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APPENDIX B

Plant Models

B.1 Introduction

This appendix contains descriptions and mathematical modelsi of most of the plants
used as Examples and/or Problems in the text. Table B.1 lists them in order of the
degree of the characteristic polynomial.

B.2 Ground Vehicles and Robots

B.2.1 Lateral Intercept and Rendezvous

Figure B.1 shows a pursuer with a closing velocity V relative to a nonmaneuvering
target. parallel to an initial line of sight (ILOS) to the target. and a relative velocity
v(t) perpendicular to the ILOS. The current LOS makes an angle o with the ILOS;
hence

¥
o X =,
R

where R is the range-to-go and T = —R/R is the time-to-go. The relative accelera-.

tion and position perpendicular to the ILOS are a(r) and y(r), so the equations of
motion are

\ =, v =a.
The rendezvous performance index is
1 2 2 1 Ir )
J = ) {S.v[)'(’f)] + so[v(ty)] }+ 2 A a* dt,

where y(0) = 0, v(0) = vy, and #; is given. For the intercept put s, = 0.
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Description Characteristic Polynomial Applications

Single Integ. (SI) s 1-D DR nav., 1-D survey route

First-order Lag s+p Temp. change, vehicle/engine/motor velocity

Double integrator s> Vehicle lat. motion, lat. intercept/rendezvous
(DI) S/C Pitch, 2-D DR nav., 2-D survey route

Integrator lag s(s+p) Vehicle/engine/motor position, Reservoir

Volume, Brownian Motion

Stable mode 2 + ? Pendulum, spring-mass, orbital gyrocompass

Unstable mode st —n? Bicycle, inverted pendulum

Triple integrator 53 3-D DR nav.,, 3-D survey route

SI -+ unst. mode s(s2 —n?) Bicycle/unicycle, cart w. inv. pend.

DI +lag s (s p) Lat. motion truck w. trailer — fwd./bkwd.

Lag + stbl. mode
Lag + unst. mode
Stbl. + unst. mode
2 stbl. modes

2 unst. modes

DI + double lag
DI + stbl. mode
DI + unst. mode

(s + p)(s* + &)
(s + p)s? = n?)
(s> + ?)s* — 17)
(s +wi)(s? + w3)
(s* = ni)(s* — n3)
57 (s £ p1)(s £ p2)
sT(s” + w”)

S:(S: - ,.'2)

S/C stable pitch with a BMW

S/C unstable motion with a BMW

S/C insertion/stationkeeping

Double pendulum. double spring-mass
Double inv. pendulum

Lat. motion truck w. 2 trailers - fwd./bkwd.
Crane. cart w. pend.. INS, flex. robot arm

Unicycle/bicycle turn. pos. cart w. inv. pend.,
vertical INS, ball rolling on cylinder

(s> + 201015 + a)f)(s2 + 20 ans + wg)
2 lags/dpd. mode (s + p)(s + p2)(s* + 2t ws + w?)
S1/2 dpd. modes s (5% +2015 + 7)(s? + 202w2s + w3)
DI/2 lags/d. mode  s*(s + p1)(s + p2)(s? + 2t ws + w*)
(s + ) (s* + @3)(s* + w3)

2 damped modes A/C longit. cruise/climb
A/C lateral cruise/turn
A/C alt. dev. landing/TO
A/C lateral path track

3 damped modes Trip. osc.. S/C lat. w. 2 BMWs

3unstable modes  (s* — n3) (s> — 3)(s* — n3) Trip. inv. pend., standing robot

DI2dpd. modes s (s* + wi)(s” + w3) Flex. S/C, cart w. double pend.

DI/2 unstable s2(s% = mi)(s* = n3) Cart w. double inv. pend.,
modes 2 balls rolling on cylinder
DV/4 lags/ 52(s + p1)(s + p2)(s + p3)(s + ps) Helic. motion, landing/TO,

2 damped modes x (2 + 251015 + wi)(s? + 202ws + @3) hover pos., altitude dev.

B.2.2 Lateral Motions of a Car or Truck

The linearized lateral kinematic equations of motion for a car or truck are (see
Fig. B.2)

where y is the angle between the vehicle centerline and a reference line, y is the
distance from the center of the rear axle to the reference line in units of £ = wheelbase
(distance between the two axles), u = tan$, and & is the angle betwe?? the ﬁoft
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Pursuer

FAGURE B.1 Nomenclature for Lateral

Intercept or Rendezous
Target

wheels and the vehicle centerline. The independent variable is distance along the
path in units of £, i.e., time is in units of £/ V, where V is the velocity of the midpoint
of the rear axle.

