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Abstract—In this supplementary material, we provide proofs of several theoretical results, give inference details of
the proposed algorithm, and introduce parameter setting strategies in our experiments presented in the maintext.

Index Terms—proofs to Theorems, parameter settings.

A1. PROOF TO THE THEOREM ON RELATIONSHIP
BETWEEN CONJUGATE PRIOR AND KL DIVERGENCE

We first present the proof to the theorem on the relationship
between conjugate prior and KL divergence, as described in
Section 3.4 of the maintext.

Theorem 1 If a distribution p(x|0) belongs to the full
exponential family, which means it has the following form:
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(61X, ) = F(X,7)n(6) exp(v0" X),

then,
Inp(0|X,7) = —yDx1(p(x|6")|Ip(x]0)) + C,

where 8™ = argmaxg p(0|X
dent of 6.

,7) and C' is a constant indepen-

Proof. It can be deduced that:
Drcr(p(x]67)]|p(x(6))

B w1 D(x]607)
~ [ pxip")1n g

—— [ #xl6") mp(xl6)dx + €
— — [ 06" )exp(6 T $())(1n(6) + 67 B(x))ix + s
— ~1n(6) [ (6 )exp(6" " B(x))ix

= [ 0(8")exp(6" T $(x))6" @(xix + s

dx

— —Inn(0) + OTV’ZE*)) + 0,
@
where C; = [ p(x]|0") Inp(x|0")dx

Since 8" = arg maxg p(0]X, ), we have

Vn(@
Vo lup(O1X, oo = 1( + X)lo-g =0,
Then we can obtain
Vn(6")
7(6) ®
Thus
In p(6]X,7) = v(Inn(6) + 67 X) + Cs
Vn(6)
0 -0 Ly,
(nn(6) 0" 35 + "
= —yDkr(p(x|07)|[p(x]0)) +~C1 + Co
= —vDkr(p(x/607)||p(x]0)) + C,
where Co = In f(X,v) and C = ~C; + C5, which is

independent of 6.
The proof is then completed. B

A2. PROOF TO RELATIONSHIP OF THE ONLINE MOD-
ELS TO THE OFFLINE ONES

We then provide the proof to the Theorem 2 in the main text
as follows.

Theorem 2 if N'=! and p are set to be (t — 1)d and 1,
respectively, then the minimization problem of (12) for {I1, X}
and that of (17) for U are equivalent to calculating:
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Proof. We firstly prove the Eq. (4) for {II, 3} as follows:
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We then prove (5). Firstly we need to make some reason-
able and simple bound assumptions for Vi, j:
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Then, based on Eq. (13) in the paper, we can deduce that
when the online EM algorithm converges, we have:
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Calculate F-norm in both sides, we then get:
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Thus we have: |[U" — U !|[p < O(1).
The proof is then completed. W

A3: INFERENCE DETAILS ON MoG PARAMETER UP-
DATING EQUATIONS

In this section we introduce how to infer the updating
equations on MoG parameters {II,X} in the M-step of
the proposed method (as introduced in Section. 3.3 of the
maintext).

After E-step we can get the following objective function:
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For m, note that there is a supplemental constraint
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responding Lagrange function as:
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TABLE 1: The settings of the rank

Video  airport bootstrap  shoppingmall lobby escalator
rank 2 2 4 5 2
Video  curtain campus watersur face  fountain
rank 6 4 2 4
If we set
d _
_ _ N
N=d; Ny = ey T = —;
2 »
(17)

Ulc Vir (x
- 3k

N =N"1'4+N;N, =N+ Ny,

Eq. (15) and (16) can then be rewritten as the following
forms for IT and 3:
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which is the closed-form updating equations for the param-
eters.

Eq (18) can also be understood in the Robbins-Monro
algorithm framework [1], which is an effective methodology
in solving the MLE problem on the sequential data.

A4. COMPLEXITY ANALYSIS OF THE OMOGMF AL-
GORITHM

All variables involved in the OMoGMF algorithm are updat-
ed in closed-form (i.e., Eq. (12), (14), (17), (21) in the main
text), and thus we can easily evaluate that the complexity
of our method is O(I(dg(k + r2) + r3)), where 7 is the
subspace rank, [ is the iteration number of the algorithm,
dgq is the number of pixels in the video frame, and k is
the number of noise components. The complexity of the
proposed OMoGMEF algorithm is thus linearly increasing
with dq, k, and I, and three order increasing with r (led
by the matrix inverse calculation involved in Eq. (17) in the
main text).

