:

LXY δ(1) XδY = −1

2
LXY (∂μδφ)(∂μφ)�δφ

− 1

2
LXY (∂μδφ)(∂μφ)�δφ

= 1

2
δφ∂μ(LXY ∂μφ�δφ) − 1

2
δφ�(LXY ∂μφ∂μδφ)

+ ∂μ(· · · ), (9)

where the last term in the second line is a total derivative term. 
Obviously, the terms that contain ∂μ∂ν∂νδφ are canceled.

In the end, for a static background kink configuration, the 
quadratic Lagrangian density of δφ reads

δ(2)L = 1

2
(LX +L′

XY φ′ +LXY φ′′ + 2LφY )δφ�δφ

+ 1

2
Lφφ(δφ)2 + δφδφ′(1

2
L′

X − 1

2
L′

X Xφ′ 2 −LX Xφ′φ′′

−Lφ Xφ′ − 1

2
L′′

XY φ′ −L′
XY φ′′ − 1

2
LXY φ′′′)

− δφδφ′′(1

2
LX Xφ′ 2 +L′

XY φ′ +LXY φ′′). (10)

By defining the following variables

G = δφ
√

ξ, (11)

z = φ′√ξ, (12)

ξ ≡ LX +L′
XY φ′ +LXY φ′′ + 2LφY , (13)

γ = 1 − φ′ 2

z2

(
2L′

XY φ′ +LX Xφ′ 2 + 2LXY φ′′) , (14)

the quadratic Lagrangian density can be simplified as

δ(2)L = 1 {
−G∂2

t G + V(x)G2 + γ GG′′} , (15)

2
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where

V(x) = −γ
z′′

z
− z′

z
γ ′ − 1

2
γ ′′. (16)

If γ > 0, we can introduce a new spatial coordinate x∗ , such 
that

dx∗

dx
≡ γ −1/2, (17)

and define

Ĝ = 1√
2
γ 1/4G. (18)

Then, the quadratic action can be written as

δ(2) SĜ =
∫

dtdx∗Ĝ
{
−∂2

t Ĝ + ¨̂G − θ̈

θ
Ĝ
}

, (19)

where

θ ≡ γ 1/4z, (20)

and an over dot represents the derivative with respect to x∗ .
From the quadratic action of Ĝ , we know that for

ξ > 0, γ > 0, (21)

the normal mode of the linear perturbation satisfies a Schrödinger-
like equation

− ¨̂G + θ̈

θ
Ĝ = −∂2

t Ĝ. (22)

The normal mode of the scalar perturbation can be expanded as

Ĝ =
∞∑

n=0

ψn(x∗)eiωnt, (23)

and the equation for ψn(x∗) reads

Hψn = −ψ̈n + V effψn = ω2
nψn, (24)

where H = − d2

dx∗2 + V eff is the Hamiltonian of linear perturbation, 
and V eff = θ̈/θ is the effective potential. It is easy to check that 
this Hamiltonian can be factorized as

H = AA†, (25)

where

A = d

dx∗ + θ̇

θ
, A† = − d

dx∗ + θ̇

θ
. (26)

According to the study of supersymmetic quantum mechanics [43], 
a system with a factorizable Hamiltonian has two important prop-
erties:

1. ωn are semipositive definite, namely, ωn ≥ 0. The zero mode 
(ω0 = 0) of H reads

ψ0 = cθ(x∗), (27)

where c is the normalization constant.
2. One can construct a partner Hamiltonian

H− = A†A = − d2

dx∗2
+ V sup, (28)

where V sup ≡ θ
(
θ−1

)..
. H− and H share the same spectrum, 

except for the zero mode ψ0.
The first property ensures the stability of any static background 
solution that satisfies the inequalities (21). While the superpartner 
potential V sup offers us an alternative way to analyze the spec-
trum of the linear perturbation. As we will see in Sec. 3, sometimes 
V sup is more convenient for us to discern, at least qualitatively, the 
properties of the linear spectrum.