B.2.3 Lateral Motions of a Truck with a Trailer

The linearized lateral kinematic equations of motion for a three-axle vehicle such as
a truck with a trailer are (see Fig. B.3)

£6; = u, 667 = 6 ~ 6,. y=26,

where 6, is the angle between the truck centerline and the reference line, 6, is the
angle between the trailer centerline and the reference line, y is the distance from the
center of the truck rear axle to the reference line, ¢; is the wheelbase of the truck, ¢,
is the wheelbase of the trailer, ¥ = tané. and 8 is the angle between the truck front
wheels and the truck centerline. The independent variable s is the distance along the
path.i.e..ds = V dt, where V is the velocity of the midpoint of the tractor rear axle.

/ Instant center

¥

Reference
= TIITAE gy

FIGURE B.2 Nomenclature for Lateral Motions of a Car or Truck
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FIGURE B.3 Nomenclature for Lateral Motions of a Truck with a Trailer

For backing up a truck with a trailer, replace ¢ with —¢. This motion is unstable,
so backing up is more difficult than moving forward.

B.2.4 Lateral Motions of a Truck with Two Trailers

The linearized lateral equations of motion for a four-axle vehicle such as a truck with
two trailers (see Fig. B.4) are

GO =u, 06:=0-6, O3=6-0;, L0,=0,—6;, V=4,

where 6; is the angle between the truck centerline and the reference line, 92>is the
angle between the first trailer centerline and the reference line, 6; is the angle between
the connecting link between the first and second trailers and the reference line, 4,
is the angle between the second-trailer centerline and the reference line, y is the
distance from the center of the second-trailer rear axle to the reference line, ¢ is
the wheelbase of the truck, ¢; is the wheelbase of the first trailer, ¢5 is the length
of the connecting link between the first and second trailers, £, is the wheelbase of
the second trailer, « = tané, and § is the angle between the truck front wheels and
the truck centerline. The independent variable s is the distance along the path, i.e.,
ds = V dt, where V is the velocity of the midpoint of the tractor rear axle.

FIGURE B.4 Nomenclature for Lateral Motions of a Truck with Two Trailers
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FIGURE B.5 Nomenclature for Robot Bicycle

For backing up a truck with two trailers. replace 1 with —. This motion is unstable,

so backing up is consierably more difficult than moving forward.

B.2.5 Bicycle Robot

A bicycle is a lateral inverted pendulum on wheels (see Fig. B.5). The linearized
lateral equations of motion are

¢ =n"¢ —as — cu. 5 =u. ¥ =34.

where ¢ is the roll angle from vertical, § is the front-wheel angle away from straight
ahead. u is the control. ¥ is the heading angle from a reference direction, n? =
ghZ/(Vp)Y. a=ht/p~. ¢ =bh/p*. ( is the wheelbase (distance between contact
points of the tires with the ground). /i is the height of the center of mass of the bike
plus robot above the ground. V is the forward velocity of the center of the rear wheel,
g is the gravitational force per unit mass, b is the horizontal distance between the
center of mass and the rear tire contact point, and p is the radius of gyration of the
bike plus robot about the line throught the twa tire contact points. The independent
variable is distance along the path s in units of £, i.e., V dr = ds.

If a fall begins to the right (¢ > 0), the rider begins to turn to the right (§ = u > 0),
1.e. into the direction of the fall. This yaw angular acceleration (1// = u > 0) produces
a D'Alembert force mbyr through the mass center to the left, which opposes the fall.

In a steady turn to the right ( =8 > 0, ¥i = 0), the centrifugal force mV+
acts through the center of mass to the left, balancing the gravity torque mgh¢ about
point A. However. to start a turn to the right, the rider must first turn slightly left;
this produces ¥ = u < 0, which tilts the bike to the right (¢ > 0) until n%¢ > Ois just
balanced by the centrifugal force ay > 0. To verify this behavior experimentally, ride
your bike along the edge of a sidewalk curb and try to turn back onto the sidewalk -
you will inevitably fall off the curb onto the street.

A typical bicycle has £ =40 in., h =36in.,b =201in., p ~ h, g = 32.2 ft/s?, and
moves at V = 15 mi/h.
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The TFs from the control u to ¢ and y are

¢(s)  as+c Yis) 1

u(s)  s(s2—n?)’ u(s)  s2

Hence, when using 1 to control both ¢ and , the SRCE will have RHP compromise
zeros (see Section 9.4).

