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Prerequisites: no formal ones, but class will be fairly fast paced.

Assume working knowledge of/proficiency with
▶ Real Analysis / Matrix theory
▶ Core problems in Stats/ML
▶ Programming (Matlab, Python, R, · · · )
▶ Data structures, computational complexity
▶ Formal mathematical thinking

Supplementary Books
▶ Boyd and Vandenberghe, Convex Optimization, 2009
▶ R.T. Rochafellar, Convex Analysis, 1996
▶ D.P. Bertsekas, Convex Optimization Theory, 2009



Optimization problems are ubiquitous in Statistics and Machine
Learning

Optimization problems underlie most everything we do in Statistics
and Machine Learning.

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems, and Nonconvex problems
are mostly treated on a case by case basis.

Presumably, other people have already figured out how to solve

P : min
x∈D

f(x)

Why bother?
▶ Different algorithms can perform better or worse for different

problems P (sometimes drastically so)
▶ Studying P can actually give you a deep understanding of the

statistical procedure in question.



Outline

▶ Convex sets
▶ Examples
▶ Key properties
▶ Operations preserving convexity
▶ Same for convex functions.



Convex Sets and Functions
Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx + (1− t)y ∈ C for all 0 ≤ t ≤ 1

Convex combination of x1, · · · , xk ∈ Rn : any linear combination
θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, · · · , k and
∑

i θi = 1, where Convex hull of a set
C, conv(C) is all convex combinations of elements. Always convex!



Examples of convex sets

▶ Trivial-ones: empty set, point, line
▶ Norm ball: {x : ∥x∥ ≤ r}, for given norm ∥ · ∥, radius r
▶ Hyperplane: {x : aTx = b} for given a, b
▶ Halfspace: {x : aTx ≤ b}
▶ Affine space {x : ATx = b}



Examples of convex sets

▶ Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted
component-wise. Note: the set {x : Ax ≤ b,Cx = d} is also a
polyhedron (why?)

▶ Simplex: special case of polyhedra, given by conv{x0, · · · , xk},
where these points are affinely independent. The canonical
example is the probability simplex

conv{e1, · · · , en} = {w : w ≥ 0, 1Tw = 1}



Cones
Cone: C ⊆ Rn such that

x ∈ C ⇒ tx ∈ C for all t ≥ 0

Convex cone: cone that is also convex, i.e.

x1, x2 ∈ C ⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0

Conic combination of x1, · · · , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, · · · , k. Conic hull collects all conic combinations



Examples of convex cones

▶ Norm cone: {(x, t) : ∥x∥ ≤ t}, for a norm ∥ · ∥. Under ℓ2-norm
∥ · ∥2, called second-order cone

▶ Normal cone: Given any set C and a point x ∈ C, we can
define

NC(x) = {g : gTx ≥ gTy, for all y ∈ C}

This is always a convex cone, regardless of C

▶ Positive semidefinite cone: Sn
+ = {X ∈ Sn : X ⪰ 0}, where

X ⪰ 0 means that X is positive semidefinite (and Sn is the set
of n × n symmetric matrices).



Key properties of convex sets

▶ Separating hyperplane theorem: two disjoint convex sets have
a separating hyperplane between them

Formally, if C,D are nonempty convex set with C ∩ D = ∅,
then there exists a, b such that

C ⊆ {x : aTx ≤ b}
D ⊆ {x : aTx ≥ b}



Key properties of convex sets

▶ Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

Formally, if C is a nonempty convex set, and x0 ∈ bd(C), then
there exists a such that

C ⊆ {x : aTx ≤ aTx0}



Operations preserving convexity

▶ Intersection: the intersection of convex set is convex
▶ Scaling and translation: if C is convex, then

aC + b = {ax + b : x ∈ C}

is convex for any a, b
▶ Affine images and preimages: if f(x) = Ax + b and C is convex

then
f(C) = {f(x) : x ∈ C}

is convex and if D is convex, then

f−1(D) = {x : f(x) ∈ D}

is convex.



Example: linear matrix inequality solution set

▶ Given A1, · · · ,Ak,B ∈ Sn, a linear matrix inequality is of the
form

x1A1 + x2A2 + · · ·+ xkAk ⪯ B

for a variable x ∈ Rk. Let’s prove that the set C of points x
that satisfy the above inequality is convex.

