Extended Object or Group Target Tracking Using Random Matrix with Nonlinear Measurements

Jian Lan, Senior Member, IEEE, X. Rong Li, Fellow, IEEE

Abstract—For extended-object/group-target tracking (EOT/GTT), the random-matrix approach assumes that measurements are linear in the state and noise with a covariance being a random matrix to represent the object extension or target group. In practice, however, most measurements are nonlinear in the state and noise. This paper proposes a random-matrix approach for EOT/GTT using nonlinear measurements. First, a matched linearization (ML) is proposed to linearize nonlinear measurements. The linearized form has two parts. The first is linear in the state, and it is optimized in the sense of minimum mean square error (MMSE). The second part is linear in the extension-related noise with a preserved second moment, which is important since extension information is contained in the covariance of this noise. The linearized measurements can be incorporated into existing random-matrix algorithms after a simple conversion under certain conditions. Second, a variational Bayesian (VB) scheme is proposed for EOT/GTT using the linearized measurements. This approach can be generally applied no matter whether the linearized measurements are converted or not. The effectiveness of the proposed ML and VB approach is demonstrated by simulation results compared with existing random-matrix algorithms.

Index Terms—Extended Object Tracking, Group Target Tracking, Nonlinear Estimation, Variational Bayesian Approach.

I. INTRODUCTION

For traditional radar and sonar based tracking, most approaches consider a target as a point source of measurements due to limited sensor resolution and large sensor error relative to the target size [2], [5], [13], [30]. The kinematic state (e.g., position, velocity, and acceleration) of a target is estimated. Nevertheless, target tracking is still complicated because of the uncertainties in target motion and measurements [19]. With increased resolution of modern sensors (e.g., phased array radar), multiple (e.g., dozens of) measurements from an object can be obtained (as shown in [30] and [13]), and thus treating an object as a point mass becomes less valid [5], [13] and traditional methods do not apply well. Moreover, modern applications require more and more detailed physical information about the objects for classification, identification, tracking, etc. Here, an object may be treated as an extended object (EO) with both kinematic state and extension (e.g., size, shape, and orientation). Also, for a group of closely spaced targets in formation, target tracking faces similar challenges [13]. Knowing the extension of the group formation can be beneficial for e.g., recognition and classification. Such an extended object or target group may also originate a strongly fluctuating number of measurements [13] due to limited sensor capability, physical properties of EOs, and sensor-to-target geometry, etc. Further, one-to-one correspondence between a measurement and an originating point cannot be observed directly or easily. In this case, scattering centers of an extended object and individual targets in a group are also (partially) unresolved [5], [13], which makes tracking even more challenging.

In this paper, we consider nonlinear estimation problems in extended object tracking (EOT) or group target tracking (GTT), in which multiple nonlinear point measurements originated from partially unresolved scattering centers are obtained. Without directly considering each target within a group individually, approaches to EOT can also be applied to GTT. These approaches estimate the overall kinematics and extension of the group. For brevity, discussions will thus be focused on EOT and they are similar for GTT.

Several radar EOT approaches have been proposed [5], [13], [18], including multiple hypothesis tracking [12], probability hypothesis density filters [22], and particle filters [6]. A random hypersurface model was also proposed for EOT [4], where a nonlinear filter is used for estimation.

The approach of using a random matrix [13] appears promising because it jointly estimates the kinematic state and physical extension of an ellipsoidal object without needing measurement association. Also, the final form of this approach is computationally much simpler than the methods mentioned above. Its one-cycle computation (with one-step prediction and update being linear in the state and the extension) is comparable to that of the Kalman filter. Within the random-matrix framework, several further developments have been made, including [5], [7], [14], [15], etc. This approach estimates at time k both the random vector x_k, representing the kinematic state of the object centroid, and a symmetric positive definite (SPD) random matrix X_k, representing the object extension (simplified as an ellipsoid with size, shape, and orientation). Specifically, X_k is assumed the covariance of zero-mean Gaussian noise describing the uncertainty in the measurements caused by the object extension. This noise does not truly exist and can be referred to as the extension noise (versus the true-measurement noise).

Existing random-matrix algorithms assume that the measurement is linear in the kinematic state and in the extension noise. In practical tracking systems, however, measurements are nonlinear in the positions of the scattering centers of...
This paper makes the following contributions.

1) For EOT/GTT using nonlinear measurements, the matched linearization (ML) is proposed to statistically linearize nonlinear measurements for EOT. The ML provides an optimized form of a linearized measurement with its first two moments preserved. Extension information contained in the second moment is considered in the linearization. Such an approximation technique can be used in many other nonlinear problems. Calculation of the related coefficients in the linearized model using deterministic sampling is also provided.

2) A variational Bayesian (VB) approach to EOT/GTT using a random matrix is proposed based on the ML model. The proposed VB approach can be generally applied to EOT/GTT. A convergent iterative VB algorithm in a simple analytical form for state and extension estimation is also derived.

3) The effectiveness of the ML and the VB approach, compared with some existing algorithms for EOT using nonlinear measurements, is demonstrated by a simulation study.

This paper is organized as follows. Section II proposes the matched linearization for EOT using nonlinear measurements. The variational Bayesian scheme based on the linearized model is proposed for EOT in Section III. Section IV presents simulation results, and Section V concludes the paper.

II. MATCHED LINEARIZATION FOR EOT WITH NONLINEAR MEASUREMENTS

A. EOT Using Random Matrix

For EOT, using a random matrix to describe object extension was first proposed in [13]. It jointly estimates the kinematic state represented by a random vector \(x_k \) and the object extension represented by a \(d \times d \) SPD random matrix \(X_k \), where \(d \) is the dimension of the physical space for EOT. The extension is simplified as an ellipsoid surface defined as

\[
\{ y : (y - T_k x_k)^T X_k^{-1} (y - T_k x_k) = 1 \}
\]

where \(y \) is a variable representing the points on the surface of the ellipsoid, \(T_k \) is a matrix transforming the object centroid state to its centroid position, and “\(^T \)” stands for transpose.

1) State dynamic model: The following dynamic model with state \(x_k \) is assumed

\[
x_k = \Phi_k x_{k-1} + w_k
\]

where \(\Phi_k \) is a transition matrix and \(w_k \) is process noise.

In [13], \(\Phi_k \) and \(w_k \) are assumed as

\[
\Phi_k = F_k \otimes I_d, \quad w_k \sim \mathcal{N}(0, D_k \otimes X_k)
\]

where \(F_k \) is the dynamic matrix in the one-dimensional physical space (e.g., the Singer model used in [13]), \(I_d \in \mathbb{R}^{d \times d} \) is the identity matrix, “\(\otimes \)” stands for the Kronecker product, \(\mathcal{N}(\mu, \Sigma) \) denotes the normal distribution with mean \(\mu \) and covariance matrix \(\Sigma \), \(D_k = \sigma_k^2 D_k \) is the covariance matrix of the independent Gaussian process noise \(w_k \) in the one-dimensional model, \(\sigma_k^2 \) is the variance of the acceleration noise, and \(D_k \) is a coefficient matrix.

In [5], the above two quantities are more generally assumed. Specifically, \(\Phi_k \) is assumed as a general proper matrix and

\[
w_k \sim \mathcal{N}(0, Q_k)
\]

with \(Q_k \) being a covariance matrix.
2) Extension dynamic model: Assuming the extension is nearly time invariant, [5] and [13] adopted some equations with justification to describe extension evolution. The following evolution model was also proposed by [13]:

\[p[X_k|X_{k-1}] = \mathcal{W}(X_k; \delta_{k|k-1}, X_{k-1}/\delta_{k|k-1}) \]

where \(\mathcal{W}(Y; a, C) \) is the density of the Wishart distribution for the SPD random matrix \(Y \in \mathbb{R}^{d \times d} \), defined as

\[\mathcal{W}(Y; a, C) = C^{-1/2} \left| Y \right|^{-\frac{d+1}{2}} \exp \left(-C^{-1}Y/2 \right) \]

with \(a > d - 1 \). Here \(\exp(\cdot) = \exp(\text{trace}(\cdot)) \), \(c \) is the normalization factor (\(c, c_k \) will always be normalization factors in the sequel). These methods consider only evolution of the object size, but not shape nor orientation (e.g., \(\delta_{k|k-1} \) in (5) is a scalar). In [14] and [15], we proposed the following model:

\[p[X_k|X_{k-1}] = \mathcal{W}(X_k; \delta_k, A_k X_{k-1} A_k^T) \]

where \(\delta_k > d - 1 \) is the degrees of freedom, and the invertible matrix \(A_k \in \mathbb{R}^{d \times d} \) describes the evolution mode: i) scalar \(\delta_k \) can describe the dependence of the extension on size over time; ii) \(A_k \) can describe the dependence of the extension on orientation (if \(A_k \) is a rotation matrix), size (e.g., \(A_k = \lambda I_d \)), or shape. Note that (7) with \(A_k = I_d/\sqrt{\delta_k} \) and \(\delta_k = \delta_{k|k-1} \) reduces to (5).