3. The superpotential method

As we have mentioned in the previous section, our arguments 
on the linear stability are valid only when LY Y = 0. This can be 
satisfied in two cases. In the first case, the Lagrangian contains 
at most the linear term of Y , which is nothing but the general-
ized Galileon model given in (2). In the other case, LY Y vanished 
when the equation of motion is substituted. In this section, we will 
consider the first case, and give the corresponding superpotential 
formalism for the first time.

From Eq. (4) we know that a static solution φ(x) satisfies

Lφ + (LXφ′)′ +L′′
Y = 0. (29)

It is not difficult to show (by integration) that

−ρ = L = 2LX X −L′
Y φ′ +LY φ′′ + C . (30)

Here ρ is the energy density of the kink and C is an inte-
gral constant. To ensure a kink has finite energy, we require that 
lim|x|→∞ ρ = 0, which requires C = 0.

Since φ(x) is odd and L(x) = −ρ(x) is even, we require LY to 
be an odd function of x such that all terms in Eq. (30) have the 
same parity. A simple choice is to set f2 = g(φ)F (X), where F (X)

is an arbitrary function of X , and g(φ) is an odd function of φ. In 
Ref. [40] the authors considered a simple case with F (X) ∝ X and 
g = φ. In the present work, we consider the following subclass 
model:

f1(φ, X) = K (X) − V (φ), (31)

f2(φ, X) = g(φ)F (X). (32)

Here K (X), V (φ), U (X) are functions of the corresponding argu-
ments.

The superpotential W (φ) is introduced in the normal way [18]

φ′ = W (φ). (33)

Plugging Eqs. (31)–(32) into Eq. (30), we find that the scalar po-
tential V and the energy density ρ take the following expressions:

V = K − 2X
(

F gφ + K X
)
, (34)

ρ = −2X
(

F gφ + K X
) − F gY . (35)

The stability criteria (21) read

ξ = 2gY (X FXX + F X ) − 2X F X gφ + 2F gφ + K X > 0, (36)

γ = [2 (X F X + F ) gφ + 2X KXX + K X ]/ξ > 0. (37)

By taking suitable superpotentials, analytical kink solutions can 
be easily obtained via solving Eq. (33). For instance, by taking

W (φ) = kv cos

(
φ

v

)
, (38)

one obtains the sine-Gordon kink

φ(x) = v arcsin(tanh(kx)), (39)
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while by taking

W (φ) = kv

(
1 −

(
φ

v

)2
)

, (40)

one obtains

φ(x) =v tanh(kx). (41)

Here k and v are two constants with dimensions. But for simplic-
ity, we will always take k = v = 1 in this paper.

Note that in Eqs. (34) and (35), V (φ) and ρ(x) have been 
expressed as functions of φ, X and Y . They can be given ex-
plicitly by simply using the relations X = −φ′ 2/2 = −W 2/2 and 
Y = φ′′ = Wφ W .

3.1. Deriving some existed solutions

To apply the above superpotential formalism, let us first derive 
the solutions given in Ref. [40]. For the first model, let us consider 
the following Lagrangian:

L = X − V (φ) − bφ XY , (42)

where b > 0 is a positive constant. For this model, Eqs. (34)–(37)
read

V = X (2b X − 1) , (43)

ρ = X (2b X + bY φ − 2) , (44)

ξ = 1 − 2bY φ > 0, (45)

γ ξ = 1 − 4b X > 0. (46)

By taking the superpotential given in Eq. (40), one immediately 
obtains the first kink solution of Ref. [40], whose scalar potential 
and energy density read

V = 1

2

(
1 − φ2

)2
(

1 + b
(

1 − φ2
)2

)
, (47)

ρ = S4
(

1 + bS2 − 1

2
bS4

)
, (48)

where S = sech(x).
Finally, from the definitions of X and Y , one can show that for 

any kink we always have φY ≤ 0 and X < 0, and therefore, this 
solution are linearly stable. Also note that in this case, the second 
order derivative of the energy density is ρ ′′(x = 0) = −2(2 + b). 
That means ρ always peaks at x = 0 for any b > 0. No energy den-
sity splitting in this case.