▶ Approach 1: directly verify that x, y ∈ C ⇒ tx + (1− t)y ∈ C.
This follows by checking that, for any v

vT
(

B −
k∑

i=1

(txi + (1− t)yi)Ai

)
v ≥ 0

▶ Approach 2: let f : Rk → Sn, f(x) = B −
∑k

i=1 xiAi. Note that
C = f−1(Sn

+): affine preimage of convex set



Example: fantope

▶ Given some integer k ≥ 0, the fantope of order k is

F = {Z ∈ Sn : 0 ⪯ Z ⪯ I, tr(Z) = k}

where the trace operator tr(Z) =
∑

i Zii is the sum of the
diagnoal entries. Prove that F is convex.

▶ Approach 1: verify that 0 ⪯ Z,W ⪯ I and tr(Z) = tr(W) = k,
implies that the same for tZ + (1− t)W

▶ Approach 2: recognize the fact that

F = {Z ∈ Sn : Z ⪰ 0}∩{Z ∈ Sn : Z ⪯ I}∩{Z ∈ Sn : tr(Z) = k}

i.e. the intersection of linear equality constraints (hence like a
polyhedron but for matrices).



More operations that preserving convexity

▶ Perspective images and preimages: the perspective function is
P : Rn × R++ → Rn (where R++ denotes positive reals)

P(x, z) = x/z

for z > 0. If C ⊆ dom(P) is convex then so is P(C), and if D
is convex, then so is P−1(D).

▶ Linear-fractional images and preimages: the perspective map
composed with an affine function

f(x) = Ax + b
cTx + d

is called a linear-fractional function, defined on cTx + d > 0.
If C ⊆ dom(f) is convex then so is f(C), and if D is convex
then so is f−1(D)



Example: conditional probability set

Let U,V be random variables over {1, · · · , n} and {1, · · · ,m}. Let
C ⊆ Rnm be a set of joint distributions for U,V, i.e., each p ∈ C
defines joint probabilities

pij = P(U = i,V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e.
each q ∈ D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex,. Write

D =

{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}

= f(C)

where f is a linear-fractional function, hence D is convex.



Convex functions

Convex function: f : Rn → R such that dom(f) ⊂ Rn is convex and

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y), for 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

In words, f lies below the line segment joining f(x) and f(y)

Concave function: opposite inequality above, so that

f concave ⇐⇒ −f convex



Convex functions

Important modifiers:
▶ Strictly convex: f(tx + (1− t)y) < tf(x) + (1− t)f(y) for x ̸= y

and 0 < t < 1. In words, f is a convex and has greater
curvature than a linear function

▶ Strongly convex with parameter m > 0 : f − m
2 ∥x∥22 is convex

(m-strongly convex). In words, f is at least as convex as a
quadratic function.

Note: strongly convex ⇒ strictly convex ⇒ convex

Analogously for concave function

Strictly convex ⇏ strongly convex, example?



Examples of Convex Functions

▶ Univariate functions
▶ Exponential function: eax is convex for any a ∈ R
▶ Power function: xa is convex for a ≥ 1 or a < 0 over R+

(nonnegative reals)
▶ Power function is concave for 0 ≤ a < 1 over R+

▶ Logarithmic function: log x is concave over R+

▶ Affine function: xTa + b is both convex and concave
▶ Quadratic function: 1

2xTQx + bTx + c is convex provided that
Q ⪰ 0

▶ Least square loss: ∥y − AX∥22 is always convex (since ATA is
always positive semidefinite.



Examples of Convex Functions

▶ Norm: ∥x∥ is convex for any norm, e.g. ℓp-norm for p ≥ 1

∥x∥p =

( n∑
i=1

xp
i

)1/p

for p ≥ 1, ∥x∥∞ = max
i=1,··· ,n

|xi|

and also operator (spectral) and trace (nuclear) norms:

∥X∥op = σ1(X), ∥X∥tr =
r∑

i=1

σi(X)

where σ1(X) ≥ σ2(X) · · ·σr(X) ≥ 0 are the singular value of
the matrix X.



Examples of Convex Functions

▶ Indicator function: if C is a convex, then its indicator function

IC(x) =
{

0 x ∈ C
∞ x /∈ C

is convex
▶ Support function: for any set C (convex or not), its support

function
I∗C(x) = max

y∈C
xTy

is convex
▶ Max function:

f(x) = max{x1, · · · , xn}

is convex



Key Properties of convex functions
▶ A function is convex only and only if its restriction to any line

is convex
▶ Epigraph characterization: A function is convex if and only if

epigraph

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set

▶ Convex sublevel set: if f is convex, then its sublevel set

{x ∈ dom(f) : f(x) ≤ t}

are convex for all t ∈ R. The converse is not true.