B.2.8 Unicycle Robot

A person turns a unicycle by rotating his or her upper body about a vertical axis, which
causes the unicycle wheel to rotate about a vertical axis in the opposite direction. A
robot unicycle imitates this action using a reaction wheel mounted on a nominally
vertical axis (whose angular velocity is nominally zero). The wheel is turned by an
electric motor (see Fig. B.6). Neglecting bearing friction, the linearized equations of
motion for the lateral motions of a robot unicycle are (Ref. Sw)

p=¢—Vr ¢ = p. r=cVp— Q. U=

where ¢ is the roll angle from the vertical, p is the roll rate, r is the yaw rate, V is the
forward velocity, Q is the torque applied to the reaction wheel by the motor, and v
is the heading (yaw) angle from a reference direction. Time is in units of 1/a, where
o= mgh/I;. I is the moment of inertia (MOI) about the wheel-ground contact
point in the forward direction of the unicycle plus rider, p. r are in units of . Q is
in units of Z.a?. V is in units of g/a. [ is the MOI about a vertical axis through the
ground contact point of the unicycle plus rider, m is the mass of the unicycle plus
robot, £ is the height of the center of mass above the ground of the unicycle plus
robot. ¢ 2 (1,/I)[g/(pa?)]. pisthe wheel radius, and /,, is the MOI of the reaction
wheel about its axis of rotation. The product Vr is the roll torque about A due to
the centrifugal force mV r acting through the center of mass. The product ¢V p is the
gyroscopic yaw torque due to the angular momentum of the wheel and a roll rate.

lip-Q

FIGURE B.6 Nomenclature for Robot Unicycle
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FIGURE B.7 Nomenclature for an Overhead Crane (Cart
with a Pendulum)

It 1s straightforward to show that the plant is non-minimum-phase (NMP):

&(s) _ 14 ¥ (s) _ 1-5s?
Q(s)  s(s>=1+cV2)’  Q(s)  sHsP—1+cV2)’

B.2.7 Overhead Crane (Cart with a Pendulum)

Figure B.7 shows an overhead crane (or cart with a pendulum), driven by an electric
motor. Let £ be the length of the pendulum, m the mass of the load (the pendulum
bob), M the mass of the cart, u the force on the cart, y the displacement of the cart,
and 6 the deviation of the pendulum from the vertical. The gravitational force per
unit mass is g. -

The equations of motion are

5 01 0 07[x 0
i)_OOG,Ov 1
61 100 0o 1|]e|T| o |*
g 00 -1 0]|qg -1

where € = m/(m 4+ M), time is in units of \/¢M/g(m + M), y in units of £, and u in
units of (m + M)g.

B.2.8 Cart with a Double Pendulum

The plant here is the same as in Section B.2.7, but with a double (compound) pen-
dulum (see Fig. B.8). For the case where the two pendulum lengths are both £ and
the two pendulum bobs and the cart each have mass m, the linearized equations of

motion are

61 = q1, G1=-461+20,—u, Oy=¢qs, ¢ =20, 26,
v = 20; +u, y=uv,

where time is in units of \/¢/g, y in units of ¢, and u in units of mg.
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FIGURE B.8 Nomenclature for a Cart with a Double
Pendulum

1
%

!

B.2.9 Cart with an Inverted Pendulum

Figure B.9 shows the nomenclature for a cart with an inverted pendulum. Motion
of the cart can stabilize the pendulum by torquing the wheels using feedback from
an angle sensor. If a (forward, backward) fall begins, the cart is (speeded up, slowed
down) to maintain balance. The nomenclature and normalizations are the same as for
the cart with a regular pendulum. For || < 1, the normalized equations of motion
are

y 01 0 07[y 0
i)_OO—eO v 1
61=loo o 1|le|T] o [*
p 00 1 0]|g -1

Note that these equations of motion are the same as those for the longitudinal motions
of a robot unicycle.

FIGURE B.9 Nomenclature for Cart with an Inverted
Pendulum

339
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m.
! L FIGURE B.10 Nomenclature for Cart with a Double
Inverted Pendulum

) ()

e

B.2.10 Cart with a Double Inverted Pendulum

The plant here is the same as in Section B.2.9, but with a double (compound) inverted
pendulum (see Fig. B.10). For the case where the two pendulum lengths are both ¢
and the two pendulum bobs and the cart each have mass m, the linearized equations
of motion are

b1=q1. ¢=46—-26—u. br=gqr. G =-20,+26,.
V=-26,+u, Y=,

where time is in units of /¢/g. v in units of £. and « in units of mg.