In [8], an extension evolution model was proposed and it can describe the phenomenon that the extension orientation of an object changes with its centroid turn motions.

3) Measurement model: Let \(Z_k = \{ z_{k|r}^r \}_{r=1}^{n_k} \) denote a set of \(n_k \) vector-valued position measurements at time \(k \). In [13] and [5], the measurement model is assumed as

\[z_{k|k}^r = \hat{H}_k x_k + v_{k}^r, \quad r = 1, \ldots, n_k \]

where \(\hat{H}_k = H_k \otimes I_d \) with \(H_k = [1, 0, 0] \) being the measurement matrix in one-dimensional physical space (assuming that only positions are measured and the state in one-dimensional space is [position, velocity, acceleration])\(^7\), and \(v_k^r \) is white Gaussian noise independent across \(r \). \(v_k^r \) is assumed in [13] as

\[v_k^r \sim \mathcal{N}(0, X_k) \]

It is called extension noise with covariance \(X_k \) representing the object extension. To consider both the true-measurement error and the uncertainties in \(X_k \) simultaneously, [5] assumed

\[v_k^r \sim \mathcal{N}(0, \lambda X_k + R_k) \]

where \(\lambda \) is a scalar describing the effect of \(X_k \), and \(R_k \) is the covariance matrix of the true-measurement error. \(\lambda \) is used such that the Gaussian distribution in (10) is a good approximation of a more realistic distribution assumption (e.g., \(\lambda = 1/4 \) provides a good Gaussian approximation (10) for scattering centers uniformly distributed across the object extent) [5].

Model (10) indicates that the measurements have two sources of uncertainty: the extension and the noise of the true measurement. Although (10) is better than (9), it is not as handy as (9) for estimation. Thus, [5] proposed some approximations. Based on (10), [23] proposed a more rigorous estimator using the VB approach by approximating the joint distribution of the state, extension, and noiseless measurement as the product of their marginal distributions. A detailed comparison of these two approaches can be found in [24].

To describe the observation distortion of the extension, in [15] we proposed a model in the form of (8) with

\[v_k^r \sim \mathcal{N}(0, B_k X_k B_k^T) \]

where \(B_k \in \mathbb{R}^{d \times d} \) describes distortion of the observed extension (embodied by the covariance matrix of multiple measurements) from the actual one. Model (11) is convenient for deriving a Bayesian estimator in a simple form, as given in [14] and [15]. It can also incorporate (10) approximately. Assume \(X_k \approx \hat{X}_{k|k-1} \triangleq E[X_k|Z^{k-1}] \) and \(Z^{k-1} = \{ Z_1, \ldots, Z_{k-1} \} \). Then

\[\lambda X_k + R_k \approx B_k \hat{X}_{k|k-1} \]

where \(B_k \triangleq (\hat{X}_{k|k-1} + R_k)^{1/2} \hat{X}_{k|k-1}^{1/2} \). Using (12), the estimator in [15] can be used for EOT having true-measurement noise.

Based on (2) with (4) and (8) with (10), an approach to EOT is proposed by [5]. In this approach, the joint distribution \(p(x_k, X_k|Z^k) \) of \(x_k \) and \(X_k \) is obtained as

\[p(x_k, X_k|Z^k) = \mathcal{N}(x_k; \hat{x}_k, P_k) \mathcal{W}(X_k; \hat{X}_k, \tilde{X}_k) \]

from \(p(x_k, X_k|Z^{k-1}) = \mathcal{N}(x_k; \hat{x}_k, P_k) \mathcal{W}(X_k; \hat{X}_k, \tilde{X}_k) \mathcal{W}(X_k - \hat{X}_k, -\hat{X}_k) \) using \(Z_k \). Equivalently, the estimator calculates \(\{ \hat{x}_k, P_k, \hat{X}_k, \tilde{X}_k \} \) using \(\{ \hat{x}_{k-1}, P_{k-1}, \hat{X}_{k-1}, \tilde{X}_{k-1} \} \) and \(Z_k \). One cycle of this estimator is summarized in Table I.

Table I: The Bayesian algorithm [14] [15]

| State | $x_{k|k-1} = (P_{k-1} \otimes I_d) \hat{x}_{k-1}$ |
|-------|--|
| $P_{k|k-1} = F_k P_{k-1} F_k^T + D_k$ |
| $\hat{x}_k = \hat{x}_{k|k-1} + (K_k \otimes I_d) G_k$ |
| $P_k = (F_k - K_k S_k) (F_k - K_k S_k)^T + D_k$ |
| $S_k = H_k (P_{k-1} - K_k S_k) H_k^T + \frac{|\hat{X}_{k-1}|}{\sqrt{\lambda}}$ |
| $K_k = (F_k - K_k S_k) H_k^T S_k^{-1}$ |
| $G_k \triangleq \hat{x}_k - (H_k \otimes I_d) \hat{x}_{k|k-1}$ |

| Extension | $X_{k|k-1} \sim \mathcal{N}(\hat{X}_{k|k-1} - 2 \hat{X}_{k|k-1} + A_k X_{k-1} A_k^T)$ |
|------------|---|
| $\lambda X_k = \hat{X}_{k|k-1} - 2 \hat{X}_{k|k-1} + 2 \hat{X}_{k|k-1}$ |
| $\hat{X}_k = \hat{X}_{k|k-1} + N_k + B_k^T Z_k B_k$ |
| $\hat{X}_k = \hat{X}_{k|k-1} + N_k + B_k^T Z_k B_k$ |
| $N_k = S_k^{-1} G_k$ |

* z_k and \hat{Z} are given in (69).
B. Matched Linearization for EOT with Nonlinear Measurements

As shown above, the existing random-matrix EOT approach assumes that the measurement is linear in the state and the extension noise. In practice, measurements are nonlinear. Generally, a nonlinear measurement model has the form:

\[
\tilde{x}_k = h(x_k^p, u_k^r, \tilde{v}_k^r) \tag{15}
\]

for the \(r\)th of a total of \(n_k\) measurements at time \(k\), where \(x_k^p = Hx_k\) is the object centroid position, and

\[
u_k^r \sim \mathcal{N}(0, \lambda X_k), \quad \tilde{v}_k^r \sim \mathcal{N}(0, R_k) \tag{16}
\]

are white and they describe effects of the extension and the true-measurement noise, respectively. \(x_k^p, u_k^r, \) and \(\tilde{v}_k^r\) are assumed mutually independent conditioned on \(X_k\) and \(Z_k^{k-1}\). Example 1: Let \(x_k^p = [x, y]^T\), \(u_k^r = [u_x^r, u_y^r]^T\), and \(\tilde{v}_k^r = [\tilde{v}_x, \tilde{v}_y]^T\). The range and angle measurement of a scattering center can be

\[
z_k^r = \begin{bmatrix} \bar{r} \\ \bar{\theta} \end{bmatrix}_k = \begin{bmatrix} \sqrt{(x + \tilde{u}_x)^2 + (y + \tilde{u}_y)^2} \\ \arctan(\frac{\tilde{y}}{\tilde{x} + \tilde{u}_x}) \end{bmatrix}_k \tag{17}
\]

where the sensor is assumed located in the origin.