▶ First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex and

f(y) ≥ f(x) +∇f(x)T(y − x)

for all x, y ∈ dom(f). Therefore for a differentiable convex
function ∇f(x) = 0 ⇐⇒ x minimizes f

▶ Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex and ∇2f(x) ⪰ 0 for
all x ∈ dom(f)

▶ Jensen’s Inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) ≤ E[f(X)]



Operations preserving convexity

▶ Nonnegative linear combination: f1, · · · , fm convex implies
a1f1 + · · ·+ amfm convex for any a1, · · · , am ≥ 0

▶ Pointwise maximization: if fs is convex for any s ∈ S, then
f(x) = maxx∈S fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite.

▶ Partial minimization: if g(x, y) is convex in x, y and C is
convex, then

f(x) = min
y∈C

g(x, y)

is convex.



Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C
under arbitrary norm ∥ · ∥:

f(x) = max
y∈C

∥x − y∥

Let’s check this is convex: fy(x) = ∥x − y∥ is convex in x for any
fixed y, so by pointwise maximization rule, f is convex.

Now let C be convex and consider the minimum distance to C

f(x) = min
y∈C

∥x − y∥

Let’s check this is convex,. g(x, y) = ∥x − y∥ is convex in x, y
jointly, and C is assumed convex, so apply partial minimization rule.



More operations preserving convexity

▶ Affine composition: f convex implies g(x) = f(Ax + b) convex
▶ General composition: suppose f = h ◦ g where

g : Rn → R, h : R → R, f : Rn → R, Then
▶ f is convex if h is convex and nondecreasing, and g is convex
▶ f is convex if h is convex and nonincreasing, and g is concave
▶ f is concave if h is concave and nondecreasing, g is concave
▶ f is concave if h is concave and nonincreasing, g is convex

How to remember these? Think of the chain rule when n = 1

f′′(x) = h′′
(g(x))g′(x)2 + h′(g(x))g′′

(x)



More operations preserving convexity

▶ Vector composition: suppose that

f(x) = h(g(x)) = h(g1(x), · · · , gk(x))

where g : Rn → Rk, h : Rk → R, f : Rn → R. Then
▶ f is convex if h is convex and nondecreasing in each argument,

and g is convex
▶ f is convex if h is convex and nonincreasing in each argument,

and g is concave
▶ f is concave if h is concave and nondecreasing in each

argument, g is concave
▶ f is concave if h is concave and nonicreasing in each argument,

g is convex.



Example: log-sum-exp function
Log-sum-exp function:

g(x) = log
( k∑

i=1

eaT
i x+bi

)
for fixed ai, bi, i = 1, · · · , k. Often called “soft-max”, as it
smoothly approximates maxi=1,2,··· ,k(aT

i x + bi). Convex function!

How to show convexity? First, note it suffices to prove convexity of
f(x) = log

(∑k
i=1 ex

i

)
(affine composition rule)

Now use second-order characterization. Calculate

∇if(x) =
exi∑

exj

∇2
ijf(x) =

exi∑
ℓ exℓ I{i = j} − exiexj

(
∑

ℓ exℓ)

Write ∇2f(x) = diag(z)− zzT where zi = exi/(
∑

j exj). This matrix
is diagonally dominant, hence positive semidefinite.



Check
max

{
log
(

1

(aTx + b)7
)
, ∥Ax + b∥51

}
convex?



Convex Optimization Problems

Optimization problem:

minx∈D f(x)
subject to gi(x) ≤ 0, i = 1, 2, · · · ,m

hj(x) = 0, j = 1, 2, · · · , r

Here D = dom(f) ∩
∩m

i=1 dom(gi) ∩
∩p

j=1 dom(hj), common domain
of all the functions.

This is a convex optimization problem provided the functions f and
gi, i = 1, 2, · · · ,m are convex and hj, j = 1, 2, · · · , p are affine:

hj(x) = aT
j x + bj, j = 1, · · · , p



Local minima and global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible — x ∈ D, and satisfies all constraints —
and minimizes f in a local neighborhood,

f(x) ≤ f(y) for all feasible y, ∥x − y∥2 ≤ ρ,

then
f(x) ≤ f(y) for all feasible y

This is a very useful fact and will save us a lot of trouble!



Line search methods



Questions?


