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Prerequisites: no formal ones, but class will be fairly fast paced.

Assume working knowledge of /proficiency with
» Real Analysis / Matrix theory
Core problems in Stats/ML

v

v

Programming (Matlab, Python, R, ---)

v

Data structures, computational complexity

v

Formal mathematical thinking

Supplementary Books
» Boyd and Vandenberghe, Convex Optimization, 2009
» R.T. Rochafellar, Convex Analysis, 1996
» D.P. Bertsekas, Convex Optimization Theory, 2009



Optimization problems are ubiquitous in Statistics and Machine
Learning

Optimization problems underlie most everything we do in Statistics
and Machine Learning.

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems, and Nonconvex problems
are mostly treated on a case by case basis.

Presumably, other people have already figured out how to solve

P'. ||||||1

» Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

» Studying P can actually give you a deep understanding of the
statistical procedure in question.
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Convex sets
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Examples
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Key properties
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Operations preserving convexity

Same for convex functions.
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Convex Sets and Functions
Convex set: C C R" such that

xye C=tx+(1—t)ye Cforall0<t<1
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Convex combination of xq,--- ,xx € R"” : any linear combination
Or1xi + -+ Opexic

with §; > 0,i=1,---  kand )_,0; =1, where Convex hull of a set
C, conv(C) is all convex combinations of elements. Always convex!
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Examples of convex sets

> Trivial-ones: empty set, point, line

» Norm ball: {x: ||x|| < r}, for given norm || - ||, radius r
» Hyperplane: {x: a’x= b} for given a, b

» Halfspace: {x:a’x < b}

» Affine space {x: ATx = b}
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Examples of convex sets

» Polyhedron: {x: Ax < b}, where inequality < is interpreted
component-wise. Note: the set {x: Ax < b, Cx = d} is also a
polyhedron (why?)

» Simplex: special case of polyhedra, given by conv{xy, - , xk},
where these points are affinely independent. The canonical
example is the probability simplex

convier, -+, e} ={w:w>0,1"Tw=1}



Cones
Cone: C C R" such that

xe€e C=txe Cforall t>0
Convex cone: cone that is also convex, i.e.

x1,x0 € C= t1x1 + toxg € Cfor all t1,t0 >0

Conic combination of x1,- -+, xx € R": any linear combination
O1x1 + -+ + Oxx

with 6; > 0,i=1,--- , k. Conic hull collects all conic combinations



Examples of convex cones

» Norm cone: {(x, t) : ||x|| < t}, for a norm || - ||. Under ¢2-norm
|| - ||2, called second-order cone
» Normal cone: Given any set C and a point x € C, we can
define
Ne(x)={g:g'x>g"y, forall ye C}

This is always a convex cone, regardless of C

» Positive semidefinite cone: S = {X € S" : X = 0}, where
X = 0 means that X is positive semidefinite (and S” is the set
of n X n symmetric matrices).



Key properties of convex sets

» Separating hyperplane theorem: two disjoint convex sets have
a separating hyperplane between them

Formally, if C, D are nonempty convex set with CN D = (),
then there exists a, b such that

C
D

{x:a'x< b}

-
C cal
C {x:a'x>b}



Key properties of convex sets

» Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

N

Formally, if Cis a nonempty convex set, and xp € bd(C), then
there exists a such that

CC{x:a'x<a'x}



Operations preserving convexity

» Intersection: the intersection of convex set is convex

» Scaling and translation: if Cis convex, then
aC+b={ax+b:xe C}

is convex for any a, b

» Affine images and preimages: if f{x) = Ax+ b and C is convex
then
fC) ={fix): xe C}

is convex and if D is convex, then
f1(D) = {x: fix) € D}

is convex.



Example: linear matrix inequality solution set

> Given Ay, -+, Ak, B € S", a linear matrix inequality is of the
form
x1A1 + x0A2 + -+ XA < B

for a variable x € R¥. Let’s prove that the set C of points x
that satisfy the above inequality is convex.