B.2.11 Flexible Robot Arm a

Figure B.11 shows a fiexible robot arm (Ref. Sc). We model it using the rigid-body
mode and the first bending mode, whose frequency is w:

=0, 5= —w?s— b0,

where 6 is the angle of the RB mode centerline from a reference line, § is the deflection
of the tip away from the rigid-body centerline, Q is the torque at the shoulder, and b
is a constant. We assume the deflection at a distance x from the shoulder is (x/£)2,

FIGURE B.11 Nomenclature for a Simplified Model of a Flexible Robot Arm
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FIGURE B.12 Planetary Gear Rolling around a Rotating Sun
Gear

where ¢ is the length of the arm. We wish to control the tip deflection y = €6 + 6
using Q. :

B.2.12 Planetary Gear Rolling on a Sun Gear

’Figure B.12 shows a planetary gear (PG) that is free to roll around a sun gear (SG). A

link connects the center of the PG to the center of the SG (suggested by Prof. Stephen
M. Rock’s laboratory experiment of a ball rolling on a disk, 1999). Let R be the radius
of the SG, whose center is fixed, r be the radius of the PG, ¢ be the inertial turn angle
of the PG, ¢ be the inertial turn angle of the SG. (m. J) be the (mass. MOI) of the
PG, Jp be the MOI of the SG, 6 be the angle of the PG from vertical, and Q be the
torque applied to the SG (the control).

The equations of motion are (R + 1)0 = ¢ + Ry, and

(J+ 1)+ Ry —¢— Ry =0,
(Jo+ RV + R — Rp — R*y = Q,

where R is in units of r; J and Jy in units of mr?; time in units of \/(R +r)/g; and Q
in units of mgr R/(R + r). The transfer function from Q(s) to ¢(s) is

P(s)  —c(s>-=1)
Q(s)  s¥s?—o?)’

where

B R 2o RI+h
TR+ T+ N T RMI+ T+ Ty

c

The two open-loop modes at s = 0 correspond to ¢ + Ry = 0 and ¢+ Ry =0.

KZ3|
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. ,—» Xy r—» X, ‘
— w, 1, w, FGURE B.13 Nomenclature for a Two-

u m | —TT— ™ Mass-Spring Plant

k

B.2.13 Two-Mass-Spring Plant (Generic Flexible Space Structure)

Consider a simplified model of a flexible space structure consisting of two masses
connected by a spring (see Fig. B.13). The plant model is

X1 =y, moy = —k(x; —x2)+u+w;, X =y,

mv; = ~k(x3 — x1) + wy;,

where m is the mass of each body, (x;, x;) are the displacements of the (left, right)
body, (v1. v2) are the velocities of the (left, right) body, k is the spring constant, u is
the control force. and (w;. ) are disturbance forces on the (left. right) body. If we
use x; in units of a characteristic length £, time in units of /m/%, and (x. w) in units
of k£, then we may put m =1 and k = 1 in these equations of motion.

B.2.14 Standing Robot (Triple Inverted Pendulum)

A standing stick-person robot is modeled as a triple inverted pendulum with torquers
at the ankle, knee, and hip joints (see Fig. B.14). The segments correspond roughly to
the lower legs, thighs. and torso of a person. Just to stand still, the robot must actively
stabilize using the joint torques. For the case where each segment is modeled as a
rod of mass m and length £. the equations of motion are (Ref. ZARBH)

JO=KO+BQ.

where © 2 [61 6> 65]7 comprises the angular deviations from vertical of the lower

FIGURE B.14 Stick-Person Robot (Triple Inverted
Pendulum) :
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legs, thighs, and torso, and Q = [Q1 Q2 Q3]T comprises the torques at the ankle,
knee, and hip. Using time in units of \/€/g, J in m€?. and K in mg¢, the coefficient
matrices are

1 500 1 -1 0
J=0n+C Dy, K=§ 0 3 0, B=1]0 1 -1/,
001 0 0 1
and
1 1 00 1 1 2 2 1 1 00
0 01 0 0 2 4 21

B.3 Aircraft and Helicopters

B.3.1 INS Platform Tilt

Figure B.15 shows an inertial navigation system (INS) moving eastward along the
equator. It consists of a platform that can be rotated with respect to the vehicle
carrying it. The signal z; from a rate gyro mounted on the platform is used to rotate
the platform so as to keep it (nominally) locally horizontal (¢ = 0). The signal z,
from an accelerometer mounted on the platform is integrated to give the vehicle
velocity v. The error equations are (see e.g. Ref. Br2. pp. 173-175)

f=v. V=¢. Pd=-v+e. é+4e/Tt=w,

where x is the longitude error. v is the eastward velocity error. ¢ is the platform
tilt angle about the north axis away from the local horizontal, € is the north gyro
drift, and w is a gaussian white-noise process with spectral density W. x is in units
of thousandths of the earth radius (R/1000) (i.e. milliradians of longitude): v is in
thousandths of the low-earth-orbit velocity (/g R/1000); g is the gravitational force
per unit mass; time is in units of 1/w, where w = /g/R is the Schuler frequency; ¢ is
in milliradians, and ¢ is in units of w/1000.

