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Abstract: We developed a new method to fabricate tilted fiber Bragg gratings (TFBGs) by 
using a femtosecond laser with a phase mask. During the laser processing, the fiber was 
obliquely moved at a tilt angle, in which the laser beam and the phase mask were fixed. The 
peak loss of the cladding modes with a tilt angle of 4.9° reaches to ~-8 dB, and the insertion 
loss is less than −0.2 dB. The TFBG was stable at temperature up to 700°C and slight 
degraded at 800 °C. The temperature sensing of the TFBG was demonstrated at a high 
temperature up to 800°C. The temperature sensitivities of the Bragg mode, the ghost mode, 
and the cladding mode were measured to be 15.72 pm/°C, 15.56 pm/°C, and 15.52 pm/°C, 
respectively. The refractive index response of the TFBGs was also measured. 
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1. Introduction 

Recently, tilted fiber Bragg gratings (TFBGs) have been broadly applied in the field of optical 
fiber sensors [1–6]. Because TFBGs have the dual sensing characteristics of uniform fiber 
Bragg gratings (FBGs) and long period fiber gratings (LPFGs) [3,7], they are suitable for 
temperature, strain and refractive index measurements [1,8,9]. To fabricate TFBGs, the 
conventional method is using a continuous wave (CW) or nanosecond ultraviolet (UV) laser 
[10]. It requires the fibers which have intrinsic photosensitivity or to be hydrogen loaded [11–
13]. These grating structures are easily erased over 400°C [14]. In recent years, femtosecond 
infrared (IR) laser has been reported as a promising tool for the fabrication of FBGs, 
including uniform FBGs [16], tilted FBGs [8] and eccentric FBGs [17]. Differing from CW or 
nanosecond UV laser processing, femtosecond IR laser processing can be used to fabricate 
grating structures in various optical fibers resulting from the strong non-linear interaction 
between laser and materials [15]. In addition, FBGs fabricated with a femtosecond laser show 
better thermal stability, which can be used at high temperature even above 1000°C [18]. 

Up to now, the proposed method to fabricate TFBGs is to tilt the fiber at a tilt angle 
relative to the incident light and then inscribe a settled range with laser [2,3]. Because the 
incident direction of the laser is not perpendicular to the fiber core, the titled incident angle is 
different from the tilt angle of TFBG in the fiber, which increases the fabrication complexity 
[19]. Furthermore, the Bragg wavelength will be different for the TFBGs fabricated at 
different tilt angles because the periods of the TFBGs are dependent on the tilt angles. When 
a femtosecond laser is used to inscribe FBGs in fibers, the formation of FBGs in the fibers is 
mainly due to nonlinear optical effects, in which a small focal-length cylindrical lens is 
usually applied. The tilt angle of the fiber with respect to the phase mask becomes more 
rigors. When the focal line and the fiber are not parallel, it will lead to a complex condition 
inside the fiber, such as a distorted gratings structure, different focus positions with respect to 
the fiber core along the fiber axial direction, and TFBG structures extending to the fiber 
cladding [8]. Therefore, the transmission spectra of the TFBGs fabricated with this method 
present a lower peak loss and a higher insertion loss than that of TFBGs fabricated with a 
nanosecond UV laser. 

In this paper, we demonstrated a new method to fabricate TFBGs by obliquely scanning. 
TFBG structures were formed using femtosecond laser irradiation and a phase mask. The tilt 
angle was introduced by obliquely moving fiber in the focal plane of cylindrical lens. In this 
method, 5-mm long TFBGs with different tilt angles were fabricated in a non-photosensitive 
SMF-28 fiber, and the grating structures only existed in the fiber core. The insertion loss is 
less than −0.2 dB. The peak loss of the cladding modes with the tilt angle of 4.9° reaches to 
about −8 dB. In addition, we investigated the effects of laser power and exposure time with 
TFBGs fabricated. Moreover, the temperature sensing of the TFBG using different modes 
were demonstrated at high temperature. The temperature sensitivities of Bragg mode, ghost 

                                                                                                    Vol. 25, No. 20 | 2 Oct 2017 | OPTICS EXPRESS 23685 



mode and cladding mode are 15.72 pm/°C, 15.56 pm/°C, and 15.52 pm/°C from 300°C to 
800°C, respectively. The refractive index (RI) response of the TFBGs was also measured. 