Another kink solution of Ref. [40] has the following Lagrangian:

L = X + b X2 − V (φ) − 3

2
bφ XY . (49)

Since the coefficients of X2 and φ XY terms are tuned, the corre-
sponding expressions are concise:

V = −X, (50)

ρ = −1

2
X (2b X − 3bY φ + 4) , (51)

ξ = 1 + 2b X − 3bY φ, (52)

γ = 1/ξ. (53)

Interestingly, by using Eq. (40) one obtains a φ4 potential

V = 1 (
φ2 − 1

)2
, (54)
2

and the following energy density:

ρ = S4
(

1 + 3b

2
S2 − 7b

4
S4

)
. (55)

The independence of the scalar potential on the deviation param-
eter b, makes this model unambiguous in discussing the effects of 
the noncanonical kinetic terms.

However, from Eq. (52) we know that the positivity of ξ de-
pends on the value of b. To see this, we use the kink solution and 
rewrite Eq. (52) as

ξ(x) = 1 + 6bS2 − 7bS4. (56)

Then by solving ξ ′(x) = 0, we know that there are only three ex-
treme points:

x0 = 0, x± = 1

2
ln

(
1

3

(
11 ± 4

√
7
))

. (57)

To tell which point is the maximum, we need to calculate ξ ′′ at 
these points, and the results are

ξ ′′(x0) = 16b, ξ ′′(x±) = −288

49
b. (58)

Obviously, x0 and x± are the minimum (maximum) and the max-
ima (minima), respectively, if b > 0 (b < 0).

For b > 0, the range of ξ(x) is

1 − b = ξ(x0) ≤ ξ(x) ≤ ξ(x±) = 1 + 9

7
b, (59)

and the stability criterion ξ > 0 equivalents to ξ(x0) > 0 or b < 1. 
In this case, the parameter can only take value in a rather nar-
row range 0 < b < 1. Nevertheless, a nontrivial effect, namely, the 
splitting of energy density can be found at x = 0 when b > 4/5. In 
order to split, the energy density has to change from a maximum 
to a local minimum, so x = 0 must be an inflection point, such that 
ρ ′′(0) = 5b − 4 = 0. The solution is simply b = 4/5.

Now, let us turn to the case with b < 0, which is omitted by 
the authors of Ref. [40]. In this case, the range of ξ(x) becomes

1 + 9

7
b = ξ(x±) ≤ ξ(x) ≤ ξ(x0) = 1 − b, (60)

and stability of the solution requires − 7
9 < b < 0. Within this 

parameter space, there is no energy density splitting, because 
ρ ′′(0) = 5b − 4 is always negative.

In addition to the above two kink solutions, Ref. [40] also given 
a compact solution as well as a double kink solution, whose energy 
density splitting is more evident. We will not redo the job here.

3.2. A new solution

With the help of superpotential method, one can construct, in 
principle, infinite models that support stable kink solutions. In-
stead of writing down a complicated model, we would like to 
modify the model in Eq. (42) as the following one:

L = X − V (φ) − bφ3 XY , b > 0. (61)

Using the superpotential given in Eq. (40) we get

V = 1

2

(
1 − φ2

)2
(

3bφ2
(

1 − φ2
)2 + 1

)
, (62)

ρ = S4
(

1 + bS2 − bS4

− bS6 )
. (63)
2 2
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Fig. 1. The scalar potential and the energy density correspond to Eqs. (62) and (63), respectively. The energy density splits when b > 4/3.

Fig. 2. The effective potentials V eff and V sup correspond to Eqs. (62) and (63), respectively. The energy density splits when b > 4/3.
In this case ρ ′′(x = 0) = 3b − 4, which implicates that when b >
4/3 the energy density begins to split (see Fig. 1).