B.3.2 Aircraft Longitudinal Motions — Navion

The linearized longitudinal equations of motion for a general-aviation aircraft (the
Navion - see Fig. B.16) flying in cruise condition (176 ft/s) near sea level are (Ref. Te)

-

Za _
w Q/ ﬂ-d’- — Local horizontal
FIGURE B.15 Nomenclature for an Inertial g —
Navigation System T

x (east)
g
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Nominal flight condition
h=0; M=0.158; VTO= 176 ft/s

W=2750 Ib

CG at 29.5% MAC
1= 1048 slug ff?
1, = 3000 slug ft?
[, = 3530 slug f?

Reference geometry
s=184 112

c=57ft

b=3341

—f— g—

FIGURE B.16 The Navion — a General-Aviation Aircraft (Ref. Te)

* = Ax + B,é + B,[u, w,]”,where

r—0.045 0036 0 —0322
4o | 0370 202 176 0

0191 -396 -298 0

|0 0 1 0

T 0 1 0.045 —0.036

0282 0 0370 2.02
Bo=1 _11 o " T 20191 3.96 (B.1)

0 0 0 0

and the state vector is x = [u w ¢ 8]", u is the change in forward velocity, w is the
change in downward velocity, 6 is the pitch angle, and g = §. The control vector
is 8 = [8, 87]7, where 8, is the change in elevator angle and &7 is the change in
thrust specific force (proportional to throttle change). The disturbances are Uy =
horizontal wind velocity and w,. = vertical wind velocity. The units are feet, seconds,
and centiradians. ‘

The altitude change k from a reference altitude and the forward displacement x
from a reference point are given by i = —uw + 1.766, % = u.

B.3.3 Aircraft Lateral Motions — Navion

The linearized lateral equations of motion for a general-aviation aircraft (the Navion)
flying in cruise condition (176 ft/s) near sea level are x = Ax + B,é + B, vy (Ref. Te),
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where -
- e
—-0.254 -1.76 0 0.322
A= 255 =076 -035 . 0
-908 219 -84 0o I
| 0 0 1 0
- 0 0.1246 0.254
B, = -0.222 —-4.60 , B, = —2.55 ’
29.0 2.55 9.08
0 0 0

and the state vector is x = [v r p ¢]7, the control vector is § = [8, §,]7, v is the

sideslip velocity, (r. p)is the (yaw, roll) rate, ¢ is the roll angle, é, is the aileron angle,

and 8, is the rudder angle. The lateral specific force is a, = —0.254u + 0.12464,. The

disturbance is the side wind velocity v,,.. The units are feet, seconds, and centiradians.
The yaw angle ¥ and the lateral displacement y are given by

v =r. §=uv+L76y.

B.3.4 Aircraft Longitudinal Motions — Boeing 747 at Sea Level

The linearized longitudinal equations of motion for a civil transport aircraft (the
Boeing 747 — Fig. B.17. Ref. Te) flying near sea level at 221 {t/s are x = Ax + B, +
B,[uy, wy]". where

[ -0.021 0.122 0 -032 1
—0209 —0.530 221 0  —0.044
A=| 0017 -0164 —0412 0 0.544 |,
0 0 1 0 0
0 0 0 0 -025
(0010 O | T 0.021 -0.1227]
—0.064 O 0.209  0.530
B,=|-0378 0 |, B,=]|-0017 0164 |,
0 0 0 0
| 0 025 0 0 |

and the state vectoris [u w ¢ 6 8T]7,in which u is the perturbation in velocity along
the glide slope, w is the perturbation in velocity normal to the glide slope, is the
pitch rate, 6 is the perturbation in pitch angle, 8T is the perturbation in thrust specific
force, and u,, is the horizontal wind velocity. The control vector is [8e ST,]T, where
8, is the perturbation in elevator angle, and 3y, is the perturbation in commanded
thrust specific force (proportional to throttle change). The disturbances are Uy =
horizontal wind velocity and w,, = vertical wind velocity. The units are feet, seconds,
and centiradians.
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.25C
F.S.1339.9

MGC
G.L. 491
0-747
s = 5500 #?
b=19568 ft Q
C=27.311
—C O m— T
0 50 100 ft

F.S. 1339.9
| FRL

t = WL|1998
T =T Wit
2.5° I

FIGURE B.17 The Boeing 747 - a Civil Transport Aircraft (Ref. HJ)

The altitude change # from a reference altitude and the forward displacement x
from a reference point are given by

h = —w +2.216. X =u.

