Convexity: Sets and Functions

Lecturer: Jianyong Sun
jy.sun@xjtu.edu.cn
School of Mathematics and Statistics
Xi'an Jiaotong University

Prerequisites: no formal ones, but class will be fairly fast paced.

Assume working knowledge of/proficiency with

- Real Analysis / Matrix theory
- Core problems in Stats/ML
- Programming (Matlab, Python, R, ‥)
- Data structures, computational complexity
- Formal mathematical thinking

Supplementary Books

- Boyd and Vandenberghe, Convex Optimization, 2009
- R.T. Rochafellar, Convex Analysis, 1996
- D.P. Bertsekas, Convex Optimization Theory, 2009

Optimization problems are ubiquitous in Statistics and Machine

 LearningOptimization problems underlie most everything we do in Statistics and Machine Learning.

Why convexity? Simply put: because we can broadly understand and solve convex optimization problems, and Nonconvex problems are mostly treated on a case by case basis.

Presumably, other people have already figured out how to solve

$$
P: \min _{x \in D} f(x)
$$

Why bother?

- Different algorithms can perform better or worse for different problems P (sometimes drastically so)
- Studying P can actually give you a deep understanding of the statistical procedure in question.

Outline

- Convex sets
- Examples
- Key properties
- Operations preserving convexity
- Same for convex functions.

Convex Sets and Functions

Convex set: $C \subseteq \mathbb{R}^{n}$ such that

$$
x, y \in C \Longrightarrow t x+(1-t) y \in C \text { for all } 0 \leq t \leq 1
$$

Convex combination of $x_{1}, \cdots, x_{k} \in \mathbb{R}^{n}$: any linear combination

$$
\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{i} \geq 0, i=1, \cdots, k$ and $\sum_{i} \theta_{i}=1$, where Convex hull of a set $C, \operatorname{conv}(C)$ is all convex combinations of elements. Always convex!

Examples of convex sets

- Trivial-ones: empty set, point, line
- Norm ball: $\{x:\|x\| \leq r\}$, for given norm $\|\cdot\|$, radius r
- Hyperplane: $\left\{x: a^{T} x=b\right\}$ for given a, b
- Halfspace: $\left\{x: a^{T} x \leq b\right\}$
- Affine space $\left\{x: A^{T} x=b\right\}$

Examples of convex sets

- Polyhedron: $\{x: A x \leq b\}$, where inequality \leq is interpreted component-wise. Note: the set $\{x: A x \leq b, C x=d\}$ is also a polyhedron (why?)

- Simplex: special case of polyhedra, given by $\operatorname{conv}\left\{x_{0}, \cdots, x_{k}\right\}$, where these points are affinely independent. The canonical example is the probability simplex

$$
\operatorname{conv}\left\{e_{1}, \cdots, e_{n}\right\}=\left\{w: w \geq 0,1^{T} w=1\right\}
$$

Cones

Cone: $C \subseteq \mathbb{R}^{n}$ such that

$$
x \in C \Rightarrow t x \in C \text { for all } t \geq 0
$$

Convex cone: cone that is also convex, i.e.

$$
x_{1}, x_{2} \in C \Rightarrow t_{1} x_{1}+t_{2} x_{2} \in C \text { for all } t_{1}, t_{2} \geq 0
$$

Conic combination of $x_{1}, \cdots, x_{k} \in \mathbb{R}^{n}$: any linear combination

$$
\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{i} \geq 0, i=1, \cdots, k$. Conic hull collects all conic combinations

Examples of convex cones

- Norm cone: $\{(x, t):\|x\| \leq t\}$, for a norm $\|\cdot\|$. Under ℓ_{2}-norm $\|\cdot\|_{2}$, called second-order cone
- Normal cone: Given any set C and a point $x \in C$, we can define

$$
\mathcal{N}_{C}(x)=\left\{g: g^{T} x \geq g^{T} y, \text { for all } y \in C\right\}
$$

This is always a convex cone, regardless of C

- Positive semidefinite cone: $\mathbb{S}_{+}^{n}=\left\{X \in \mathbb{S}^{n}: X \succeq 0\right\}$, where $X \succeq 0$ means that X is positive semidefinite (and \mathbb{S}^{n} is the set of $n \times n$ symmetric matrices).