For a nonlinear function of a random vector \(x\)

\[
y = g(x) \tag{18}
\]

the optimal linearization of \(g(x)\) in the MMSE sense can be obtained as \([21]\)

\[
L(x) = \bar{g}(x) + C_{gx}C_x^{-1}(x - \bar{x}) \tag{19}
\]

where \(\bar{x} \triangleq E[x], \bar{g}(x) \triangleq E[g(x)], C_{gx} \triangleq \text{cov}(g(x), x), C_x \triangleq \text{cov}(x).\) The linearization error \(e = g(x) - L(x)\) is zero mean and has the covariance

\[
\text{cov}(e) = C_g - C_{gx}C_x^{-1}C_{gx}^T \tag{20}
\]

For a dynamic problem, the above linearization can be applied to both the dynamic and the measurement functions, and then a statistically linearized system is obtained. For dynamic estimation, existing popular nonlinear filters can be viewed as linear MMSE estimators using different moment-approximation techniques, e.g., the unscented transformation (UT) \([11]\) and the Gaussian Hermite quadrature (GHQ) \([1]\). Their integration with linear MMSE estimation can be considered as special cases of this statistical linearization \([20]\).

Inspired by the above optimal linearization, we consider linearizing the nonlinear function in (15) as

\[
h(x_k^p, u_k^r, \tilde{v}_k^r) \approx L_h(x_k^p, \tilde{v}_k^r) = Hx_k^p + G\tilde{v}_k^r + b_k \tag{21}
\]

with \(H, G, b_k\) to be determined. Here \(x_k^p\) is the same as in (15). Noise \(\tilde{v}_k^r\) differs from \(u_k^r\) and \(\tilde{v}_k^r\) in (15) and we assume:

1. \(\tilde{v}_k^r\) is white and Gaussian distributed:

\[
\tilde{v}_k^r \sim \mathcal{N}(0, \hat{B}_kX_k\hat{B}_k^T) \tag{22}
\]

2. \(\tilde{v}_k^r\) depends on \(u_k^r\) and \(\tilde{v}_k^r\) but \(\tilde{v}_k^r\) and \(x_k^p\) are uncorrelated conditioned on \(Z_k^{k-1}\). Remark 1: (a) \(\tilde{v}_k^r\) with \(X_k\) in its covariance is used to preserve the information of the extension represented by \(X_k\) after linearization, and this information is contained in the second moment of the original measurement described by (15).

(b) The effect of \(u_k^r\) and \(\tilde{v}_k^r\) on the measurement covariance is replaced by that of \(\tilde{v}_k^r\). Specifically, the second moments of the measurement before and after the linearization are guaranteed to be identical by designing a proper \(G\tilde{v}_k^r\).

According to (19) and treating \(x_k^p\) and \(\tilde{v}_k^r\) as the driving variables for the measurement, we can obtain the optimal linearization as

\[
L_h(x_k^p, \tilde{v}_k^r) = \bar{h} + C_{hx\tilde{v}}C_{\tilde{v}^r}^{-1}(x_k^p - \bar{x}_k^p) + C_{h\tilde{v}\tilde{v}}C_{\tilde{v}^r}^{-1}\tilde{v}_k^r \tag{23}
\]

under the assumption that \(\tilde{v}_k^r\) is zero-mean and independent of \(x_k^p\). Here,

\[
x_k^p \triangleq E[x_k^p|Z_k^{k-1}] \tag{24}
\]

\[
C_{\tilde{v}v} \triangleq \text{cov}(\tilde{v}_k^r|Z_k^{k-1}) \tag{25}
\]

\[
\bar{h} \triangleq E[h(x_k^p, u_k^r, \tilde{v}_k^r)|Z_k^{k-1}] \tag{26}
\]

\[
C_{hx\tilde{v}} \triangleq \text{cov}(h(x_k^p, u_k^r, \tilde{v}_k^r), x_k^p|Z_k^{k-1}) \tag{27}
\]

\[
C_{h\tilde{v}\tilde{v}} \triangleq \text{cov}(h(x_k^p, u_k^r, \tilde{v}_k^r), \tilde{v}_k^r|Z_k^{k-1}) \tag{28}
\]

Their calculation will be discussed later.

\[
L_h(x_k^p, \tilde{v}_k^r) \text{ is unbiased because } E[L_h(x_k^p, \tilde{v}_k^r)|Z_k^{k-1}] = \bar{h} = E[h(x_k^p, u_k^r, \tilde{v}_k^r)|Z_k^{k-1}] \text{ according to (23) and (26). Its covariance can be obtained as}
\]

\[
\text{cov}(L_h(x_k^p, \tilde{v}_k^r)|Z_k^{k-1}) = C_{hx\tilde{v}}C_{\tilde{v}^r}^{-1}C_{\tilde{v}\tilde{v}} + C_{h\tilde{v}\tilde{v}}C_{\tilde{v}^r}^{-1}C_{h\tilde{v}\tilde{v}} \tag{30}
\]

A proof of (30) is given in Appendix A. According to Remark 1, the second moment of the measurement is also to be preserved. Setting \(\text{cov}(L_h(x_k^p, \tilde{v}_k^r)|Z_k^{k-1}) = C_h \triangleq \text{cov}(h(x_k^p, u_k^r, \tilde{v}_k^r)|Z_k^{k-1})\), we have

\[
\text{cov}(L_h(x_k^p, \tilde{v}_k^r)|Z_k^{k-1}) = C_h \Rightarrow C_{hx\tilde{v}}C_{\tilde{v}^r}^{-1}C_{\tilde{v}\tilde{v}} + C_{h\tilde{v}\tilde{v}}C_{\tilde{v}^r}^{-1}C_{h\tilde{v}\tilde{v}} = C_h \Leftrightarrow C_{h\tilde{v}\tilde{v}}C_{\tilde{v}^r}^{-1}C_{\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} \tag{31}
\]

Assume \(z_k^r\) and \(\tilde{v}_k^r\) have the same dimension (e.g., (8) and (17)). Then \(C_{h\tilde{v}\tilde{v}}\) can be obtained based on (31) as

\[
C_{h\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} \tag{32}
\]

and thus

\[
C_{h\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} \tag{33}
\]

From (22), we have

\[
C_{\tilde{v}v} \triangleq E[\tilde{v}_k^r(\tilde{v}_k^r)^T|Z_k^{k-1}] = \hat{B}_kX_k\hat{B}_k^T \tag{34}
\]

where \(\hat{X}_k|k-1 \triangleq E[X_k|Z_k^{k-1}]\). A proof of (34) is given in Appendix B. Then (33) can be obtained as

\[
C_{h\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} = C_{h\tilde{v}\tilde{v}} \tag{35}
\]

The linearized \(L_h(x_k^p, \tilde{v}_k^r)\) can be obtained by substituting (35) into (23) as

\[
L_h(x_k^p, \tilde{v}_k^r) = \bar{h} + C_{hx\tilde{v}}C_{\tilde{v}^r}^{-1}(x_k^p - \bar{x}_k^p) + C_{h\tilde{v}\tilde{v}}C_{\tilde{v}^r}^{-1}\tilde{v}_k^r \tag{36}
\]
Note that \tilde{B}_k is still unknown in (36). Actually, since $\tilde{v}_k^r \sim N(0, \tilde{B}_k X_k \tilde{B}_k^T)$ by (22), \tilde{v}_k^r can be equivalently rewritten as
\[
\tilde{v}_k^r = \tilde{B}_k v_k^r
\]
where $v_k^r \sim N(0, X_k)$.

Then the matched linearization can be finally obtained by substitution of (37) into (36) as
\[
L_k(x_k^p, v_k^r) = \tilde{h} + C_{h|x} c_{x|x}^{-1} (x_k^p - \bar{x}_k) + C_{h|x}^{1/2} \tilde{X}_{k|k-1}^{1/2} v_k^r
\]
(38)

Remark 2: (a) Eq. (38) is the final form of linearized $h(x_k^p, v_k^r, \tilde{v}_k^r)$. It has the same first and second moments as the original nonlinear function $h(x_k^p, v_k^r, \tilde{v}_k^r)$ (15). Thus, the above linearization is named matched linearization (ML).

(b) The physical meaning of zero-mean v_k^r is not important since only its covariance X_k needs to be considered and estimated.

