Convexity: Sets and Functions

Lecturer: Jianyong Sun jy.sun@xjtu.edu.cn

School of Mathematics and Statistics Xi'an Jiaotong University Prerequisites: no formal ones, but class will be fairly fast paced.

Assume working knowledge of/proficiency with

- Real Analysis / Matrix theory
- Core problems in Stats/ML
- Programming (Matlab, Python, R, ···)
- Data structures, computational complexity
- Formal mathematical thinking

Supplementary Books

- Boyd and Vandenberghe, Convex Optimization, 2009
- R.T. Rochafellar, Convex Analysis, 1996
- D.P. Bertsekas, Convex Optimization Theory, 2009

Optimization problems are ubiquitous in Statistics and Machine Learning

Optimization problems underlie most everything we do in Statistics and Machine Learning.

Why convexity? Simply put: because we can broadly understand and solve convex optimization problems, and Nonconvex problems are mostly treated on a case by case basis.

Presumably, other people have already figured out how to solve

 $P:\min_{x\in D}f(x)$

Why bother?

- Different algorithms can perform better or worse for different problems P (sometimes drastically so)
- Studying P can actually give you a deep understanding of the statistical procedure in question.

Outline

- Convex sets
- Examples
- Key properties
- Operations preserving convexity
- Same for convex functions.

Convex Sets and Functions

Convex set: $C \subseteq \mathbb{R}^n$ such that

 $x, y \in C \Longrightarrow tx + (1 - t)y \in C$ for all $0 \le t \le 1$

Convex combination of $x_1, \cdots, x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

with $\theta_i \ge 0, i = 1, \dots, k$ and $\sum_i \theta_i = 1$, where Convex hull of a set C, conv(C) is all convex combinations of elements. Always convex!

Examples of convex sets

- Trivial-ones: empty set, point, line
- ▶ Norm ball: $\{x : ||x|| \le r\}$, for given norm $|| \cdot ||$, radius r
- Hyperplane: $\{x : a^T x = b\}$ for given a, b
- Halfspace: $\{x : a^T x \leq b\}$
- Affine space $\{x : A^T x = b\}$

Examples of convex sets

▶ Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted component-wise. Note: the set {x : Ax ≤ b, Cx = d} is also a polyhedron (why?)

Simplex: special case of polyhedra, given by conv{x₀,..., x_k}, where these points are affinely independent. The canonical example is the probability simplex

$$conv\{e_1, \cdots, e_n\} = \{w : w \ge 0, 1^T w = 1\}$$

Cones

Cone: $C \subseteq \mathbb{R}^n$ such that

$$x \in C \Rightarrow tx \in C$$
 for all $t \ge 0$

Convex cone: cone that is also convex, i.e.

$$x_1, x_2 \in \mathcal{C} \Rightarrow t_1 x_1 + t_2 x_2 \in \mathcal{C}$$
 for all $t_1, t_2 \ge 0$

Conic combination of $x_1, \dots, x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

with $\theta_i \ge 0, i = 1, \cdots, k$. Conic hull collects all conic combinations

Examples of convex cones

- Norm cone: $\{(x, t) : ||x|| \le t\}$, for a norm $||\cdot||$. Under ℓ_2 -norm $||\cdot||_2$, called second-order cone
- ► Normal cone: Given any set C and a point x ∈ C, we can define

$$\mathcal{N}_{\mathcal{C}}(x) = \{ g : g^{\mathsf{T}} x \ge g^{\mathsf{T}} y, \text{ for all } y \in \mathcal{C} \}$$

This is always a convex cone, regardless of C

Positive semidefinite cone: Sⁿ₊ = {X ∈ Sⁿ : X ≥ 0}, where X ≥ 0 means that X is positive semidefinite (and Sⁿ is the set of n × n symmetric matrices).

