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Abstract

We investigated a ballistic imaging technique using a femtosecond optical Kerr gate (OKG)
made of SrTiOj3 crystal (STO). High-contrast images of a 1.41 line pairs per mm (Ip mm™")
section of the resolution test chart placed behind a turbid medium were obtained. The STO
OKG had greater capacity to acquire high quality images at a high optical density than the
quartz OKG, showing that the STO is a promising OKG medium due to its large nonlinear
susceptibility.

(Some figures may appear in colour only in the online journal)

1. Introduction

With the widespread use of femtosecond lasers, ballistic
imaging has become an active field of study because of
its potential applications in medical diagnosis [1] and fluid
dynamics measurement [2]. A critical problem in ballistic
imaging is that the majority photons of the beam suffer
scattering in highly turbid media and these photons will lead
to a blurring of the image. So the essence of this imaging
technique is to separate the unscattered photons (also known
as ballistic photons or signal photons) from the multiply
scattered photons (also known as diffusive photons or noise
photons). An obvious technique appears to be time gating,
which exploits the fact that the scattered photons arrive at
the detector later than the ballistic photons. Therefore, using
appropriate time gating techniques, image-bearing photons
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can be picked out. In this decade, many systems have taken
advantage of time gating to mitigate scattered light by using
the ultrafast optical Kerr gate (OKG) technique [2—4]. The
OKG technique has been used to investigate the dynamics
of spray breakup and vaporization in the near field of the
liquid-fueled combustion of a high-speed rocket spray by
measuring the velocity and acceleration vectors that describe
the forces active in primary breakup [4-7].

The performance of an OKG is strongly affected by the
Kerr medium. A suitable Kerr medium should have large
nonlinearity, ultrafast response time and a wide transparent
window. In previous typical applications of the OKG
technique [8-12], CS, and fused quartz were used. CS;
possess large nonlinear susceptibility, but has a nonlinear
response time of ~2 ps [13], which originates from molecular
reorientation. So the molecular reorientation time limits the
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Figure 1. Schematic of the ballistic imaging system: L, lens; M, mirror; X /2, half wave plate; A, aperture; SPE, short pass filter; LPF, long

pass filter.

switch time. The fused quartz has wide transmittance over
a wide spectral range, but its nonlinear susceptibility is
low. Over the last few decades, great efforts have been
made in the research and development of nonlinear optical
materials [14-16]. SrTiOsz crystal (STO) is a promising
transparent material and has a good lattice match to most
materials with the perovskite structure, and has been widely
used in special optical windows and high quality sputtering
targets [17, 18]. The nonlinear response of STO originates
from electronic processes, and the nonlinear refractive index
is estimated to be 2.16 x 1071 cm? W~! [19]. As the
STO crystal has good nonlinear optical properties, it may
be attractive in the application of the OKG technique in the
future.

In this paper, we investigated ballistic imaging based on
OKGs made from STO and quartz, respectively. Images of
a resolution test chart placed behind a turbid medium were
obtained by testing a series of samples with different optical
densities (ODs). Compared with the quartz OKG, the STO
OKG had greater capacity to acquire high quality images at a
high optical density due to the larger nonlinear susceptibility
of STO.

2. Experiments

A schematic of the ballistic imaging system in our
experiments is shown in figure 1. A Ti:sapphire laser system
with a repetition rate of 1 kHz and a pulse duration of 50 fs
at 800 nm was employed. The output of the pulsed beam
was split into two beams using a short pass filter (SPF). The
high power beam was used as the imaging beam, and it was
modulated by a 1.41 line pairs per mm (1 p mm~!) section of
the resolution test pattern (a United States Air Force contrast
target) which was placed on the conjugate imaging plane of
the CCD camera. The transmitted scattered light from the

sample was collected by a lens (L1) which was placed one
focal distance from the resolution test pattern, and then it
passed through an ultrafast OKG. The OKG was structured
by a pair of crossed Nicol polarizers which bracket a Kerr
medium, and it was gated by the switching beam with low
power. This beam was time delayed by an adjustable-length
delay line and then was rotated 45° by a half-wave plate for
maximum gate efficiency. The Kerr signal was subsequently
collected by two lenses (L3, L4) and directed to a CCD
camera (Nikon DXM 1200F). A long pass filter (LPF) was
placed between a lens (LL4) and the camera in order to decrease
the intensity of the noise generated by the pump scattering in
the Kerr medium, which was the main source of noise in these
experiments. By this system, the ballistic light, which traveled
a shorter path than the scattered light, reached the Kerr
medium first and could be effectively picked out temporally
by the OKG.

In order to preferentially gate the image-bearing part of
the transmitted light, the optical delay line was adjusted so that
the switch pulse temporally overlaps with the image-bearing
part of the transmitted pulse. This process was facilitated by
first optimizing the imaging beam passing through the sample
cuvette filled with water instead of the scattering sample. It
ensures the temporal overlap between the switching pulse
and the image-bearing part of the transmitted pulse in the
presence of the scattering sample. At this optimum delay, the
image of the resolution test chart was detected on the CCD.
So the image consists of a high-resolution and high-contrast
projection of the resolution test chart.

In the experiment, the samples filled in the cuvette
(10 mm thick) were monodisperse suspensions of polystyrene
microspheres with a mean diameter of 0.4 m in water.
The different ODs were controlled by the concentrations of
polystyrene microspheres in water. The STO and the quartz
were both 1 mm thick.
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Figure 2. Comparison of the image contrast and the intensity:

(a) through water and without the OKG; (b) through scattering
sample and without the OKG; (c) through scattering sample and
with the STO OKG. Results are shown together with the
corresponding plots of one-dimensional (summed) intensity versus
CCD pixel number for the conditions listed on the left.