Example 2: As proposed in [5], one reasonable measurement equation is
\[
z_k^r = \tilde{H}_k x_k + v_k^r = x_k^p + v_k^r, \quad v_k^r \sim N(0, \lambda X_k + R_k)
\]
(39)

which can be rewritten as
\[
z_k^r = h(x_k^p, v_k^r, \tilde{v}_k^r) = x_k^p + u_k^r + \tilde{v}_k^r
\]
\[
u_k^r \sim N(0, \lambda X_k), \quad \tilde{v}_k^r \sim N(0, R_k)
\]
(40)

The ML equation of (40) can be obtained using (38) as
\[
z_k^r = H x_k^p + G v_k^r, \quad v_k^r \sim N(0, X_k)
\]
(41)

with
\[
H = C_{h|x} c_{x|x}^{-1}, \quad G = C_{h|x}^{1/2} \tilde{X}_{k|k-1}^{1/2} (\lambda \tilde{X}_{k|k-1} + R_k)^{1/2}
\]
\[
= C_{h|x}^{1/2} \tilde{X}_{k|k-1}^{1/2} = \lambda \tilde{X}_{k|k-1} + R_k
\]
(42)

because
\[
C_{h|x} = \text{cov}(h(x_k^p, v_k^r, \tilde{v}_k^r), x_k^p | Z^{k-1}) = C_{x|x}
\]
\[
C_{h|x} \sim C_{h|x} - C_{h|x} c_{x|x}^{-1} c_{x|x}^{T} = \lambda \tilde{X}_{k|k-1} + R_k
\]
(43)

Note that (42) is the same as (12), which justifies that (12) is an ML form of (39). Proofs of (43) and (44) are given in Appendices C and D, respectively.

C. Coefficient Calculation for Matched Linearization

In (38), the following quantities are to be calculated (note that $C_{h|x} = C_{\tilde{h}} - C_{h|x} c_{x|x}^{-1} c_{x|x}^{T}$ according to (31)):
\[
\tilde{X}_{k|k-1}, \quad \tilde{h}, \quad C_{\tilde{h}}, \quad C_{h|x}, \quad C_{x|x}
\]
(45)

These quantities are all expectations conditioned on Z^{k-1}, as shown in (24)–(29), which rely on the predicted joint distribution $p[x_k, X_k | Z^{k-1}]$.

At time k, existing methods can obtain the predicted distribution as follows. (a) In [13], [14], and [15]:
\[
p[x_k, X_k | Z^{k-1}] = p[x_k | X_k, Z^{k-1}] p[X_k | Z^{k-1}]
\]
\[
= N(x_k; \hat{x}_{k|k-1}, P_{k|k-1} \otimes X_k) D W(X_k; \hat{\alpha}_{k|k-1}, \tilde{X}_{k|k-1})
\]
(46)

(b) In [5]:
\[
p[x_k, X_k | Z^{k-1}] = N(x_k; \hat{x}_{k|k-1}, P_{k|k-1} \otimes X_k) D W(X_k; \hat{\alpha}_{k|k-1}, \tilde{X}_{k|k-1})
\]
\[
\times D W(X_k; \hat{\alpha}_{k|k-1}, \tilde{X}_{k|k-1})
\]
(47)

According to (46) or (47), $\tilde{X}_{k|k-1} \sim D [E[X_k | Z^{k-1}]]$ in (45) can be obtained as
\[
\tilde{X}_{k|k-1} \sim D [E[X_k | Z^{k-1}]] = \tilde{X}_{k|k-1} / (\hat{\alpha}_{k|k-1} - 2d - 2)
\]

based on $p[x_k | Z^{k-1}] = D W(X_k; \hat{\alpha}_{k|k-1}, \tilde{X}_{k|k-1})$ according to (14). The other four quantities in (45) are all expectations of functions of x_k^p, u_k^r, and \tilde{v}_k^r, as defined by (24)–(29). For any function $f(x_k^p, u_k^r, \tilde{v}_k^r)$ of them, we have
\[
E[f(x_k^p, u_k^r, \tilde{v}_k^r) | Z^{k-1}]
\]
\[
= \int f(x_k^p, u_k^r, \tilde{v}_k^r) p[x_k^p, u_k^r, \tilde{v}_k^r | Z^{k-1}] d x_k^p d u_k^r d \tilde{v}_k^r
\]
\[
= \int f(x_k^p, u_k^r, \tilde{v}_k^r) p[x_k^p, u_k^r | Z^{k-1}] p[\tilde{v}_k^r] d x_k^p d u_k^r d \tilde{v}_k^r
\]
(48)

Eq. (48) holds because \tilde{v}_k^r is independent of x_k^p, u_k^r, and Z^{k-1}. Here, the key is to obtain $p[x_k^p, u_k^r | Z^{k-1}]$ since $p[\tilde{v}_k^r]$ is given by (16). This can be done according to (46) or (47) respectively, as follows.

(a) Based on (46), we have
\[
p[x_k^p, u_k^r | Z^{k-1}] = T(x_k^p; \hat{\alpha}_{k|k-1} + s^a, x_k^p, \tilde{X}_{k|k-1} \otimes \tilde{X}_{k|k-1})
\]
(49)

where $x_k^p \sim \mathcal{N}(x_k^p, \tilde{X}_{k|k-1} + s^a = s^a - s^d d - 2d - 2$ with $s^a = 1$ being the dimension of x_k^p in one direction of a physical space ($s^a = 1$ because x_k^p is the position of an object), $T(\cdot)$ is the multivariate t-distribution, and
\[
\tilde{X}_{k|k-1} \sim \mathcal{N}(x_k^p, \tilde{X}_{k|k-1} + s^a)
\]
(50)

Then $p[x_k^p, u_k^r | Z^{k-1}]$ can be approximated as a Gaussian distribution by moment matching:
\[
p[x_k^p, u_k^r | Z^{k-1}] \approx \mathcal{N}(x_k^p; \tilde{X}_{k|k-1}, \tilde{X}_{k|k-1} \otimes \tilde{X}_{k|k-1} \otimes \tilde{X}_{k|k-1})
\]
(51)

The first two moments of x_k^p in (51) are the same as those of (49). They are obtained according to the properties of the multivariate t-distribution.

(b) Based on (47), we have
\[
p[x_k^p, u_k^r | Z^{k-1}] = \mathcal{N}(x_k^p; \tilde{X}_{k|k-1}, \tilde{X}_{k|k-1} \otimes \tilde{X}_{k|k-1})
\]
\[
\times T(u_k^r; \hat{\alpha}_{k|k-1} - 2d - 2, 0, \lambda \tilde{X}_{k|k-1})
\]
(52)

Then $p[x_k^p, u_k^r | Z^{k-1}]$ can also be approximated as a Gaussian distribution by moment matching:
\[
p[x_k^p, u_k^r | Z^{k-1}] \approx \mathcal{N}(x_k^p; \tilde{X}_{k|k-1}, \tilde{X}_{k|k-1} \otimes \tilde{X}_{k|k-1})
\]
\[
\times \mathcal{N}(u_k^r; 0, \lambda \tilde{X}_{k|k-1} / (\hat{\alpha}_{k|k-1} - 2d - 2))
\]
(53)

Proofs of Eqs. (49) and (52) are given in Appendices F and G, respectively.

Note $p[\tilde{v}_k^r] = \mathcal{N}(\tilde{v}_k^r; 0, R_k)$ in (48). And $p[x_k^p, u_k^r | Z^{k-1}]$ in (48) is also approximated as a Gaussian distribution in (51) or (53). Then the expectation $E[f(x_k^p, u_k^r, \tilde{v}_k^r) | Z^{k-1}]$ in (48) can be easily calculated by deterministic sampling under the
Gaussian assumption, e.g., the unscented transformation (UT) [11] or the Gauss-Hermite quadrature (GHQ) [1] rule. For this purpose, the expectation (48) can be equivalently written in the following more compact form:

\[
E[f(x^A_k, u^r_k, \tilde{v}_k^r)|Z^{k-1}] = E[f(x^A_k)|Z^{k-1}]
\]

where \(x^A_k \triangleq [(x^P_k)^T, (u^r_k)^T, (\tilde{v}_k^r)^T]^T\) and \(p(x^A_k|Z^{k-1}) = \mathcal{N}(x^A_k; \tilde{x}^A_k, P^A_k)\) with

\[
\tilde{x}^A_k = \begin{bmatrix} \tilde{x}^P_k|k-1 \\ 0_{2d \times 1} \end{bmatrix}, \quad P^A_k = \begin{bmatrix} P^P_{k|k-1} & 0_{d \times d} \\ 0_{d \times d} & P^C_{k|k-1} \end{bmatrix}
\]

for (46), and

\[
x^A_k = \begin{bmatrix} x^P_k|k-1 \\ 0_{2d \times 1} \end{bmatrix}, \quad P^A_k = \begin{bmatrix} P^P_{k|k-1} & 0_{d \times d} \\ 0_{d \times d} & P^C_{k|k-1} \end{bmatrix}
\]

for (47).