» Approach 1: directly verify that x,y € C= tx+ (1 — t)y € C.
This follows by checking that, for any v

k
vl <B - ) (txi+(1— t)y,-)A,-) v>0
i=1

» Approach 2: let f: Rk = S" f(x) = B — Zf;l x;A;. Note that
C = f1(S7): affine preimage of convex set



Example: fantope

» Given some integer k > 0, the fantope of order k is
F={ZeS":0=Z=21tr(Z) = k}

where the trace operator tr(Z) = ), Zji is the sum of the
diagnoal entries. Prove that F is convex.

» Approach 1: verify that 0 < Z, W < [ and tr(2) = tr(W) = k,
implies that the same for tZ+ (1 — t)W

» Approach 2: recognize the fact that
F={ZeS":Z>0}{Z2eS": Z=}n{ZeS" : tr(2) = k}

i.e. the intersection of linear equality constraints (hence like a
polyhedron but for matrices).



More operations that preserving convexity

» Perspective images and preimages: the perspective function is
P:R"x Ry; — R" (where Ry denotes positive reals)

P(x,z) = x/z

for z> 0. If CC dom(P) is convex then so is P(C), and if D
is convex, then so is P~1(D).

» Linear-fractional images and preimages: the perspective map
composed with an affine function

Ax+ b
fl = —

is called a linear-fractional function, defined on c"x+ d > 0.
If C C dom(f) is convex then so is f{C), and if D is convex
then so is f1(D)



Example: conditional probability set

Let U, V be random variables over {1,---,n} and {1,--- ,m}. Let
C C R™ be a set of joint distributions for U, V, i.e., each pe C
defines joint probabilities

pij=P(U=1i V=)

Let D C R™ contain corresponding conditional distributions, i.e.
each g € D defines

qj =P(U=iV=)

Assume C is convex. Let's prove that D is convex,. Write

DZ{qER"m:qU:ZZPUI'pM, for some p € C}: (0

where f is a linear-fractional function, hence D is convex.



Convex functions

Convex function: f: R” — R such that dom(f) C R" is convex and
flitx+ (1 —t)y) < tfx) + (1 — t)fly), for 0<t<1

and all x, y € dom(f)

In words, flies below the line segment joining f(x) and f(y)

Concave function: opposite inequality above, so that

f concave <= —f convex



Convex functions

Important modifiers:

» Strictly convex: fltx+ (1 —t)y) < tfx) + (1 — t)f(y) for x # y
and 0 < t < 1. In words, fis a convex and has greater
curvature than a linear function

» Strongly convex with parameter m > 0 : f— 2'|[x||3 is convex
(m-strongly convex). In words, fis at least as convex as a
quadratic function.

Note: strongly convex = strictly convex = convex
Analogously for concave function

Strictly convex #- strongly convex, example?



Examples of Convex Functions

v

Univariate functions

» Exponential function: e is convex for any a € R

» Power function: x? is convex for a> 1 or a < 0 over R
(nonnegative reals)
Power function is concave for 0 < a < 1 over R
Logarithmic function: log x is concave over R

v

v

Affine function: x"a -+ b is both convex and concave

v

v

Quadratic function: %XTQX—{— bTx + cis convex provided that
Q=0

Least square loss: ||y — AX]|3 is always convex (since ATA is
always positive semidefinite.

v



Examples of Convex Functions

» Norm: ||x|| is convex for any norm, e.g. ¢,-norm for p > 1

) )

n 1/p
= xP f >1 = ;
x5 (Z ) or p= 1, |xloc = max ||

and also operator (spectral) and trace (nuclear) norms:

r

IXllop = 01(X), (I Xller = D 0i(X)

i=1

where 01(X) > 02(X) -+ - 0,(X) > 0 are the singular value of
the matrix X.



Examples of Convex Functions

» Indicator function: if Cis a convex, then its indicator function

w={ 8 75

is convex

» Support function: for any set C (convex or not), its support

function
[-(x) = maxxTy
yeC
is convex
» Max function:
f(x) = max{x1, - ,Xn}

is convex



Key Properties of convex functions

» A function is convex only and only if its restriction to any line
is convex

» Epigraph characterization: A function is convex if and only if
epigraph

epi(f) = {(x, t) € dom(f) x R: fx) < t}

is a convex set

» Convex sublevel set: if fis convex, then its sublevel set

{x € dom(f) : fix) < t}

are convex for all t € R. The converse is not true.