Now, let us move to the discussion of the linear perturbation. 
For our model,

ξ = 1 − 2bY φ3, (64)

γ ξ = 1 − 12b Xφ2. (65)

As we have mentioned previously, a kink configuration always sat-
isfies φY ≤ 0 and X < 0. So, for b > 0 our solution always meets 
the requirement from the stability criteria ξ > 0, γ > 0.

Instead of giving a quantitative calculation of the linear spec-
trum, which is impossible without using numerical method, we 
would like to discuss qualitatively what would be different if 
the deviation parameter b is large enough. As can be seen from 
Fig. 2, with b increases, an inner structure appears in the ef-
fective potential of the linear perturbation. It has been reported 
previously that inner structure might leads to quasilocalized per-
turbation modes [44–46]. Indeed, for large b, the superpartner 
potential V sup(x) becomes a volcano potential, which might sup-
port metastable states.

Now, let us now turn to the zero mode of the perturbation. As 
we have shown in Eq. (27), the zero model is proportional to θ ≡
γ 1/4z. In general, it is impossible to give an analytical expression 
of θ in the x∗ coordinate, because the coordinate transformation 
(17) is so complicated. But, in the x coordinate it is straightforward 
to use the definition and write out θ(x). For our solution

θ(x) = S2 4

√(
6b

(
1 − S2

)
S4 + 1

)(
4bS2

(
1 − S2

)2 + 1
)
. (66)
Fig. 3. Plots of the zero mode θ(x), which begins to split when b > 2/3.

It is easy to show that at x = 0, θ and its derivatives are

θ(0) = 1, θ ′(0) = 0, θ ′′(0) = 3b − 2. (67)

Thus, as b > 2/3, x = 0 varies from a global maximum to a local 
minimum of θ(x), and the zero mode splits (see Fig. 3).

In this section, we have shown the power of the first-order 
formalism in constructing analytically solvable kink models. In ad-
dition to reproduce two of the kink solutions given in Ref. [40], 
we also offer a new solution. It is worth to note that the model 
described by Eq. (42) and the one by Eq. (61) can be written uni-
formly as follows

L = X − V (φ) − bφ(2n+1) XY , b > 0. (68)
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For integer n, there is a qualitative difference between models with 
n = 0 and n > 0, namely, the splitting of energy density. As we 
have mentioned previously, for n = 0 the energy density does not 
split. While for n = 1, Fig. 1 shows that ρ begins to split when the 
deviation parameter b is large enough. One can also show that the 
same thing happens for models with n > 1.

In addition to the superpotential method, there exists another 
interesting method to generate kink solutions, namely, the twinlike 
model method.

4. Twinlike model method

Twinlike models are defined as two apparently different mod-
els that share the same field configuration and the same energy 
density [23,47–58]. Take the canonical model

L0 = X − V (φ) (69)

as an example. It has the following Dirac–Born–Infeld (DBI) type 
twinlike model

LDBI = U (φ)
√

1 − X + ε0, (70)

if

U (φ) = −2
√

1 + V (φ), ε0 = 2. (71)

The DBI model is only a special case of the K-field model for which 
L = L(φ, X), and in fact one may construct infinite K-field type 
twinlike models for L0 (see [47–49]). The aim of this section is 
to construct some twinlike models for L0 in the higher derivative 
theory L =L(φ, X, Y ).

The starting point is the equation of motion (30):

L− 2LX X +L′
Y φ′ −LY φ′′ = 0. (72)

For the canonical field L = L0, the equation of motion and the 
energy density are

X = −V , (73)

and

ρ0 = −L0 = −2X = 2V , (74)

respectively.
Now let us move to the general model L = L(φ, X, Y ). To be a 

twinlike model of the canonical one, L must satisfy the following 
condition:

L| = 2X = −2V . (75)

Here the symbol “|” represents taking the on-shell condition X =
−V . The one-shell condition ensures that the noncanonical and the 
canonical models satisfy the same equation of motion, and Eq. (75)
comes from the requirement of the same energy density, because 
ρ = −L. But this requirement must be consistent with the equa-
tion of motion (72). By plugging Eq. (75) into Eq. (72) we obtain