Remark 3: With the above calculation, a linearized function \(L_h(x^A_k, v^r_k)\) in (38) can be obtained. If \(C_{h|x^r}\) is invertible, some existing random-matrix algorithms [13], [14], and [15] can be used to estimate \(x_k\) and \(X_k\). In this case, the measurement function (38) should be converted as follows:

\[
z^r_k = h(x^P_k, u^r_k, \tilde{v}_k^r) + C_{h|x^r}(x^P_k - \tilde{x}^P_k) + \frac{1}{2} C_{h|x^r}^{-1} \tilde{X}_{k|k-1}^{-1} v^r_k \Rightarrow \hat{z}^r_k = \tilde{x}^P_k + C_{h|x^r}^{-1} C_{h|x^r} \hat{X}_{k|k-1}^{-1} v^r_k
\]

(54)

where

\[
\hat{z}^r_k \triangleq C_{h|x^r}^{-1}(z^r_k - \tilde{h}(x^P_k, u^r_k, \tilde{v}_k^r)) + \tilde{x}^P_k
\]

Note that \(\hat{z}^r_k = \tilde{H}_k x_k\) with \(\tilde{H}_k\) of (8), and thus (54) can be used by the approaches based on (8) and (9) or (11). For EOT, the existing algorithms can use the converted measurement \(\hat{z}^r_k\) (54) to satisfy the assumptions on the measurement function (8).

III. VARIATIONAL BAYESIAN APPROACH TO EOT USING RANDOM MATRIX

Consider the following general model

\[
\begin{cases}
x_k = \Phi_k x_{k-1} + w_k, \quad w_k \sim \mathcal{N}(0, Q_{k-1}) \\
p[x_k|X_k] = \mathcal{W}(X_k; \delta_k, A_k X_{k-1} A_k^T) \\
z^r_k = \hat{H}_k x_k + v^r_k, \quad v^r_k \sim \mathcal{N}(0, B_k X_k B_k^T)
\end{cases}
\]

(56)

where \(r = 1, \ldots, n_k\). Let \(Z_k = \{z^r_k\}_{r=1}^{n_k}\) and \(\hat{Z}_k = \{\hat{z}^r_k\}_{r=1}^{n_k}\). Note that the original model (2) and (8) must be in the following special forms:

\[
\Phi_k = F_k \otimes I_d, \quad \hat{H}_k = H_k \otimes I_d, \quad Q_{k-1} = D_k \otimes X_k
\]

(57)

but (56) does not have such restrictions. And the matched linearization (38) is a special case of (56). In [25], a variational Bayesian (VB) adaptive Kalman filter was proposed to estimate the state and the covariance matrix of the measurement noise. However, this filter does not solve the above estimation problem.

For recursive estimation, we make the following usual assumption for the random-matrix approach:

\[
p[x_{k-1}, X_{k-1}|Z^{k-1}] = \mathcal{N}(x_{k-1}; \hat{x}_{k-1}, P_{k-1}) \mathcal{W}(X_{k-1}; \hat{\alpha}_{k-1}, \hat{X}_{k-1})
\]

(58)

with \(\hat{x}_{k-1}, P_{k-1}, \hat{\alpha}_{k-1}\), and \(\hat{X}_{k-1}\) to be obtained recursively based on model (56) and measurements.

A. One-step Prediction

Under assumption (58), for model (56) we directly obtain the density of the predicted state as

\[
p[x_k|Z^{k-1}] = \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1})
\]

(59)

where

\[
\hat{x}_{k|k-1} = \Phi_k \hat{x}_{k-1}, \quad P_{k|k-1} = \Phi_k P_{k-1} \Phi_k^T + Q_{k-1}
\]

(60)

For extension prediction, we have [15]

\[
p[X_k|Z^{k-1}] = \mathcal{W}(X_k; \hat{\alpha}_{k|k-1}, \hat{X}_{k|k-1})
\]

(61)

with \(\hat{\alpha}_{k|k-1}\) and \(\hat{X}_{k|k-1}\) given in Table I, as proven in [15]. Then the predicted joint density is

\[
p[x_k, X_k|Z^{k-1}] = p[x_k|Z^{k-1}] p[X_k|Z^{k-1}]
\]

(62)

B. Update Using Variational Bayesian Approximation

In VB approximation, the posterior joint density of the state and the extension is approximated by the product of two functions as

\[
p[x_k, X_k|Z^{k}] \approx Q_{x}(x_k) Q_{X}(X_k)
\]

(63)

where \(Q_{x}(x_k)\) and \(Q_{X}(X_k)\) are obtained by minimizing the following KL divergence [28] between the approximating density and the true density:

\[
D_{KL}(Q_{x}(x_k) Q_{X}(X_k)||p[x_k, X_k|Z^{k}]) = \int p(y) \ln \left(\frac{Q_{x}(x_k) Q_{X}(X_k)}{p(x_k, X_k|Z^{k})}\right) dy
\]

(64)

where

\[
Q_{x}(x_k) \propto e^{f \ln[p(Z_k, X_k|x_k, X_k|z^{k-1})] Q_{X}(X_k) dx_k}
\]

(65)

\[
Q_{X}(X_k) \propto e^{f \ln[p(Z_k, x_k, X_k|z^{k-1})] Q_{X}(X_k) dx_k}
\]

(66)

Actually, (63) indicates that the posterior joint density is approximated by the product of the posterior marginal densities of \(x_k\) and \(X_k\). Iteratively using (65) and (66), \(Q_{x}(x_k)\) and \(Q_{X}(X_k)\) can be calculated after initialization, given in the next subsection. Based on model (56), we have

\[
p[Z_k, x_k, X_k|Z^{k-1}] = p[Z_k|x_k, X_k] p[x_k, X_k|Z^{k-1}]
\]

(67)

where \(p[Z_k, X_k|Z^{k-1}]\) is given by (62) and

\[
p[Z_k, x_k, X_k] \propto \mathcal{N}(\tilde{z}_k; \tilde{H}_k x_k, (B_k X_k B_k^T) / n_k) \times \mathcal{W}(\tilde{Z}_k; n_k - 1, B_k X_k B_k^T)
\]

(68)

with

\[
\tilde{Z}_k = \frac{1}{n_k} \sum_{r=1}^{n_k} z^r_k, \quad \tilde{z}_k = \sum_{r=1}^{n_k} (z^r_k - \tilde{z}_k)(z^r_k - \tilde{z}_k)^T
\]

(69)
according to Eq. (16) in [15].

Substituting (62) and (68) into (67) and then into (65) and (66) yields

$$Q_x(x_k) = N(x_k; ̂x_k, P_k)$$

$$Q_X(X_k) = TV(X_k; ̂α_k, ̂X_k)$$

with (denoting the dimension of x_k by n_x)

$$\dot{x}_k = ̂x_{k|k−1} + K(\tilde{z}_k − ̃H_k ̂x_{k|k−1})$$

$$P_k = (I_{n_x} − K ̃H_k^TP_{k|k−1})K = P_{k|k−1} ̃H_k^TS_k^{-1}$$

$$S_k = ̃H_kP_{k|k−1} ̃H_k^T + B_k ̂X_kB_k^T/(n_k(\hat{α}_k − d − 1))$$

$$α_k = ̂α_{k|k−1} + n_k$$

$$X_k = ̂X_{k|k−1} + B_k^{-1}[Z_k + n_k(\tilde{z}_k − ̃H_k ̂x_k)](i)$$

$$+ n_k ̃H_kP_k ̃H_k^T B_k^{-T}$$

where (·) means the term right before it. A proof of (70)–(76) is given in Appendix G.