» First-order characterization: if fis differentiable, then fis
convex if and only if dom(f) is convex and

fly) > fix) + VAx) "y — x)

for all x, y € dom(f). Therefore for a differentiable convex
function Vf(x) = 0 <= x minimizes f

/
/_r-.- + ¥ flx) Ty -z

» Second-order characterization: if fis twice differentiable, then
fis convex if and only if dom(f) is convex and V2f(x) = 0 for
all x € dom(f)

» Jensen's Inequality: if fis convex, and X is a random variable
supported on dom(f), then AE[X]) < E[AX)]



Operations preserving convexity

» Nonnegative linear combination: fi,--- , f,, convex implies
aifi + -+ + amfy convex for any ay, -+ ,am >0

» Pointwise maximization: if f5 is convex for any s € S, then
f(x) = maxyes fs(x) is convex. Note that the set S here
(number of functions f;) can be infinite.

» Partial minimization: if g(x,y) is convex in x,y and Cis
convex, then

flx) = min 8g(x.y)

is convex.



Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C
under arbitrary norm || - ||:

flx) = max||x — y||
yeC

Let's check this is convex: f,(x) = ||x — y|| is convex in x for any
fixed y, so by pointwise maximization rule, fis convex.

Now let C be convex and consider the minimum distance to C

f(x) = min [[x — y]|
yeC

Let's check this is convex,. g(x,y) = ||[x— y|| is convex in x, y
jointly, and Cis assumed convex, so apply partial minimization rule.



More operations preserving convexity

» Affine composition: f convex implies g(x) = f{Ax+ b) convex
» General composition: suppose f= ho g where
g:R" >R h:R—-R,f: R" - R, Then
» fis convex if his convex and nondecreasing, and g is convex
» fis convex if his convex and nonincreasing, and g is concave
» fis concave if his concave and nondecreasing, g is concave
» fis concave if his concave and nonincreasing, g is convex

How to remember these? Think of the chain rule when n=1

" "

f'(x) = h"(g(x)g (x)* + H (g(x))g (x)



More operations preserving convexity

» Vector composition: suppose that

fix) = h(g(x)) = h(g1(x),-- -, g(x))

where g: R" — RK h: Rk - R, f: R” — R. Then

» fis convex if his convex and nondecreasing in each argument,
and g is convex

» fis convex if his convex and nonincreasing in each argument,
and g is concave

» fis concave if h is concave and nondecreasing in each
argument, g is concave

» fis concave if his concave and nonicreasing in each argument,
g is convex.



Example: log-sum-exp function
Log-sum-exp function:

k
1og (z )

for fixed aj, b;, i = , k. Often called “soft-max”, as it
smoothly apprOX|mates max;—=12,... k (a, x4+ b;). Convex function!

How to show convexity? First, note it suffices to prove convexity of
fix) = log <Zf‘:1 ef) (affine composition rule)

Now use second-order characterization. Calculate

eXi

Vif(x) = Zexi
. ehieN
T = i e

Write V2f(x) = diag(z) — zz" where z; = €9/(>_;€9). This matrix
is diagonally dominant, hence positive semidefinite.




Check )
5
max {Iog ((aTX—i—b)7> s HAX+ le}

convex?



Convex Optimization Problems

Optimization problem:

minyep f(x)
subject to gi(x) <0,i=1,2,---,m
J(x): :12-~,r

Here D = dom(f) N, dom(g;) N ﬂle dom(hj), common domain
of all the functions.

This is a convex optimization problem provided the functions f and
gi,i=1,2,--- ,mare convex and hj,j=1,2,--- , p are affine:

hi(x) = aij—i— bj,j=1,---,p



Local minima and global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible — x € D, and satisfies all constraints —
and minimizes fin a local neighborhood,

fx) < fly) for all feasible y, |x — y||2 < p,

then
f(x) < f(y) for all feasible y

This is a very useful fact and will save us a lot of trouble!



Line search methods

Given fi(x),
guess initial x,

b

Compute step
direction, p,

$

Compute step
length, g,

¥

Update

Kar = Ky 0Py
andk=k+1

I (=) Il <
tolerance?

PP ves

Finish, obtain
minimum f(x,)

No




Questions?