B.3.5 Aircraft Lateral Motions ~ Boeing 747 at Sea Level

The linearized lateral equations of motion for a 747 in landing configuration at sea
level are (Ref. HI) = Ax + B,8 + By v, Wherex=[v r p ¢]. 6= (8, 8], vis
the lateral velocity. r is the vaw rate. p is the roll rate. ¢ is the roll angle. g, is the
aileron angle, and §, is the rudder angle. The disturbance is the side wind velocity v,,.
In units of feet, seconds, and centiradians, the system matrices are

[ —-0.089 -2.19 0 0.319
A 0.076 -0.217 -0.166 0
-0.602 0327 -0975 0 |
| 0 0.15 1 0
[ 0 0.0327 0.089
B - 0.0264 -0.151 B — —0.076
“71 0227 0.0636 |’ v 0.602
. 0 0 0

The lateral specific force isay, = —0.089u + 0.03275,. The yaw angle ¥ and the lateral
displacement from a reference line y are given by

v=r, y=v+219y.
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FIGURE B.18 A Short Takeoff and Landing
(STOL) Aircraft

B.3.6 Aircraft Longitudinal Motions — STOL Aircraft

A STOL aircraft has a thrust nozzle that can be rotated from straight backward to
directly downward (see Fig. B.18). The longitudinal equations of motion are (Ref. TB)
% = Ax + B,8 + B,[u, a,]" where

C-0.0397 —0280 0  —0.562
Ao | 0135 0538 -0957 0

0.0207 0441 —1410 0

L0 0 1 0

T —0.0052 —0.102 0.0397 0.280
5 _ | 0031 0037 5 | 0135 0538
“Z | —146 0066 " T [ 00207 —0.441

L0 0 0 0

and the state vector is [u a g 6]7, where u is the perturbation in forward velocity, o
is the angle of attack, g is the pitch rate. and 6 is the pitch angle. The control vector is
8 =[8. 8,,]T, where &, is the perturbation in elevator angle, and §, is the perturbation
in nozzle angle of the deflected thrust (positive down). The altitude change h from
a reference altitude and the longitudinal displacement x from a reference point are
given by

h=-001784 +1.92y, i=u,

where y = 6 — « is the flight-path angle. The disturbances are u,, = horizontal wind
velocity and «,, = w,,/V = normalized vertical wind velocity (V = aircraft forward
velocity). The units are feet, seconds, and degrees.

B.3.7 Helicopter Near Hover — OH6A

A 4140 model of the OH6A helicopter (see Fig. B.19) takes into account the cou-
pling between the longitudinal and lateral motions. There are four controls: 5, =
longitudinal cyclic stick, §. = collective stick, §, = lateral cyclic stick, and §, =

347
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A9

¥ FIGURE B.19 A Medium-Size Transport
Helicopter

tail-rotor collective stick. For the eight-state vector [u w ¢ 6 v r p ¢]” and the
control vector § = [8, & 8, &], the equations of motion near hover (Ref. He) have
coefficient matrices

[—0.0257 0.0113 0.013 —0.3216 0.0004 —0.0006 —0.0081 0
—0.0422 —0.3404 0.0001 —-0.0093 -0.044 0.0147 0.0005 0.0171

1.26 —0.6 —1.765 0 -0.26 0.0719 03763 0
. 0 0 1 0 0 0.0532 0 0
0.0158 -0.0194 —0.0084 0  —0.0435 0.0034 —0.0134 0.3216 |
-2.62 31 -01724 0 -0.170 -0.8645 -1.075 0
0.03 -0.19 -1.136 0 ~4.620 —0.2873 —4.92 0
| 0 0 —0.0015 0 0 0.0289 1 0 |
~ 0.086 0.0216 —0.0028 —0.003 [ 0.0257 —.0113 0.00047
~0.0016 —0.734 0.0011 —0.003 0.0422 0.3404 0.044
-7.41 -0.785 035 —0.096 -126 0.6 0.26
B — 0 0 0 0 B 0 0 0
“7 1 —0.0038 0.0057 0.0514 0.153 |° 71 -0.0158 0.0194 0.0435 |'
0493  9.507 1982 —2568 262 =31 0.170
1.874 1206 12.79 -0.781 -0.03 0.19 4.670
0 0 0 0 0 0 0

‘where the units are feet, seconds, and centiradians for the states, and deci-inches for

the controls. The disturbances are u,, = horizontal wind velocity, w,, = vertical wind
velocity, and v,, = side wind velocity. The additional four kinematic states [ x y n)’
are related to the eight states as follows:

where v is the yaw angle, (x, y) are the horizontal coordinates of the center of mass,
and 4 1s the altitude.