C. One Cycle of VB Approach to EOT

For recursive estimation, the above VB-based EOT approach at k obtains $p[x_k, X_k|Z_k] = N(x_k; ̂x_k, P_k)TV(X_k; ̂α_k, ̂X_k)$ based on $p[x_{k|k−1}, X_{k|k−1}|Z_{k|k−1}]$ in the same form (58). One cycle of this approach is:

1) Prediction

Calculate $\{\dot{x}_{k|k−1}, P_{k|k−1}\}$ using (60) and $\{α_{k|k−1}, ̂X_{k|k−1}\}$ following the corresponding steps in Table I. Then the predicted density is $p[x_k, X_k|Z_k] = N(x_k; ̂x_k, P_k)TV(X_k; ̂α_k, ̂X_k)$. The termination condition can also be designed by the above iteration will converge.

2) Update (N iterations, N is designed a priori)

A pseudocode description of the VB update procedure is:

Algorithm VB update

input: $\dot{x}_{k|k−1}, P_{k|k−1}, ̂α_{k|k−1}, ̂X_{k|k−1}, N, ̂z_k, ̂Z_k$

output: $\dot{x}_k, P_k, ̂α_k, ̂X_k$

$α_k^{(i)} ← ̂α_{k|k−1}, X_k^{(i)} ← ̂X_{k|k−1}, i ← 1$

while $i ≤ N$ do

$\{α_k, ̂X_k\} ← \{α_k^{(i−1)}, ̂X_k^{(i−1)}\}$

$\dot{x}_k^{(i)} ← (72), P_k^{(i)} ← (73)$

$\{\dot{x}_k, P_k\} ← \{\dot{x}_k^{(i)}, P_k^{(i)}\}$

$α_k^{(i)} ← (75), X_k^{(i)} ← (76)$

$i ← i + 1$

$\dot{x}_k ← \dot{x}_k^{(i)}, P_k ← P_k^{(i)}, ̂α_k ← α_k^{(i)}, ̂X_k ← X_k^{(i)}$

return $\dot{x}_k, P_k, ̂α_k, ̂X_k$

Here, “$←$” means “is assigned as.” Note that the posterior density $p[x_k, X_k|Z_k] = N(x_k; ̂x_k, P_k)TV(X_k; ̂α_k, ̂X_k)$ is computed. The matched linearization using the extension estimate $摄入X_k|Z_k$ is $̂x_k/(\hat{α}_k − 2d − 2)$.

Remark 4: (a) The above iteration will converge due to the general properties of the VB approach, as proven in [28].

(b) The termination condition can also be designed by comparing the difference between the obtained results at two consecutive iterations, since the above iteration will converge.

(c) Only few iterations are needed for effective estimation, to be demonstrated by simulation results given next.

IV. SIMULATION STUDY

In this section, the above VB approach for EOT with nonlinear measurements is compared with the approach recently proposed in [9] [29] and the one proposed in [26] [27]. We don’t know any other random matrix algorithms specifically considering nonlinear measurements.

In [9] [29], nonlinear polar measurements with measurement equation (17) are considered. The measurement is first converted into the Cartesian coordinates:

$$z_k^e = [r_k^e \cos(\tilde{θ}_k) r_k^e \sin(\tilde{θ}_k)]^T$$

Then the converted measurement is written in the following form [9] [29]

$$z_k^e = ̃H_k x_k + v_k^e, v_k^e ∼ N(0, λ X_k + R_k(p_k))$$

where $̃H_k$ is the same as in (8). Assume the noise in the polar coordinates is

$$v_k^e = [v_k^e, v_k^e]^T ∼ N(0, diag(σ_r^2, σ_θ^2))$$

where v_k^e and v_k^e are true-measurement errors of range and angle, respectively, as defined in (17). Then $R_k(p_k)$ is given as [9] [29]

$$R_k(p_k) = J(p_k) diag(σ_r^2, σ_θ^2) J(p_k)^T$$

$$J(p_k) = \begin{bmatrix} \cos(θ) & −r \sin(θ) \\ \sin(θ) & r \cos(θ) \end{bmatrix}_k$$

where p_k represents the true position of a scattering center, and range r and bearing $θ$ is calculated using p_k. Eq. (80) is based on a first-order approximation of the polar-to-Cartesian conversion of the polar measurement noise, given in [3].

In [26] [27], nonlinear polar measurements are also converted into the form (78) with $R_k(p_k)$ given as

$$R_k(p_k) ≈ \frac{(σ_r^2 − r^2 σ_θ^2)}{2} \begin{bmatrix} b + \cos(2θ) & \sin(2θ) \\ \sin(2θ) & b − \cos(2θ) \end{bmatrix}_k$$

$$b = (σ_r^2 + r^2 σ_θ^2)/(σ_r^2 − r^2 σ_θ^2)$$

In practice, p_k is unknown and it is thus approximated by $p_k = ̃H_k x_k{̃X_k|k−1}$ with $x_k{̃X_k|k−1}$ being the one-step prediction of the centroid state [9] [29]. Based on the converted measurement, existing random matrix estimation algorithms can be applied: in [29] and [27], the one of [5] is applied using (78) for nonlinear estimation. Thus, we refer to the approaches based on [5] using (80) and (81) as the current EOT approach 1 (EOT-C1) and the current EOT approach 2 (EOT-C2), respectively.

In our variational Bayesian approach for EOT using ML (VB-EOT-ML), the ML measurement model (38) is used. The matched linearization is based on the converted measurement (77) without using (78). Multiple versions of this approach with different numbers of iterations N are compared to show how N affects estimation performance. All these algorithms use the same GHQ rule with the same number of quadrature points to calculate the moments needed in models (38) and (54). Three quadrature points are used in each dimension of the augmented random vector (including x_k^e, u_k^e, and v_k^e in (48)) for moment calculation.
The extended object is an ellipse with diameters of 340m and 80m (roughly the size of an aircraft carrier of the Nimitz-class). Starting from the position \((-10000m, 5000m)\), the object moves at a constant velocity \((v, v)\) and the speed \(\sqrt{2}v\) was assumed to be 27 knots. The trajectory of the object is similar to the first non-maneuvering stage of the EOT scenario in [15]. The sampling period \(T_s = 10s\). Measurements are ranges and bearings described by Eq. (17). The scattering centers are uniformly distributed over the extension \(X_k, u^k_r = [u^r_k, u^i_k]^T\) is the location of a scattering center relative to the centroid. Thus, according to [5], the distribution of \(u^r_k\) can be approximated by \(N(0, AX_k)\) with \(\lambda = 1/4\). In (79), \(\bar{\sigma}_r = 50m\) and different values of \(\bar{\sigma}_b\) are considered to test the effectiveness of the proposed approach, because the bearing is highly nonlinear in the estimand. And \(\bar{\sigma}_r, u^r_k, \) and \(u^i_k\) are mutually independent of each other. The number of measurements at each scan is assumed Poisson distributed with mean \(\lambda_p\). To test estimation performance related to the number of measurements, scenarios with \(\lambda_p = 5, 10, \) and 15 are simulated.

Root-mean-square errors (RMSE) and average Gaussian Wasserstein distances (GWD) over \(N_s = 300\) Monte Carlo runs are compared. The RMSE of extension estimation is calculated as in [5]. The GWD proposed in [31] is adopted here because it is capable of evaluating the joint performance of state and extension estimation for ellipsoidal objects. The results are shown in Figure 1 for \(\bar{\sigma}_b = 0.01\)rad with \(\lambda_p = 10\), in Figure 2 for \(\bar{\sigma}_b = 0.1\)rad with \(\lambda_p = 10\), in Figure 3 for \(\bar{\sigma}_b = 0.1\)rad with \(\lambda_p = 5\), and in Figure 4 for \(\bar{\sigma}_b = 0.1\)rad with \(\lambda_p = 15\).

As shown in the figures, the VB-EOT-ML consistently outperforms EOT-C1 and EOT-C2 for extension estimation and joint estimation (reflected by average GWD) for different \(\lambda_p\), especially when the bearing noise level is high. This indicates that the proposed ML approach is more effective than those adopted in EOT-C1 and EOT-C2, given by (80) and (81), respectively. EOT-C1 and EOT-C2 perform almost identically, and they become less valid as the bearing noise level increases, as shown in Figures 1(c), 2(c), 3(c), and 4(c). The consistent performance of the VB-EOT-ML illustrates that the extension information contained in the measurement is indeed reserved after the matched linearization. All approaches have similar performance in kinematic state estimation. This indicates that the state estimation is not largely affect by the extension estimation in all approaches. One possible reason is that EOT-C1 and EOT-C2 using the estimator in [5] have an underlying assumption that the kinematic state is independent of the extension, as shown by Eq. (14) in [5]. The variational approximation of the VB-EOT-ML optimally decouples the posterior densities of the state and the extension, so the estimation error of one does not affect that of the other. Actually, in this scenario, the kinematic state is independent of the extension. Note that if the kinematic state and the extension are dependent, the compared approaches may have worse performance than approaches utilizing this correlation information. Since the extension estimation is a key characteristic of EOT, the comparison results demonstrated the effectiveness of the proposed approach.

