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In this supplementary material, we present the condition of
ε-expanding with respect to the proposed serial co-training
process, and give the proof that SPaCo is an efficient PAC
learning algorithm if such condition is satisfied.

Notation and Definition: We assume that examples are
drawn from some distributions D over an instance space
X = X1 × X2, where X1 and X2 correspond to two
different “views” of examples. Let c denote the target
function, and let X+ and X− (for simplicity we assume
we are doing binary classification) denote the positive and
negative regions of X , respectively . For i ∈ 1, 2, let
X+
i = {xj ∈ Xi : ci(xj) = 1}, so we can think of X+

as X+
1 ×X

+
2 , and let X−

i = Xi −X+
i . Let D+ and D−

denote the marginal distribution of D over X+ and X−,
respectively.

For S1 ⊆ X1 and S2 ⊆ X2, let boldface Si denote the
event that an example 〈x1, x2〉 has xi ∈ Si. The P (Sni )
denotes the possibility mass on example for which we are
confident under ith view in the nth training round. Be-
low we give the definition of ε-expanding affixing marks of
training round.

Definition 1 (Balcan et al., 2004) Let X+ denote the pos-
itive region and D+ denote the distribution over X+, and
Xi(i = 1, 2) is the training data set in the ith view. For
S1 ⊆ X1 and S2 ⊆ X2, the D+ is ε-expanding if the fol-
lowing inequality holds:

P (S1 ⊕ S2) ≥ ε min(P (S1 ∧ S2), P (S̄1 ∧ S̄2)), (1)

where P (S1 ∧ S2) denotes the probability of examples for
being confident in both views, and P (S1 ⊕ S2) denotes
the probability of examples for being confident in only one
view.

To present training order of classifier under each view, we
add superscript for distinguishing the order of iteration.
The reivsed definition is:
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Definition 2 D+ is ε-expanding in the serial training pro-
cess if

P (Sni ⊕ Sn−1
3−i ) ≥ εmin(P (Sn−1

3−i ∧ Sni ), P (Sn−1
3−i ∧ Sni ))

(2)

This ε-expanding definition is the same as that defined in
(Balcan et al., 2004) except for the round mark in each
view. When D+ satisfies ε-expanding in every training
round and there are sufficient unlabeled instances, classi-
fiers under each view can acquire arbitrary accuracy with
probability 1− δ after enough training rounds as described
in Theorem 1.

Theorem 1 Let εfin and δfin be the desired accuracy and
confidence parameters. Suppose that serial ε-expanding
condition is satisfied in each training round, then we can
achieve error rate εfin with probability 1−δfin by running
the SPaCo for N =O( 1

ε log
1

εfin
+ 1
ε ·

1
pinit

) rounds, each time
running algorithmA1 and algorithmA2 with accuracy and
confidence parameters set to ε·εfin

8 and δfin

2N respectively.

Similar to proof in (Balcan et al., 2004), we begin by stating
two lemmas that will be useful for the analysis. For both
lemmas, let Sni ⊆ X+

i , and all probabilities are with the
respect to D+.

Lemma1 Suppose P (Sn3−i ∧ Sn−1
i ) ≤ P (Sn3−i ∧ Sn−1

i ),
P (Sn3−i|Sn3−i ∨ Sn−1

i ) ≥ 1 − ε
8 and P (Sn+1

i |Sn3−i ∨
Sn−1
i ) ≥ 1− ε

8 , then P (Sn+1
i ∧Sn3−i) ≥ (1+ ε

2 )P (Sn3−i∧
Sn−1
i )

Proof

P (Sn+1
i ∧ Sn3−i)

≥ P (Sn+1
i ,Sn3−i ∨ Sn−1

i ) + P (Sn3−i,S
n
3−i ∨ Sn−1

i )

− P (Sn3−i ∨ Sn−1
i )

≥ (1− ε

4
)(1 + ε)P (Sn3−i ∧ Sn−1

i )

≥ (1 +
ε

2
)P (Sn3−i ∧ Sn−1

i )

(3)

Lemma2 Suppose P (Sn3−i∧S
n−1
i ) > P (S

n

3−i∧Sn−1
i ) and

let γ = 1− P (Sn3−i ∧ S
n−1
i ), if P (Sn+1

i |Sn3−i ∨ S
n−1
i ) >

1− γε
8 and P (Sn3−i|Sn3−i∨S

n−1
i ) > 1− γε

8 , then P (Sn+1
i ∧

Sn3−i) ≥ (1 + ε
2 )P (Sn3−i ∧ Sn−1

i )
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Proof

γ = P (Sn3−i ⊕ Sn−1
i ) + P (Sn3−i ∧ Sn−1

i )

≥ (1 + ε)P (Sn3−i ∧ Sn−1
i )

≥ (1 + ε)(1− P (Sn3−i ∨ Sn−1
i ))

(4)

From inequality 4 we can get P (Sn3−i ∨S
n−1
i ) ≥ 1− γ

1+ε .
Thus

P (Sn+1
i ∧ Sn3−i) ≥ (1− γε

4
)(1− γ

1 + ε
)

≥ (1− γ)(1 +
γε

8
)

≥ (1 +
γε

8
)P (Sn3−i ∧ Sn−1

i )

(5)

From Lemma 1 and Lemma 2, we present that with fine
tuned confidence condition, classifiers trained in a serial
way possess same character compared with classifiers built
paralleled after each iteration. Therefore, we conclude
that with the modified ε-expanding condition fulfilled, after
same number of iterations, classifiers trained serially can
achieve same error rate with same confidence as shown in
the original ε-expanding theorem (Balcan et al., 2004).
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