Key properties of convex sets

- Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them

Formally, if C, D are nonempty convex set with $C \cap D=\emptyset$, then there exists a, b such that

$$
\begin{aligned}
& C \subseteq\left\{x: a^{T} x \leq b\right\} \\
& D \subseteq\left\{x: a^{T} x \geq b\right\}
\end{aligned}
$$

Key properties of convex sets

- Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it

Formally, if C is a nonempty convex set, and $x_{0} \in \mathbf{b d}(C)$, then there exists a such that

$$
C \subseteq\left\{x: a^{T} x \leq a^{T} x_{0}\right\}
$$

Operations preserving convexity

- Intersection: the intersection of convex set is convex
- Scaling and translation: if C is convex, then

$$
a C+b=\{a x+b: x \in C\}
$$

is convex for any a, b

- Affine images and preimages: if $f(x)=A x+b$ and C is convex then

$$
f(C)=\{f(x): x \in C\}
$$

is convex and if D is convex, then

$$
f^{-1}(D)=\{x: f(x) \in D\}
$$

is convex.

Example: linear matrix inequality solution set

- Given $A_{1}, \cdots, A_{k}, B \in \mathbb{S}^{n}$, a linear matrix inequality is of the form

$$
x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{k} A_{k} \preceq B
$$

for a variable $x \in \mathbb{R}^{k}$. Let's prove that the set C of points x that satisfy the above inequality is convex.

- Approach 1: directly verify that $x, y \in C \Rightarrow t x+(1-t) y \in C$. This follows by checking that, for any v

$$
v^{T}\left(B-\sum_{i=1}^{k}\left(t x_{i}+(1-t) y_{i}\right) A_{i}\right) v \geq 0
$$

- Approach 2: let $f: \mathbb{R}^{k} \rightarrow \mathbb{S}^{n}, f(x)=B-\sum_{i=1}^{k} x_{i} A_{j}$. Note that $C=f^{-1}\left(\mathbb{S}_{+}^{n}\right)$: affine preimage of convex set

Example: fantope

- Given some integer $k \geq 0$, the fantope of order k is

$$
\mathcal{F}=\left\{Z \in \mathbb{S}^{n}: 0 \preceq Z \preceq I, \operatorname{tr}(Z)=k\right\}
$$

where the trace operator $\operatorname{tr}(Z)=\sum_{i} Z_{i i}$ is the sum of the diagnoal entries. Prove that \mathcal{F} is convex.

- Approach 1: verify that $0 \preceq Z, W \preceq I$ and $\operatorname{tr}(Z)=\operatorname{tr}(W)=k$, implies that the same for $t Z+(1-t) W$
- Approach 2: recognize the fact that

$$
\mathcal{F}=\left\{Z \in \mathbb{S}^{n}: Z \succeq 0\right\} \cap\left\{Z \in \mathbb{S}^{n}: Z \preceq I\right\} \cap\left\{Z \in \mathbb{S}^{n}: \operatorname{tr}(Z)=k\right\}
$$

i.e. the intersection of linear equality constraints (hence like a polyhedron but for matrices).

More operations that preserving convexity

- Perspective images and preimages: the perspective function is $P: \mathbb{R}^{n} \times \mathbb{R}_{++} \rightarrow \mathbb{R}^{n}$ (where \mathbb{R}_{++}denotes positive reals)

$$
P(x, z)=x / z
$$

for $z>0$. If $C \subseteq \operatorname{dom}(P)$ is convex then so is $P(C)$, and if D is convex, then so is $P^{-1}(D)$.

- Linear-fractional images and preimages: the perspective map composed with an affine function

$$
f(x)=\frac{A x+b}{c^{T} x+d}
$$

is called a linear-fractional function, defined on $c^{T} x+d>0$. If $C \subseteq \operatorname{dom}(f)$ is convex then so is $f(C)$, and if D is convex then so is $f^{-1}(D)$

Example: conditional probability set

Let U, V be random variables over $\{1, \cdots, n\}$ and $\{1, \cdots, m\}$. Let $C \subseteq \mathbb{R}^{n m}$ be a set of joint distributions for U, V, i.e., each $p \in C$ defines joint probabilities

$$
p_{i j}=\mathbb{P}(U=i, V=j)
$$

Let $D \subseteq \mathbb{R}^{n m}$ contain corresponding conditional distributions, i.e. each $q \in D$ defines

$$
q_{i j}=\mathbb{P}(U=i \mid V=j)
$$

Assume C is convex. Let's prove that D is convex,. Write

$$
D=\left\{q \in \mathbb{R}^{n m}: q_{i j}=\frac{p_{i j}}{\sum_{k=1}^{n} p_{k j}}, \text { for some } p \in C\right\}=f(C)
$$

where f is a linear-fractional function, hence D is convex.