As can also be observed, the VB-EOT-ML algorithm with
Figure 2: RMSE and Average GWD ($\sigma_{\theta} = 0.1\text{rad}$, $\lambda_p = 10$)

Figure 3: RMSE and Average GWD ($\sigma_{\theta} = 0.1\text{rad}$, $\lambda_p = 5$)
$N = 1, 2, 6$ iterations performs almost identically, especially for joint estimation as shown in Figures 1(d), 2(d), 3(d), and 4(d). This indicates that the number of iterations does not affect the final results significantly in this scenario.

The simulation results thus demonstrate the effectiveness of the proposed ML and VB approach for EOT with nonlinear measurements.

V. CONCLUSION

For EOT and GTT with nonlinear measurements, the so-called matched linearization is proposed to linearize the nonlinear measurement considering special properties of the random matrix. It is linear in both the state and the measurement noise, where the optimal weighting matrix of the latter is modified to preserve the second moment of the measurement. With it, the optimal linearized form of the kinematic state is obtained while the first two moments of the nonlinear measurement are preserved. This is important since the second moment contains important information of the extension. This linearization approach can be generally applied since it does not depend on specific structures of nonlinear measurement functions. Moreover, it can be numerically more stable than the methods based on function linearization techniques, e.g., Taylor series expansions, since only the first two moments of the related quantities are needed. And these moments can also be obtained easily by existing deterministic sampling methods.

Based on the ML model, a variational Bayesian approach to estimating the state and the extension is proposed. The VB approach can be generally applied and this iterative approach also has a simple analytical form. The iteration in the approach is convergent, which is guaranteed by the general properties of the VB approximation. Simulation experiments show that the number of iteration does not affect estimation results significantly, especially for joint estimation. That is, the approach converges very quickly.

Simulation results demonstrated the effectiveness of the proposed linearization and estimation approaches compared with two newly proposed random matrix approaches for nonlinear estimation, especially when the true-measurement noise level is high. In summary, the proposed approach and algorithm can be generally applied to EOT and GTT problems with different types of nonlinear measurements.

APPENDIX

A. Calculation of $\text{cov}(L_h(x_k^p, \hat{v}_k^e)|Z^{k-1})$ (30)

According to (23), $\text{cov}(L_h(x_k^p, \hat{v}_k^e)|Z^{k-1})$ can be given as

$$\text{cov}(L_h(x_k^p, \hat{v}_k^e)|Z^{k-1}) = E[(L_h(x_k^p, \hat{v}_k^e) - \bar{h})(\cdot)^T|Z^{k-1}]$$

$$= E[(C_{hx}\sigma^{-1} x_k^p - \bar{h})(\cdot)^T|Z^{k-1}]$$

$$= E[(C_{hx}\sigma^{-1} x_k^p - \bar{h})(\cdot)^T|Z^{k-1}] + E[(C_{hv}\sigma^{-1} \hat{v}_k^e)(\cdot)^T|Z^{k-1}]$$

$$= C_{hx}\sigma^{-1} C_{hx}^T + C_{hv}\sigma^{-1} C_{hv}^T$$

Eq. (82) holds due to the assumed conditional uncorrelatedness of x_k^p and \hat{v}_k^e.

Figure 4: Average GWD ($\sigma_\theta = 0.1 \text{rad}, \lambda_p = 15$)
B. Calculation of $C_{\overline{\theta}}$ (34)

According to (22), $C_{\overline{\theta}}$ can be obtained as

$$C_{\overline{\theta}} \triangleq E[v_k^T (\hat{\theta}_k)^T | Z^{k-1}] = E\{E[v_k^T (\hat{\theta}_k)^T | X_k, Z^{k-1}] | Z^{k-1}\} = E[\hat{B}_k X_k \hat{B}_k^T | Z^{k-1}] = \hat{B}_k X_{k|k-1} \hat{B}_k^T$$

The second equation above follows from the total expectation theorem. The third equation is obtained using (22).

C. Calculation of $C_{h|x}$ (43)

Based on (40), $C_{h|x}$ can be calculated as

$$C_{h|x} = \text{cov}(h(x_k^p, u_k^r, \hat{v}_k^p), x_k^p | Z^{k-1})$$

$$= \text{cov}(h(x_k^p, u_k^r, \hat{v}_k^p), x_k^p | Z^{k-1}) = E[(\hat{v}_k^p)^T | \hat{X}_k^{k|k-1}] = C_{x|x}$$

Eq. (84) with $p_{x|z}^{k-1} \triangleq E[x_k^p | Z^{k-1}]$ holds by the definition of covariance. Eq. (85) is due to the assumed independence of x_k^p, u_k^r, and \hat{v}_k^p conditioned on X_k and Z^{k-1}.

D. Calculation of $C_{h|x}$ (44)

According to (31), $C_{h|x}$ is given by

$$C_{h|x} = C_h - C_{h|x} C_{x|x}^{-1} C_{h|x}^T = C_{x|x} - C_{h|x} C_{x|x}^{-1} C_{h|x}^T = C_{h|x} = \text{cov}(u_k^r | Z^{k-1})$$

$$= \int \lambda X_k + R_k)^p [x_k | Z^{k-1}] dX_k$$

Eq. (86) holds because $C_h = C_x$, and $C_{h|x}$ and $C_{h|x}$ are C_x, and $C_{h|x}$ is due to (31).

E. Calculation of $p[x_k^p, u_k^r | Z^{k-1}]$ (49)

According to (46), we have

$$p[x_k^p, u_k^r | Z^{k-1}] = E[p|x_k^p, u_k^r | X_k, Z^{k-1}] | Z^{k-1}] = E[p|x_k^p, u_k^r, X_k, Z^{k-1}]$$

$$= \int N(x_k^p, x_k^p, P_{x|z}^{k-1} | X_k) N(u_k^r, 0, \Lambda X_k)$$

$$\times p[X_k | Z^{k-1}] dX_k$$

$$= \int N(x_k^p, x_k^p, P_{x|z}^{k-1} | X_k) N(u_k^r, 0, \Lambda X_k)$$

$$\times p[X_k | Z^{k-1}] dX_k$$

$$= \int N(x_k^p, x_k^p, P_{x|z}^{k-1} | X_k) N(u_k^r, 0, \Lambda X_k)$$

$$\times \frac{P_{x|z}^{k-1}}{P_{x|z}^{k-1}} dX_k$$

$$= N(x_k^p, x_k^p, P_{x|z}^{k-1} | X_k)$$

Eq. (88) follows from the independence of x_k^p and u_k^r conditioned on X_k and Z^{k-1}. Eq. (89) holds because λ is a scalar and thus $X_k = \lambda \otimes X_k$. Eq. (90) is obtained by merging the first two terms of the integrand in (89) into a single Gaussian.

Eq. (91) holds according to the proof given by Appendix B for Eq. (66) in [13], the definition given by Eq. (4.2) on page 134 of [10], and the statement above Eq. (67) in [15].

F. Calculation of $p[x_k^p, u_k^r | Z^{k-1}]$ (52)

According to (47), we have

$$p[x_k^p, u_k^r | Z^{k-1}] = \int N(x_k^p, x_k^p, P_{x|z}^{k-1} | X_k) N(u_k^r, 0, \Lambda X_k)$$

$$\times p[X_k | Z^{k-1}] dX_k$$

Eq. (92) holds as analyzed above for Eq. (91).

G. Proof of the VB approach (70)–(76)

For recursive estimation, the posterior distribution should be in the same form as the prior distribution (58). Thus, we attempt to find an updated distribution having the following form

$$p(x_k, X_k | Z^{k-1}) = N(x_k, \hat{x}_k, P_k)$$

Then comparing the VB approximation (63) with (93), we have

$$Q_x(x_k) = N(x_k, \hat{x}_k, P_k)$$

$$Q_X(X_k) = \mathcal{W}(X_k, \hat{x}_k, \hat{X}_k)$$

Thus, updating the distribution using VB approximation amounts to obtaining $\hat{x}_k, P_k, \hat{x}_k$, and \hat{X}_k in (94) and (95).