2. Experimental setup 

The TFBG was fabricated in a single mode fiber (SMF-28). The diameter of fiber core is 9 
μm. Grating structures were inscribed in fibers with femtosecond laser irradiation and a phase 
mask. The schematic of the TFBG fabrication system is shown in Fig. 1. Femtosecond laser 
pulses with a central wavelength of 800nm were generated by an amplified Ti:sapphire laser 
(Libra-USP-HE, Coherent Inc., USA) with 50-fs pulse duration and 1-kHz repetition rate. The 
12-mm diameter Gaussian beam was focused with a cylindrical lens of focal length f = 25 
mm through a zeroth-order-nulled phase mask with a pitch period Λm = 2.142 μm onto the 
fiber. According to free space Gaussian beam optics, the width of focal line is W = 2λf/πω0 = 
2.1 μm, where λ is the laser wavelength, f is the focal length of the cylindrical lens, and ω0 is 
the incident beam waist. To obtain pure two-beam interference gratings with a femtosecond 
pulse, the distance between fiber and phase mask was set to about 3 mm. Thus the diffracted 
beams of different order pairs (0, ± 1, ±  2, etc.) would not overlap resulting from an order 
walk-off effect [20]. The optical fiber was put on a piezoelectric platform (Thorlabs, 
NanoMax-TS, MAX302/M), fixed by magnetic fixtures. The platform can achieve three-
dimensional translation with maximum lengths of 20 μm. Because the width of the focal line 
is less than the diameter of fiber core, we could make the FBG structures covering the fiber 
core by scanning fiber. A broadband ASE light source (Hoyatek, HY-ASE-C-13, with a 
spectra range of 1525-1570nm) and an optical spectrum analyzer (OSA) (Yokogawa, 
AQ6370D, with a spectral resolution of 20 pm) were used to measure the transmission spectra 
of TFBGs. 

 

Fig. 1. (a) The schematic of fabricating TFBGs using femtosecond laser irradiation with a 
phase mask. (b) TFBGs fabricated by tilting the fiber. (c) TFBGs fabricated using our method. 

The reported method of fabricating TFBGs with femtosecond laser and a phase mask is 
shown in Fig. 1(b). TFBGs were fabricated by tilting the fiber relative to x axis in x-y plane, 
and moving the fiber along the y axis to construct grating planes. We can see that part of the 
grating structures may extend to cladding in this method. According to Fig. 1(b), the period of 
gratings along the fiber axial direction is given by Λg = Λ/cosθ, where Λ = Λm/2 is the 
interference pattern period along the x axis, and θ is the angle between the fiber axis and the x 
axis. For TFBGs, the Bragg wavelength λB can be expressed as λB = 2neffΛg [21], where neff is 
the effective refractive index of the Bragg mode at λB. Therefore, the Bragg wavelength 
increased as the tilt angle increasing. We demonstrate a new method to construct TFBGs by 
obliquely moving fiber sample in the x-y plane, which is shown in Fig. 1(c). In this method, 
the fiber sample places along with the x axis. The obliquely moving of fiber was realized 
through controlling the x and y axes moving simultaneously by a program. The tilt angle is 
calculated by θ = arctanlx/ly, where lx and ly are the moving lengths of fiber sample with x and 
y axes, respectively. The grating period along the fiber axial direction is given by Λg = Λm/2. 
Hence, the Bragg wavelength will be the same for TFBGs fabricated at different tilt angles. 
The grating structures can be precisely written in fiber core by setting scanning region. 
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3. Results and discussions 

3.1 Processing results of TFBGs 

The moving range of the fiber along with the y axis was set at 8 μm to make the grating 
structures covering the fiber core completely. The moving range of x was set at different 
values to obtain TFBGs with different tilt angles. The optical microscopic images of fs-
written TFBGs with different tilt angles are shown in Fig. 2. From Fig. 2, we can see that the 
grating periods of the TFBGs are 1.07 μm. The length of the grating region is measured to be 
about 5 mm. 

 

Fig. 2. Optical microscopic images of TFBGs fabricated at tilt angles of (a) 4.9° and (b) 5.3°. 

 

Fig. 3. The transmission spectra of the TFBGs with tilt angles of 4.9°, 5.3°, 5.7°, 6.5°, and 
8.1°. 

Figure 3 shows the transmission spectra of TFBGs with different tilt angles. As shown in 
Fig. 3, the resonance intensities of the Bragg mode and the ghost mode decrease as the tilt 
angel increasing. The peak loss of the cladding modes for the TFBG with a tilt angle of 4.9° 
reaches to about −8 dB, which decreases as the tilt angle increasing. The Bragg wavelengths 
are about 1550 nm for TFBGs with different tilt angles, which agree with our analysis above. 
The little difference of the Bragg wavelengths is because fibers are suffered from different 
strains when they are clamped by the fixtures during fabrication. In addition, we can see that 
the insertion loss is less than −0.2 dB. 

The evolution of the transmission spectra with exposure time is shown in Fig. 4(a), in 
which the tilt angle and the laser power are set at 5.3° and 700 mW, respectively. From the 
inset of Fig. 4(a), we can see that the peak loss of the spectra of the TFBGs fabricated at laser 
power of 700 mW increases as exposure time increasing, and reaches to −6 dB at a saturation 
time of 50 s. 

In addition, we investigated the influence of the laser power on the spectra of the 
fabricated TFBGs. Figure 4(b) shows the transmission spectra of TFBGs fabricated at laser 
powers of 500 mW, 600 mW, 700 mW and 800 mW, respectively. Table 1 shows peak losses 
of cladding modes and saturation times at different laser power. 

From Fig. 4(b), we can see that the peak losses of the TFBGs fabricated at laser powers of 
500 mW and 600 mW are only −0.9 dB and −3.4 dB, respectively. When the laser powers are 
set to 700 mW and 800 mW, the peak losses increase significantly and reach to about −6 dB. 
As shown in Tab. 1, the saturation time decreases as laser power increasing, and the 
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saturation time decreases to about 50 s when the laser power is set at 700 mW. Because there 
are some breakages in the cladding for the TFBGs fabricated at a laser power of 800 mW, the 
optimal laser power to fabricate the TFBGs in our experiments is 700 mW. 