2X − 2LX X − 2LY φ X + 2LY X XY −LY Y +LY Y φ′φ′′′ = 0. (76)

Since L(φ, X, Y ) is independent of φ′′′ , we may conclude that the 
consistency conditions are

(2X − 2LX X − 2LY φ X + 2LY X XY −LY Y )| = 0, (77)

LY Y | = 0. (78)

Obviously, for the K-field L = L(φ, X) the above conditions is sim-
ply LX | = 1. One can easily proof that the Lagrangian of the DBI 
model in Eq. (70) satisfies LDBI| = 2X = −2V and ∂LDBI/∂ X | = 1, 
and therefore, is a twinlike model of L0.

It is not difficult to construct the twinlike model corresponds to 
L0 in the higher derivative theory. One of the infinite Lagrangians 
that satisfy eq. (75) and the consistency conditions (77)–(78) is

L = X − V + bφ(X + V )2Y 2n+1, b > 0, (79)

where n ≥ 0 is a nonnegative integer. By solving this model, one 
would get φ(x) = φ0(x) and ρ(x) = ρ0(x).1 But it does not mean 
that L and L0 are the same model written in two different ways, 
the essential difference between these two models is that for 
canonical model ∂X,XL0| = 0, while for its higher-order derivative 
twin

∂X,XL| = 2bφY 2n+1 �= 0. (80)

As a result, ξ | = 1, z| = φ′ , γ | = 1 + 4bXY φ,

θ | = (γ 1/4z)| = (1 − 4b XY )1/4φ′. (81)

That means the twinlike models have different zero mode config-
urations.

It is worth to mention that this model allows nonlinear terms 
of Y provided that Eq. (78) is satisfied. Therefore, we can regard 
model (79) as a constrained higher-order derivative system, which 
has been considered as one alternative to go beyond the Horndeski 
theory [34,35].

5. Summary

In this paper, we considered a type of higher-order deriva-
tive scalar field theory whose Lagrangian takes the form L =
L(φ, X, Y ). We derived the quadratic action of the linear pertur-
bation around arbitrary static background solution. For simplicity 
we assume LY Y is vanished either because L only contains the 
linear term of Y , or as a consequence of the background equa-
tion. If further the Lagrangian satisfies two inequalities (21), then 
the normal mode of the scalar perturbation satisfies a Schrödinger-
like equation, and the corresponding Hamiltonian can be factorized 
into a form often seen in supersymmetric quantum mechanics. For 
a factorizable Hamiltonian the spectrum is semi-positive, thus the 
corresponding solution is linear stable.

We also constructed a superpotential formalism for finding an-
alytical static kink solutions in the generalized Galileon theory. 
As applications of our formalism, we first reproduced two of the 
solutions reported in Ref. [40], and then gave our own solution. 
For our solution, both the energy density and the scalar zero 
mode split when the deviation parameter b is larger enough. Be-
sides, the shape of the superpartner potential V sup(x) implies that 
metastable resonant states might appear for large b. It is not dif-
ficult to construct more kink solutions with the superpotential 
formalism.

Then we explored another possibility where LY Y vanishes 
when the background equation is considered. In this case, nonlin-
ear terms of Y are allowed, and will not ruin our arguments on the 
linear stability. As an example, we consider a constrained higher-
order derivative system, whose equation of motion is assumed to 
be the same as the one of the canonical system L0 = X − V . If in 
addition to the equation of motion, we also assume the two dif-
ferent systems possess identical energy densities, then these two 
systems are called as twinlike models. In order to be a twin model 

1 The solution φ0(x) is completely determined by the scalar potential V (φ). We 
have known many solvable potentials: φ4, sine-Gordon, and so on.
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of L0, the Lagrangian of the higher-order derivative L must sat-
isfies the consistency equations (77)–(78). By giving an example 
Lagrangian (79), we state that twinlike models are essentially dif-
ferent and they can be distinguished by their linear spectra.
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