3. Results and discussion
3.1. Enhancing the image contrast via the OKG

An essential aspect of an optical system is its ability to
transmit spatial information. The relevant parameter for
evaluating performance in this respect is the visibility, or
image contrast, of the image. Contrast is given as

Contrast = M (D)

max T Imin

where Ini, is the average light intensity corresponding to
the shaded region and I« is the average light intensity
corresponding to the unshaded region of the imaged resolution
test chart.

The 1.41 p mm~! section of the resolution test chart
was selected as the imaging object. First we obtained the
image of the resolution test chart under the condition of
filling the sample cuvette with distilled water and without
the OKG, as shown in figure 2(a), and the corresponding
plots of one-dimensional intensity versus CCD pixel number

OKG, at ODs of 7.4, 8.0, 8.7,9.3,9.8, 10.2, 10.9 and 11.5.

are shown together with the image. The contrast calculated
by equation (1) was 88%. We regarded this image as the
original image of the imaging object. Then, we acquired
the image under the condition of filling the sample cuvette
with the polystyrene sphere solution and without the OKG.
As shown in figure 2(b), we acquired this image at OD
9.8, and the contrast of this image was 10%. Finally, using
the STO OKG, we acquired the image under the condition
of filling the sample cuvette with the polystyrene sphere
solution. As shown in figure 2(c), this image was obtained
at the same OD as figure 2(b), but the contrast of this image
has been enhanced to 80%. By comparing figure 2(a) with
figure 2(b) we found that the contrast of the image was
evidently decreased via scattering. From figures 2(c) and (b)
we found the contrast of the image had been greatly enhanced
by the STO OKG. It should be noted that the sharpness of
the boundaries is decreased via the OKG imaging system.
As our optical configuration was originally adapted from
the ‘Kerr—Fourier’ imaging setup in [20], this phenomenon
can be well understood according to the spatial filtering
effect.

Then we measured the different images at different ODs
of 7.4, 8.0, 8.7, 9.3, 9.8, 10.2, 109 and 11.5 by varying
the concentration of the polystyrene sphere solution, and we
obtained images at every OD with and without the STO OKG.
We calculated the contrast of all the images by equation (1).
When there is no OKG we can clearly see that the contrast
of the images decreases rapidly from 0.45 to 0.01 with the
increase in OD in figure 3. The contrast of images obtained
by the STO OKG fluctuates at a range of 0.67-0.95 when
the OD changes. For a given OD, the contrast of images
obtained by the OKG is obviously higher than the contrast
of images obtained for the situation of without the OKG
because the OKG effectively eliminates the scattered light
which will deteriorate image contrast. These results strongly
indicate that the OKG is a very useful tool for eliminating
noise and enhancing image contrast.
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Figure 4. Two-dimensional spatial intensity distributions of the
images obtained by two OKGs at different ODs: (a) quartz OKG;
(b) STO OKG.

3.2. The performance comparison of different OKGs in
ballistic imaging

In a further experiment, we compared the ballistic imaging
using the STO and quartz OKGs.

Figure 4 shows the two-dimensional spatial intensity
distributions of the images when STO and quartz were used
as Kerr media, respectively. In this measurement, a series of
scattering samples with ODs of 7.4, 8.0, 8.7, 9.3, 9.8, 10.2,
10.9 and 11.5 were used. Using the quartz OKG, recognizable
images can be obtained at ODs of 7.4, 8.0, 8.7 and 9.3,
as shown in figure 4(a). When the OD increased more,
recognizable images could not be obtained by the quartz OKG
in experiments, but for the STO OKG, clear and recognizable
images could still be acquired even at OD 11.5, as shown in
figure 3(b). Furthermore, the shaded regions and the unshaded
regions of the images obtained by the quartz OKG could not
be identified clearly, and so many intensity glitches emerge
in these regions at ODs 7.4, 8.0, 8.7 and 9.3, as shown in
figure 3(a). However, the shaded and the unshaded regions
were distributed uniformly in the images obtained by the STO
OKG at all the ODs, which could be recognized easily.

The intensities of the Kerr signals obtained by the STO
and quartz OKGs are shown in figure 5. We can see there is
a good linear relationship between the logarithm of intensity
and the OD. This relationship conforms well to Beer’s law
and demonstrates that the intensity of the two group images
in figure 4 decreases exponentially with the increase in OD,
indicating that scattered light was isolated efficiently by the
OKG and the rest of the transmitted light was almost all
ballistic light. We can also find that the transmitted intensity
obtained by the STO OKG is larger than the transmitted
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Figure 5. The intensities obtained by the two OKGs at different
ODs.

intensity obtained by the quartz OKG at the same ODs,
which can be attributed to the high third-order nonlinear
susceptibility of STO. These results indicated that the STO
OKG had superiority in ballistic imaging compared to the
quartz OKG.

4. Conclusion

In summary, using STO and quartz OKGs in a ballistic
imaging technique we obtained images of a 1.41 p mm™!
section of the resolution test chart placed behind turbid
media at a series of ODs. Our studies showed that both the
quality and the intensity of the images obtained by the STO
OKG were higher than those obtained by the quartz OKG
at the same OD. STO crystal has been demonstrated to be
a promising OKG medium due to its ultrafast response time
and large nonlinear susceptibility, and it may be attractive for
application of the OKG technique in the future.
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