Key properties of convex sets

Separating hyperplane theorem: two disjoint convex sets have a separating hyperplane between them

Formally, if *C*, *D* are nonempty convex set with $C \cap D = \emptyset$, then there exists *a*, *b* such that

$$C \subseteq \{x : a^T x \le b\}$$
$$D \subseteq \{x : a^T x \ge b\}$$

Key properties of convex sets

Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it

Formally, if C is a nonempty convex set, and $x_0 \in \mathbf{bd}(C)$, then there exists a such that

$$C \subseteq \{x : a^T x \le a^T x_0\}$$

Operations preserving convexity

- Intersection: the intersection of convex set is convex
- Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any *a*, *b*

► Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{f(x) : x \in C\}$$

is convex and if D is convex, then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex.

Example: linear matrix inequality solution set

► Given A₁, · · · , A_k, B ∈ Sⁿ, a linear matrix inequality is of the form

$$x_1A_1 + x_2A_2 + \cdots + x_kA_k \preceq B$$

for a variable $x \in \mathbb{R}^k$. Let's prove that the set *C* of points *x* that satisfy the above inequality is convex.

Approach 1: directly verify that x, y ∈ C ⇒ tx + (1 − t)y ∈ C. This follows by checking that, for any v

$$\mathbf{v}^T \left(B - \sum_{i=1}^k (t\mathbf{x}_i + (1-t)\mathbf{y}_i)\mathbf{A}_i \right) \mathbf{v} \ge 0$$

Approach 2: let f: ℝ^k → Sⁿ, f(x) = B - ∑_{i=1}^k x_iA_i. Note that C = f⁻¹(Sⁿ₊): affine preimage of convex set

Example: fantope

• Given some integer $k \ge 0$, the fantope of order k is

$$\mathcal{F} = \{ Z \in \mathbb{S}^n : 0 \leq Z \leq I, \operatorname{tr}(Z) = k \}$$

where the trace operator $tr(Z) = \sum_{i} Z_{ii}$ is the sum of the diagnoal entries. Prove that \mathcal{F} is convex.

- Approach 1: verify that 0 ≤ Z, W ≤ I and tr(Z) = tr(W) = k, implies that the same for tZ + (1 − t)W
- Approach 2: recognize the fact that

$$\mathcal{F} = \{ Z \in \mathbb{S}^n : Z \succeq 0 \} \cap \{ Z \in \mathbb{S}^n : Z \preceq I \} \cap \{ Z \in \mathbb{S}^n : \operatorname{tr}(Z) = k \}$$

i.e. the intersection of linear equality constraints (hence like a polyhedron but for matrices).

More operations that preserving convexity

▶ Perspective images and preimages: the perspective function is $P : \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ (where \mathbb{R}_{++} denotes positive reals)

$$P(x,z) = x/z$$

for z > 0. If $C \subseteq \text{dom}(P)$ is convex then so is P(C), and if D is convex, then so is $P^{-1}(D)$.

Linear-fractional images and preimages: the perspective map composed with an affine function

$$f(x) = \frac{Ax+b}{c^T x+d}$$

is called a linear-fractional function, defined on $c^T x + d > 0$. If $C \subseteq \text{dom}(f)$ is convex then so is f(C), and if D is convex then so is $f^{-1}(D)$

Example: conditional probability set

Let U, V be random variables over $\{1, \dots, n\}$ and $\{1, \dots, m\}$. Let $C \subseteq \mathbb{R}^{nm}$ be a set of joint distributions for U, V, i.e., each $p \in C$ defines joint probabilities

$$p_{ij} = \mathbb{P}(U=i, V=j)$$

Let $D \subseteq \mathbb{R}^{nm}$ contain corresponding conditional distributions, i.e. each $q \in D$ defines

$$q_{ij} = \mathbb{P}(U=i|V=j)$$

Assume C is convex. Let's prove that D is convex,. Write

$$D = \left\{ q \in \mathbb{R}^{nm} : q_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}, \text{ for some } p \in C \right\} = f(C)$$

where f is a linear-fractional function, hence D is convex.