Substituting (68) and (62) into (67) yields

$$p(z_k, x_k, X_k | Z^{k-1})$$

$$\propto N(\hat{z}_k; \bar{H}_k x_k, \frac{B_k X_k B_k^T}{n_k}) \mathcal{W}(\hat{X}_k, \bar{X}_k, \hat{X}_k)$$

$$\times N(x_k, \hat{x}_k, P_{x|z}^{k-1}) \mathcal{W}(X_k, \hat{x}_k, \hat{X}_k)$$

$$\times |X_k|^{-\hat{a}_{x|k-1}^{k-1} - n_k} \text{etr}\left\{-\frac{1}{2} B_k^T X_k^{-1} B_k^T \hat{Z}_k - \frac{1}{2} \hat{X}_k^{-1} X_k^{-1}\right\}$$

$$\left(-\hat{z}_k - \bar{H}_k x_k\right)^T (B_k X_k B_k^T / n_k)^{-1} (\hat{z}_k - \bar{H}_k x_k)$$

$$\left(-\frac{1}{2} (x_k - \hat{x}_k) (P_{x|z}^{k-1})_{x_k - \hat{x}_k} (x_k - \hat{x}_k)\right)$$

Eq. (96) is obtained by the definitions of Gaussian, Wishart, and inverse Wishart distributions [10].

To obtain $Q_x(x_k)$, substituting (96) into (65) yields

$$\ln Q_x(x_k) = \int \ln [p(z_k, x_k, X_k | Z^{k-1})] Q_X(X_k) dX_k + c_z$$

$$= -\frac{n_k}{2} (\hat{z}_k - H_k x_k)^T B_k^{-1} x_k - B_k^{-1} (\hat{z}_k - H_k x_k)$$

$$- \frac{1}{2} (x_k - \hat{x}_k) (P_{x|z}^{k-1})_{x_k - \hat{x}_k} (x_k - \hat{x}_k) + c_z (97)$$
where c_k^1 and c_k^2 are constants, and
\[
(X_k^{-1})_X \triangleq \int X_k^{-1}Q_X(X_k)\,dX_k = (\hat{\alpha}_k - d - 1)\hat{X}_k \tag{98}
\]
Eq. (98) follows from (95) and properties of the inverse Wishart distribution [10]. Substituting (98) into (97) and after a simple factorization, we have
\[
\ln Q_X(x_k) = -\frac{1}{2}(x_k - \hat{x}_k)^T P_k^{-1}(x_k - \hat{x}_k) + c_k^2 \tag{99}
\]
where c_k^2 is a proper constant, and \hat{x}_k and P_k are given in (72) and (73), respectively. Eq. (99) indicates that $Q_X(x_k)$ is a Gaussian density function in the form of (94) with \hat{x}_k of (72) and P_k of (73).

To obtain $Q_X(X_k)$, substituting (96) into (65) yields
\[
\ln Q_X(X_k) = \ln(\pi |Z_k, x_k, X_k|^{-\frac{1}{2}})Q_X(x_k)dx_k + \frac{1}{2}c_X^1
- \frac{1}{2}\text{tr}(X_k^{-1}X_k^{-1}) - \frac{1}{2}\text{tr}(B_k^T X_k^{-1}B_k^{-1})
- \frac{1}{2}\text{tr}[(\hat{z}_k - \hat{H}X_k)^T (B_kX_kB_k^T/n_k)^{-1} (\hat{z}_k - \hat{H}X_k)x]
- \frac{1}{2}\text{tr}(\hat{x}_k^{-1} + B_k^T Z_k B_k^{-1})X_k^{-1}
- \frac{n_k}{2}\text{tr}[(\hat{z}_k - \hat{H}X_k)x - \hat{H}X_k x]^T x (B_kX_kB_k^T)^{-1}) \tag{100}
\]
where c_X^1 and c_X^2 are constants, $\text{tr}(\cdot) = \text{trace}(\cdot)$, and $[\cdot]_x \triangleq \int [\cdot]Q_x(x_k)dx_k$. Eq. (100) follows from properties of the trace operation. In (100), we have
\[
(\hat{z}_k - \hat{H}X_k)^T (\hat{z}_k - \hat{H}X_k)\bigg|_x = (\hat{z}_k - \hat{H}X_k x + \hat{H}X_k \hat{x}_k - \hat{H}X_k \hat{x}_k)^T \bigg|_x
= [(\hat{z}_k - \hat{H}X_k \hat{x}_k)^T]^T_x + (\hat{H}X_k x - \hat{H}X_k \hat{x}_k)^T \bigg|_x \hat{H}^T_k
= (\hat{z}_k - \hat{H}X_k \hat{x}_k)^T + \hat{H}X_k P_k \hat{H}^T_k \tag{101}
\]
where \cdot repeats the term right before it. Eq. (101) holds because $[(\hat{z}_k - \hat{H}X_k \hat{x}_k)(\hat{H}X_k x - \hat{H}X_k \hat{x}_k)^T]_x = 0$ with $[x_k]_x \triangleq \int x_kQ_x(x_k)dx_k \triangleq \hat{x}_k$ according to (94). Eq. (102) follows from
\[
[(x_k - \hat{x}_k)^T]^T_x = \int (x_k - \hat{x}_k)^T Q_x(x_k)dx_k = (x_k - \hat{x}_k)^T N(x_k; \hat{x}_k, P_k)dx_k = P_k \tag{102}
\]
Substituting (102) into (100) and after a simple factorization, we have
\[
\ln Q_X(X_k) = -\frac{1}{2}\hat{\alpha}_k \ln |X_k| - \frac{1}{2}\text{tr}(\hat{X}_kX_k^{-1}) + c_X^1 \tag{103}
\]
where c_X^1 is a proper constant, and $\hat{\alpha}_k$ and \hat{X}_k are given in (75) and (76), respectively. Eq. (99) indicates that $Q_x(x_k)$ is an inverse Wishart density function in the form of (95) with $\hat{\alpha}_k$ of (75) and \hat{X}_k of (76).

This completes the proof.

Jian Lan (M’14-SM’17) was born in Sichuan, P. R. China, on Dec., 1983. He received the B.S. degree from National University of Defense Technology, Changsha, P. R. China, in 2004, and the M.S. and Ph.D degrees in Control Science and Engineering from Tsinghua University, Beijing, P. R. China, in 2010.

He is now a professor in the School of Electronics and Information Engineering, Xi’an Jiaotong University, P. R. China. During 2008–2009 he did research on target tracking at the Department of Electrical Engineering, University of New Orleans, USA. His current research interests include information fusion, estimation, signal and data processing, target tracking, performance evaluation, and embedded systems.

Dr. Lan has been serving as an Associate Editor, IEEE Transactions on Aerospace and Electronic Systems (TAES) since 2016. He was awarded with the China Academy of Space Technology (CAST) scholarship in Nov. 2002.

X. Rong Li (S’90-M’92-SM’95-F’04) received the B.S. and M.S. degrees from Zhejiang University, Hangzhou, Zhejiang, PRC, in 1982 and 1984, respectively, and the M.S. and Ph.D degrees from the University of Connecticut, Storrs, USA, in 1990 and 1992, respectively.

He joined the Department of Electrical Engineering, University of New Orleans, LA, USA, in 1994, where he is now Chancellor’s University Research Professor. He has authored or coauthored four books, 10 book chapters, and more than 300 journal and conference proceedings papers. His current research interests include estimation and decision, signal and data processing, information fusion, target information processing, performance evaluation, statistical inference, stochastic systems, and electric power.

Dr. Li was elected President of the International Society of Information Fusion in 2003 and a member of Board of Directors (1998-2009); served as General Chair for several international conferences; served as an Associate Editor (1995–1996) of the IEEE Transactions on Aerospace and Electronic Systems and as Editor (1996–2003); received a CAREER award and an RIA award from the U.S. National Science Foundation. He has given more than 150 invited seminars and taught short courses in North America, Europe, Asia, and Australia. He won several outstanding paper awards and consulted for several companies.