 

Fig. 4. The transmission spectra of the 5.3° TFBGs fabricated at (a) different exposure times 
and (b) different laser powers. The inset shows variations of peak loss as a function of 
exposure time. 

Table 1. Peak losses and saturation times at different laser powers. 

Laser power 500 mW 600 mW 700 mW 800 mW 
Saturation time 270 s 120 s 50 s 40 s 

Peak loss -0.9 dB -3.4 dB -6.1 dB -6.2 dB 

As we known, besides SMF-28 fiber, FBGs have also been fabricated using femtosecond 
laser and phase mask in Yb3+ doped fiber, ZBLAN fiber, and so on [15]. Therefore, our 
proposed method could also be applied to fabricate in these kinds of fibers. 

3.2 Thermal stability and temperature sensitivity 

The fabricated TFBG was firstly annealed at 800 °C for 4 hours with a tube furnace and then 
used to study its thermal stability and temperature sensitivity. The sample was a TFBG with a 
tilt angle of 5.3°. After annealing treatment, the peak loss of the cladding modes decreased 
from −6 dB to −2.2 dB. It is because that some unstable grating structures were erased at high 
temperature of 800°C [14]. Then the tube furnace was set at 300°C, 400°C and 500°C for 30 
min respectively to get stable spectra, and at 600°C, 700°C, and 800°C for 3 hours 
respectively to study the thermal stability. The Bragg mode, the ghost mode and the cladding 
mode at 1539.679 nm were monitored to study the temperature sensitivity of the TFBG. The 
results are shown in Fig. 5. 

 

Fig. 5. (a) Evolution of the peak loss measured for the cladding mode at high temperatures. (b) 
Variations of the peak wavelength versus temperature measured for the Bragg mode, the ghost 
mode, and the cladding mode, respectively. 

From Fig. 5(a), we can see that the peak loss of the cladding mode is stable up to 700°C, 
but decrease slowly at 800°C. As shown in Fig. 5(b), the peak wavelengths of the Bragg 
mode, the ghost mode, and the cladding mode increase with the temperature increasing. From 
linear fittings for each mode, the temperature sensitivities of the Bragg mode, the ghost mode, 
and the cladding mode are estimated to be 15.72 pm/°C, 15.56 pm/°C, and 15.52 pm/°C, 
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respectively. When Sapphire fibers are applied, the applicable temperature of the TFBG 
fabricated with our proposed method may be increased to above 1500°C [15]. 

3.3 RI response of TFBGs 

In the RI sensing measurements, glycerin water solutions with different concentrations were 
used as the surrounding media and their refractive indexes were measured using an Abbe 
refractometer (Insmark, IR120). The TFBGs with the tilt angles of 5.3° and 8.1° were chosen 
to study their RI response. By changing the concentration of the glycerin water solution, the 
surrounding RI of was varied from 1.3324 to 1.4689 at 25°C. For the RI sensing 
measurements of the 5.3° and 8.1° TFBGs, we selected the cladding modes at the 
wavelengths of 1541.325 nm and 1528.472 nm, respectively, to monitor their peak 
wavelength shifts at different RI. The results are shown in Fig. 6. 

From Fig. 6, we can see that the wavelength shift increase with refractive index 
increasing, and the RI sensitivity of the 8.1° TFBG is higher than that of the 5.3° TFBG. The 
wavelength shift for the 5.3° TFBG is about 0.4 nm with a RI range of 1.3324~1.4507.The 
wavelength shift for the 8.1° TFBG is about 0.5 nm with a RI range of 1.3324~1.4343. Its 
sensitivity is similar with that of the 7.3° TFBG fabricated with nanosecond UV laser [10]. 
The variations of the spectra of the 5.3° TFBG for different refractive index are shown in the 
inset of Fig. 6. We can see that the cladding modes at short wavelength side are gradually 
suppressed and the cladding response vanishes completely at the RI of 1.4689. For the 8.1° 
TFBG, the cladding response vanishes at the RI of 1.4416. Hence, the maximal measurable 
RI for the TFBG increased with the decrease of the tilt angle. 

 

Fig. 6. Refractive index response of the TFBGs with the tilt angles of 5.3° and 8.1°. The inset 
shows variations of the spectrum of the 5.3° TFBG at different refractive indices. 

4. Conclusion 

We developed a new method to fabricate TFBGs by obliquely moving the fiber sample at a 
tilt angle. In this method, 5-mm long TFBGs with different tilt angles were fabricated in the 
non-photosensitive SMF-28 fiber, and the grating structures could be controlled to only exist 
in the fiber core. The insertion loss is less than −0.2 dB. The temperature sensitivities of the 
Bragg mode, the ghost mode, and the cladding mode are 15.72 pm/°C, 15.56 pm/°C, and 
15.52 pm/°C, respectively. The refractive index response of the TFBGs was also measured. 
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