Approximate 2120 longitudinal and lateral models are obtained by neglect-
ing the coupling between [u, w, q, 6;4,, 8.;u,,, wy,] and [v, p, r, 05684, 8,;vy]. Even
simpler SISO models are obtained by further neglecting the coupling between
[u.q,6; 8 u,]and [w; 8. w,], and between [r, p, ¢; 8] and [v; §,; v,].

’
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B.4 Spacecraft

B.4.1 Spacecraft Roll-Yaw Estimation (Orbital Gyrocompassing)

A spacecraft is in circular orbit with orbit rate w (see Fig. B.20). The linearized lateral
kinematic equations are

b=wy+p Y =-wh+r
where ¢ is the roll angle (about the body axis nominally pointing in the direction
of the orbital velocity), ¢ is the yaw angle (about the body axis nominally pointing
down), p is the inertial roll rate, and r is the inertial yaw rate. An horizon sensor
measures the roll angle

Vs¢p = ¢+ Ug.
and two rate gyros measure the roll rate and yaw rate,
}’sp=p+vp» Ysr =T + V.

Treat the latter two signals as disturbance inputs in the kinematic equations, and treat
the horizon sensor signal as the measurement (Ref. BK). If (p, r) are measured in
units of w and time in 1/w, then  may be replaced by unity in the relations above.

B.4.2 Spacecraft Pitch Control Using a Reaction Wheel and Gravity Gradient

A spacecraft in circular orbit has its long axis in the flight direction, an unstable
attitude due to the gravity gradient torque. By torquing a reaction wheel (RW), the
spacecraft pitch angle 8 can be rapidly brought close to zero (see Fig. B.21), and
the RW angular velocity and 8 can then be slowly reduced to zero using the gravity
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FIGURE B.21 Nomenclature for Spacecraft Pitch Control Using a Reaction Wheel and Gravity
Gradient

gradient torque. The equations of motion are

\ . . cbH
6 = éq. OH =6+4T,. 5q=0+Td—06q+1

+e,
+ €

where 6 is the spacecraft pitch angle relative to local horizontal, §H is the angular
momentum perturbation of spacecraft plus RW from nominal equilibrium, and égq is
the spacecraft pitch angular velocity perturbation. 8 is in units of u. where ©26 is
the destabilizing gravitv-gradient angular acceleration: H is in units of I u. where I,
is the pitch MOI of the spacecraft plus RW: ¢ = J/1..where J is the MOI of the RW:
o2 (c+ N*/R)(I, + J)/(1,J ). where the friction torque between the spacecraft
and the RW is c(¢g — g,,), with g, the angular velocity of the RW in units of u: R is
the armature resistance of the RW electric motor: N is the torque per unit current
in the armature; 7} is the external disturbance torque in units of J, u?; and e is the
voltage across the armature (the control) in units of RI,u?/N.

B.4.3 Spacecraft Pitch Control Using a BMW and Gravity Gradient

This is the same as the model above except that the control is a bias momentum wheel
(BMW), also called a control moment gyro (CMG). Torque from the spacecraft
precesses the BMW away from its nominal position (angle «), and the equal and
opposite torque on the spacecraft changes the spacecraft pitch angle 6. The BMW
has a spin angular momentum k, and its spin axis is nominally in the flight direction
(see Fig. B.22); it is free to rotate about the nominally vertical z-axis (angle ), and
a control torque T can be applied to it about this axis from the spacecraft. The
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FIGURE B.22 Spacecraft with a Bias Momentum Wheel (Control Moment Gyro)

normalized equations of motion for small 8 and « are
=0 —cwa, &:—9+w2T,
€

where o = h/,/I,J is the nutation frequency; u = n\/3(I; — I;)/I, is the libration
reciprocal time constant; e = ,/J/I,; (I, Iy, I.)are the principal moments of inertia
of the spacecraft plus BMW about the (roll, pitch, yaw) axes; J is the moment of
inertia of the BMW about its vertical axis; and n is the orbit rate. Units are T in
Jw?, tinl/u. win p.

B.4.4 Spacecraft Roll-Yaw Control Using RWs and Gravity Gradient

A spacecraft in a circular orbit has its long axis (y-axis) horizontal and perpendicular
to the flight direction, an unstable attitude due to the gravity gradient torque. The
y-axis is also an axis of axial symmetry. By torquing roll and yaw reaction wheels
(RWs) the spacecraft roll and yaw angles ¢ and ¢ can be rapidly brought close to
zero, and the RW angular velocities, ¢, and ¥ can then be slowly reduced to zero
using the roll gravity gradient torque. The equations of motion are