Convex functions

Convex function: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\operatorname{dom}(f) \subset \mathbb{R}^{n}$ is convex and

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y), \text { for } 0 \leq t \leq 1
$$

and all $x, y \in \operatorname{dom}(f)$

In words, f lies below the line segment joining $f(x)$ and $f(y)$
Concave function: opposite inequality above, so that

$$
f \text { concave } \Longleftrightarrow-f \text { convex }
$$

Convex functions

Important modifiers:

- Strictly convex: $f(t x+(1-t) y)<t f(x)+(1-t) f(y)$ for $x \neq y$ and $0<t<1$. In words, f is a convex and has greater curvature than a linear function
- Strongly convex with parameter $m>0: f-\frac{m}{2}\|x\|_{2}^{2}$ is convex (m-strongly convex). In words, f is at least as convex as a quadratic function.
Note: strongly convex \Rightarrow strictly convex \Rightarrow convex
Analogously for concave function

Strictly convex \nRightarrow strongly convex, example?

Examples of Convex Functions

- Univariate functions
- Exponential function: $e^{a x}$ is convex for any $a \in \mathbb{R}$
- Power function: x^{a} is convex for $a \geq 1$ or $a<0$ over \mathbb{R}_{+} (nonnegative reals)
- Power function is concave for $0 \leq a<1$ over \mathbb{R}_{+}
- Logarithmic function: $\log x$ is concave over \mathbb{R}_{+}
- Affine function: $x^{T} a+b$ is both convex and concave
- Quadratic function: $\frac{1}{2} x^{T} Q x+b^{T} x+c$ is convex provided that $Q \succeq 0$
- Least square loss: $\|y-A X\|_{2}^{2}$ is always convex (since $A^{T} A$ is always positive semidefinite.

Examples of Convex Functions

- Norm: $\|x\|$ is convex for any norm, e.g. ℓ_{p}-norm for $p \geq 1$

$$
\|x\|_{p}=\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \text { for } p \geq 1,\|x\|_{\infty}=\max _{i=1, \cdots, n}\left|x_{i}\right|
$$

and also operator (spectral) and trace (nuclear) norms:

$$
\|X\|_{\mathrm{op}}=\sigma_{1}(X), \quad\|X\|_{\mathrm{tr}}=\sum_{i=1}^{r} \sigma_{i}(X)
$$

where $\sigma_{1}(X) \geq \sigma_{2}(X) \cdots \sigma_{r}(X) \geq 0$ are the singular value of the matrix X.

Examples of Convex Functions

- Indicator function: if C is a convex, then its indicator function

$$
I_{C}(x)=\left\{\begin{array}{rl}
0 & x \in C \\
\infty & x \notin C
\end{array}\right.
$$

is convex

- Support function: for any set C (convex or not), its support function

$$
I_{C}^{*}(x)=\max _{y \in C} x^{T} y
$$

is convex

- Max function:

$$
f(x)=\max \left\{x_{1}, \cdots, x_{n}\right\}
$$

is convex

Key Properties of convex functions

- A function is convex only and only if its restriction to any line is convex
- Epigraph characterization: A function is convex if and only if epigraph

$$
\operatorname{epi}(f)=\{(x, t) \in \operatorname{dom}(f) \times R: f(x) \leq t\}
$$

is a convex set

- Convex sublevel set: if f is convex, then its sublevel set

$$
\{x \in \operatorname{dom}(f): f(x) \leq t\}
$$

are convex for all $t \in \mathbb{R}$. The converse is not true.

- First-order characterization: if f is differentiable, then f is convex if and only if $\operatorname{dom}(f)$ is convex and

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

for all $x, y \in \operatorname{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x)=0 \Longleftrightarrow x$ minimizes f

- Second-order characterization: if f is twice differentiable, then f is convex if and only if $\operatorname{dom}(f)$ is convex and $\nabla^{2} f(x) \succeq 0$ for all $x \in \operatorname{dom}(f)$
- Jensen's Inequality: if f is convex, and X is a random variable supported on $\operatorname{dom}(f)$, then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

Operations preserving convexity

- Nonnegative linear combination: f_{1}, \cdots, f_{m} convex implies $a_{1} f_{1}+\cdots+a_{m} f_{m}$ convex for any $a_{1}, \cdots, a_{m} \geq 0$
- Pointwise maximization: if f_{s} is convex for any $s \in S$, then $f(x)=\max _{x \in S} f_{s}(x)$ is convex. Note that the set S here (number of functions f_{s}) can be infinite.
- Partial minimization: if $g(x, y)$ is convex in x, y and C is convex, then

$$
f(x)=\min _{y \in C} g(x, y)
$$

is convex.

Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C under arbitrary norm $\|\cdot\|$:

$$
f(x)=\max _{y \in C}\|x-y\|
$$

Let's check this is convex: $f_{y}(x)=\|x-y\|$ is convex in x for any fixed y, so by pointwise maximization rule, f is convex.

Now let C be convex and consider the minimum distance to C

$$
f(x)=\min _{y \in C}\|x-y\|
$$

Let's check this is convex,. $g(x, y)=\|x-y\|$ is convex in x, y jointly, and C is assumed convex, so apply partial minimization rule.

More operations preserving convexity

- Affine composition: f convex implies $g(x)=f(A x+b)$ convex
- General composition: suppose $f=h \circ g$ where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, Then
- f is convex if h is convex and nondecreasing, and g is convex
- f is convex if h is convex and nonincreasing, and g is concave
- f is concave if h is concave and nondecreasing, g is concave
- f is concave if h is concave and nonincreasing, g is convex

How to remember these? Think of the chain rule when $n=1$

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

More operations preserving convexity

- Vector composition: suppose that

$$
f(x)=h(g(x))=h\left(g_{1}(x), \cdots, g_{k}(x)\right)
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, h: \mathbb{R}^{k} \rightarrow \mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then

- f is convex if h is convex and nondecreasing in each argument, and g is convex
- f is convex if h is convex and nonincreasing in each argument, and g is concave
- f is concave if h is concave and nondecreasing in each argument, g is concave
- f is concave if h is concave and nonicreasing in each argument, g is convex.

Example: log-sum-exp function

Log-sum-exp function:

$$
g(x)=\log \left(\sum_{i=1}^{k} e^{a_{i}^{T} x+b_{i}}\right)
$$

for fixed $a_{i}, b_{i}, i=1, \cdots, k$. Often called "soft-max", as it smoothly approximates $\max _{i=1,2, \cdots, k}\left(a_{i}^{T} x+b_{i}\right)$. Convex function!

How to show convexity? First, note it suffices to prove convexity of $f(x)=\log \left(\sum_{i=1}^{k} e_{i}^{x}\right)$ (affine composition rule)

Now use second-order characterization. Calculate

$$
\begin{aligned}
\nabla_{i} f(x) & =\frac{e^{x_{i}}}{\sum e^{x_{j}}} \\
\nabla_{i j}^{2} f(x) & =\frac{e^{x_{i}}}{\sum_{\ell} e^{x_{\ell}}} I\{i=j\}-\frac{e^{x_{i}} e^{x_{j}}}{\left(\sum_{\ell} e^{x_{\ell}}\right)}
\end{aligned}
$$

Write $\nabla^{2} f(x)=\operatorname{diag}(z)-z z^{T}$ where $z_{i}=e^{x_{i}} /\left(\sum_{j} e^{x_{j}}\right)$. This matrix is diagonally dominant, hence positive semidefinite.

Check

$$
\max \left\{\log \left(\frac{1}{\left(a^{T} x+b\right)^{7}}\right),\|A x+b\|_{1}^{5}\right\}
$$

convex?

Convex Optimization Problems

Optimization problem:

$$
\begin{array}{ll}
\min _{x \in D} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1,2, \cdots, m \\
& h_{j}(x)=0, j=1,2, \cdots, r
\end{array}
$$

Here $D=\operatorname{dom}(f) \cap \bigcap_{i=1}^{m} \operatorname{dom}\left(g_{i}\right) \cap \bigcap_{j=1}^{p} \operatorname{dom}\left(h_{j}\right)$, common domain of all the functions.

This is a convex optimization problem provided the functions f and $g_{i}, i=1,2, \cdots, m$ are convex and $h_{j}, j=1,2, \cdots, p$ are affine:

$$
h_{j}(x)=a_{j}^{T} x+b_{j}, j=1, \cdots, p
$$

Local minima and global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible - $x \in D$, and satisfies all constraints and minimizes f in a local neighborhood,

$$
f(x) \leq f(y) \text { for all feasible } y,\|x-y\|_{2} \leq \rho,
$$

then

$$
f(x) \leq f(y) \text { for all feasible } y
$$

This is a very useful fact and will save us a lot of trouble!

Line search methods

Questions?