A5. MORE PARAMETERS SETTING DETAILS
A5.1. On Experiment 4.1

We compare OMoGMF and OMoGMF+TV with other nine
competing methods, including RPCA, GODEC, ReglLl,
PRME, OPRME, GRASTA,GOSUS and DECOLOR. For RP-
CA, RegL1, PRMF, OPRMF, DECOLOR and GRASTA, we
use the default parameter settings in the original codes.
For GODEC, we set the sparse parameter by using the
result of RPCA. For GOSUS, we set A using cross-validation
and set others by default settings. The settings of the rank
for the methods is shown in Table 1. For OMoGMF and
OMOGMF+TV, we set N'™! = 50d , p = 0.98 and the
number of the Gaussians K = 3. Moreover, the impact of
N*=1 on MoG parameters is shown in Fig. 1, and we can
find that too large or too small N*~! value are not preferred.
SPecifically, if it is set too large, the MoG parameters are
varied very slowly and are hard to reflect the realtime noise
variation of online videos. However, if it is set too small,
the parameters are too sensitive to single frame change, and
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Fig. 1: Tendency curves of MoG parameters with respect to
different N} ! in airport sequence.

make the method unstable to a continuous change on video
foregrounds. We thus more prefer a moderate setting for
this parameter, as clearly depicted in the figure. Besides, the
threshold number for F-measure is set be the optimal value
for all methods, which maximizes the F-measure. We also
give the subsampling experiment results of all 9 videos in
Table 2 (i.e., the detailed version of Table 5 in the maintext).

A5.2. On Experiment 4.2: Synthetic data

Since RASL and t-GRASTA are not work well on the original
frames and these two methods must choose a canonical
frame which is smaller than original frames. In order to
fairly compare t-OMoGMF with them, we choose a 0.76m X
0.76n canonical frame, where m and n are the length and
width of original frames, respectively. Meanwhile, we also
use the same size of canonical frame on ground truth and
the respective image transformation obtained by these three
methods to compute the F-measure. Besides, we use it-
OMOoGMF as a warm-start way to t-OMoGMF and set the
number of the Gaussians as K = 2.

A5.3. On Experiment 4.2: Real data

For RASL and t-GRASTA, we choose a 0.7m x0.7n canonical
frame on the real data experiments. We randomly choose 50
frames and use it-OMoGMF to warm start the model, while
set the number of the Gaussians as K = 2.
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TABLE 2: F-measure and FPS of OMoGMF and GRASTA under different sub-sampling rates on 9 vidoes, each with 1000
frames, in Li dataset.

Sub-Sampling rate 1% 10% 30% 50% 100%
Dataset frame size method F-M FPS F-M FPS F-M FPS F-M FPS F-M FPS
ot 141x 176 OMOGMF 07131 2636 07230 18L.6 07238 1157 07282 917 07241 630
arrpor GRASTA  0.6312 2467 0.6403 2096 0.6325 167.6 0.6256 1413 06194 1239
) OMoGMF 0.6196 3345 06204 2734 06204 1787 06214 1444 06199 1043
ootstap 120x 160

GRASTA 05462 3193 05757 2794 05812 2242 05832 191.1 05788 1779
OMoGMF  0.6942 104.7 0.6946 402 0.6947 161  0.6948 10.2 0.6950 52

GRASTA  0.6535 655 0.7100 56.7 0.7143 442 0.7151 37.1 0.7146  28.7
OMoGMF  0.7699 276.7 0.7716 1732 0.7721 1125 0.7714 68.1 07721 411

shoppingmall 256 320

lobby 128x 160 CRASTA 02389 2462 05251 2189 06290 1747 06295 1523 06101 1329
eontton 30w 10 OMOCMF 06101 3320 06119 2659 06126 1723 06128 1375 06120 996
GRASTA 04581 3032 05897 2646 05870 2128 05821 1802 05732 166.9
—— 5. 160 OMOGMF 08558 2664 08669 1598 08647 639 08657 441 08657 247
GRASTA 07828 2229 07908 1973 07442 157.6 07143 1337 06830 1135
OMoGMF 04363 2703 04465 1666 04474 754 04470 526 04475 309
campus 128x 160

GRASTA 03795 233.6 04108 2032 04287 163.0 04357 1395 04458 1184
OMoGMF  0.8716 3313 0.8728 2675 0.8744 1746 08744 13841 0.8744 100.2
GRASTA  0.8527 301.2 0.8564 2663 0.8462 2152 0.8264 185.6 0.7589 168.8
OMoGMF 0.7136 281.1 0.7196 176.8 0.7197 118.7 0.7196 88.2 07196  49.5
GRASTA  0.6013 2574 0.6881 2293 0.7016 180.5 0.6999  150.5 0.6923 127.5
OMoGMF  0.6982 273.4 0.7030 1894 0.7033 114.2 0.7035 86.1 0.7034 57.6
- GRASTA 05716 2440 0.6430 2139 0.6516 171.1 0.6458  145.7 0.6307 128.7

watersur face 128x 160

fountain 128x 160

Average