Hx=._ar—3a¢, szap, p:aHx—ap—ar—3a¢+e,,
i'=UHz+ap—Ur+ez’ (i’="+'/’, ¢=r_¢’

where the RW MOIs have been assumed very small compared to the spacecraft
MOIs. H, is the roll angular momentum of the spacecraft plus RWs, H, is the yaw
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angular momentum of the spacecraft plus RWs, p is the spacecraft roll angular ve-
locity w. r. t. the locally horizontal axes, r is the spacecraft yaw angular velocity, and
(¢, ¥) are the (roll, yaw) angles. Time is in units of 1/n, where 7 is the orbit rate;
(Hx, H.) are in units of n/, where I is the (roll, yaw) MOI of the spacecraft plus -
RWs, a = (I, — I)/1, I, is the pitch MOI of the spacecraft plus RWs, o is the same
as o in Problem 9.2.13 except 1, is replaced by I, and (e;, e.) are the control voltages
applied to the armatures of the (roll, yaw) RW motors in units of RIn? /N.

B.4.5 Spacecraft Roll-Yaw Control Using BMWs and Gravity Gradient

This is the same model as above except that the control actuators are bias momentum
wheels (BMWs, or control moment gyros) (see Fig. B.22). Torques T,, T. from the
spacecraft precess the BMWs away from their nominal positions (angles ¢, V¥,),
and the equal and opposite torques on the spacecraft change the spacecraft (roll,
vaw) angles ¢. . The normalized equations of motion for small ¢ and Y are

p=—ar—3ap +T,, F=bp+T./I.. ¢=p+y, V=r—¢,

g =~V /h. Yo =¢,/h.

Time is in units of 1/n (n = orbit rate): p and r are in units of n; 7, and T are in units
of I,n%; I isin units of /,: h is in units of I.n: a = (I, = 1)/I:, b= (I, - I)/1I..

B.4.6 Spacecraft Stationkeeping and Acquisition with Thrusters

On the line between the earth and the moon there is a point called L; where a
spacecraft would be in equilibrium. i.e., the gravitational pull of the moon plus the
centrifugal force would equal gravitational pull of the earth (see Fig. B.23). However,
it is an unstable equilbrium point, so that small thrusters operated by a feedback
control system are required to stabilize a spacecraft there. If the thrusters are oriented
along the earth-moon line, the linearized equations of motion in the orbit plane are

¥=2y+@2B+Dx+u, i=-2%-(8-1)y,

where (x, y) is the distance from L, (parallel, perpendicular) to the earth-moon
line, u is the thrust specific force, 8 = 5.148, time is in units of 1 /n, n is orbital
frequency of the moon about the earth, and distance is in units of the distance from
Earthto L;.

n .
Earth
21 \ Iy Moon FIGURE B.23 Spacecraft Near the Earth-

. . Moon L Point
. L1 X O
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B.4,7 Spacecraft Stationkeeping and Acquisition with a Solar Sail

The sun—earth L, point is a point on the sun-earth line where the gravitational forces
of the sun and the earth are exactly balanced by centrifugal force. A spacecraft with
a large solar sail is to be placed at an equilibrium point near L, where the centrifugal
force is augmented by the sail force (see Fig. B.24). This is an unstable equilibrium
point, but the spacecraft position can be stabilized by small deviations of the sail
angle 6 that provide a small force perpendicular to the sun—earth line. The equations
of motion, linearized about this equilbrium point, are

X =2y +bx, Vy=-=2%—byv+ch,

where (x. v) are in units of 1.51 x 10° km (the distance from earth to L.). time is in
units of 1/n (n = earth’s angular velocity about the sun). and by. ba. ¢ are positive
constants. For one spacecraft considered in a design study (S. H. Hur and B. Pervan.
- 1991), these constants were found to be 12.762. 4.914, 1.948, with the equilibrium
point 16% closer to earth than L;.

B.4.8 Attitude Control of a Spacecraft with Flexible Appendages

Controlling the attitude of a spacecraft with flexible appendages (see Fig. B.25) is
similar to controlling a flexible robot arm (see Section B.2.11) or a two-mass-spring
plant (see Section B.2.13) in that the control excites bending vibrations. A simplified
model includes only one bending mode (Ref. Br2. Appendix F). Consider two sprung
masses (mass m each) at a distance b from the center of mass. with spring constant k.
A thruster torque u(z) is used to control the pitch attitude 6(t). The linearized equa-
tions of motion have coefficients

0 100 0
|-a+e) 000 |1
A=l "9 oo 1] BT of

e 000 1

where s = [y v 0 q]7,and y is the dispacement of each sprung mass from its equili-
bium position in units of . Time is in units of 1/ (w? = k/m);e = 2mb?/J, where J
is the MOI of the spacecraft excluding the two sprung masses; u is in units of J w?.

FIGURE B.25 Spacecraft with Flexible ¢
Appendages y m
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