Convex functions

Convex function: $f : \mathbb{R}^n \to \mathbb{R}$ such that dom $(f) \subset \mathbb{R}^n$ is convex and

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y), \text{ for } 0 \le t \le 1$$

and all $x, y \in \text{dom}(f)$

In words, f lies below the line segment joining f(x) and f(y)

Concave function: opposite inequality above, so that

$$f \operatorname{concave} \iff -f \operatorname{convex}$$

Convex functions

Important modifiers:

- Strictly convex: f(tx + (1 − t)y) < tf(x) + (1 − t)f(y) for x ≠ y and 0 < t < 1. In words, f is a convex and has greater curvature than a linear function
- Strongly convex with parameter m > 0 : f − m/2 ||x||²/₂ is convex (m-strongly convex). In words, f is at least as convex as a quadratic function.
- Note: strongly convex \Rightarrow strictly convex \Rightarrow convex

Analogously for concave function

```
Strictly convex \Rightarrow strongly convex, example?
```

Examples of Convex Functions

Univariate functions

- Exponential function: e^{ax} is convex for any $a \in \mathbb{R}$
- ▶ Power function: x^a is convex for a ≥ 1 or a < 0 over ℝ₊ (nonnegative reals)
- Power function is concave for $0 \le a < 1$ over \mathbb{R}_+
- ► Logarithmic function: log *x* is concave over ℝ₊
- Affine function: $x^T a + b$ is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$
- ► Least square loss: $||y AX||_2^2$ is always convex (since $A^T A$ is always positive semidefinite.

Examples of Convex Functions

▶ Norm: ||x|| is convex for any norm, e.g. ℓ_p -norm for $p \ge 1$

$$\|x\|_{p} = \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p}$$
 for $p \ge 1, \|x\|_{\infty} = \max_{i=1,\cdots,n} |x_{i}|$

and also operator (spectral) and trace (nuclear) norms:

$$\|X\|_{op} = \sigma_1(X), \qquad \|X\|_{tr} = \sum_{i=1}^r \sigma_i(X)$$

where $\sigma_1(X) \ge \sigma_2(X) \cdots \sigma_r(X) \ge 0$ are the singular value of the matrix X.

Examples of Convex Functions

Indicator function: if C is a convex, then its indicator function

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

is convex

Support function: for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex

Max function:

$$f(x) = \max\{x_1, \cdots, x_n\}$$

is convex

Key Properties of convex functions

- A function is convex only and only if its restriction to any line is convex
- Epigraph characterization: A function is convex if and only if epigraph

$$epi(f) = \{(x, t) \in dom(f) \times R : f(x) \le t\}$$

is a convex set

Convex sublevel set: if f is convex, then its sublevel set

$$\{x \in \mathsf{dom}(f) : f(x) \le t\}$$

are convex for all $t \in \mathbb{R}$. The converse is not true.

First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex and

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x)$$

for all $x, y \in \text{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \iff x$ minimizes f

- Second-order characterization: if *f* is twice differentiable, then *f* is convex if and only if dom(*f*) is convex and ∇²*f*(*x*) ≥ 0 for all *x* ∈ dom(*f*)
- Jensen's Inequality: if f is convex, and X is a random variable supported on dom(f), then f(𝔼[X]) ≤ 𝔼[f(X)]

Operations preserving convexity

- ► Nonnegative linear combination: f₁, · · · , f_m convex implies a₁f₁ + · · · + a_mf_m convex for any a₁, · · · , a_m ≥ 0
- Pointwise maximization: if f_s is convex for any s ∈ S, then f(x) = max_{x∈S} f_s(x) is convex. Note that the set S here (number of functions f_s) can be infinite.
- ▶ Partial minimization: if g(x, y) is convex in x, y and C is convex, then

$$f(x) = \min_{y \in C} g(x, y)$$

is convex.

Example: distances to a set

Let *C* be an arbitrary set, and consider the maximum distance to *C* under arbitrary norm $\|\cdot\|$:

$$f(x) = \max_{y \in C} \|x - y\|$$

Let's check this is convex: $f_y(x) = ||x - y||$ is convex in x for any fixed y, so by pointwise maximization rule, f is convex.

Now let C be convex and consider the minimum distance to C

$$f(x) = \min_{y \in C} \|x - y\|$$

Let's check this is convex,. g(x, y) = ||x - y|| is convex in x, y jointly, and C is assumed convex, so apply partial minimization rule.

More operations preserving convexity

- Affine composition: f convex implies g(x) = f(Ax + b) convex
- ► General composition: suppose $f = h \circ g$ where $g : \mathbb{R}^n \to \mathbb{R}, h : \mathbb{R} \to \mathbb{R}, f : \mathbb{R}^n \to \mathbb{R}$, Then
 - ► *f* is convex if *h* is convex and nondecreasing, and *g* is convex
 - ► *f* is convex if *h* is convex and nonincreasing, and *g* is concave
 - ► *f* is concave if *h* is concave and nondecreasing, *g* is concave
 - f is concave if h is concave and nonincreasing, g is convex

How to remember these? Think of the chain rule when n = 1

$$f'(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

More operations preserving convexity

Vector composition: suppose that

$$f(x) = h(g(x)) = h(g_1(x), \cdots, g_k(x))$$

where $g: \mathbb{R}^n \to \mathbb{R}^k, h: \mathbb{R}^k \to \mathbb{R}, f: \mathbb{R}^n \to \mathbb{R}$. Then

- f is convex if h is convex and nondecreasing in each argument, and g is convex
- f is convex if h is convex and nonincreasing in each argument, and g is concave
- f is concave if h is concave and nondecreasing in each argument, g is concave
- f is concave if h is concave and nonicreasing in each argument, g is convex.

Example: log-sum-exp function

Log-sum-exp function:

$$g(x) = \log\left(\sum_{i=1}^{k} e^{a_i^T x + b_i}\right)$$

for fixed $a_i, b_i, i = 1, \dots, k$. Often called "soft-max", as it smoothly approximates $\max_{i=1,2,\dots,k}(a_i^T x + b_i)$. Convex function!

How to show convexity? First, note it suffices to prove convexity of $f(x) = \log \left(\sum_{i=1}^{k} e_{i}^{x}\right)$ (affine composition rule)

Now use second-order characterization. Calculate

$$\nabla_i f(x) = \frac{e^{x_i}}{\sum e^{x_j}}$$

$$\nabla_{ij}^2 f(x) = \frac{e^{x_i}}{\sum_{\ell} e^{x_\ell}} I\{i=j\} - \frac{e^{x_i}e^{x_j}}{(\sum_{\ell} e^{x_\ell})}$$

Write $\nabla^2 f(x) = \text{diag}(z) - zz^T$ where $z_i = e^{x_i} / (\sum_j e^{x_j})$. This matrix is diagonally dominant, hence positive semidefinite.

convex?

Convex Optimization Problems

Optimization problem:

$$\begin{array}{ll} \min_{x \in D} & f(x) \\ \text{subject to} & g_i(x) \leq 0, i = 1, 2, \cdots, m \\ & h_j(x) = 0, j = 1, 2, \cdots, r \end{array}$$

Here $D = \text{dom}(f) \cap \bigcap_{i=1}^{m} \text{dom}(g_i) \cap \bigcap_{j=1}^{p} \text{dom}(h_j)$, common domain of all the functions.

This is a convex optimization problem provided the functions f and g_i , $i = 1, 2, \cdots, m$ are convex and h_j , $j = 1, 2, \cdots, p$ are affine:

$$h_j(x) = a_j^T x + b_j, j = 1, \cdots, p$$

Local minima and global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible — $x \in D$, and satisfies all constraints — and minimizes f in a local neighborhood,

 $f(x) \leq f(y)$ for all feasible $y, ||x - y||_2 \leq \rho$,

then

$$f(x) \le f(y)$$
 for all feasible y

This is a very useful fact and will save us a lot of trouble!

Line search methods

Questions?