
Gradient Descent and Subgradient

Jianyong Sun

Xi’an Jiaotong University

jy.sun@xjtu.edu.cn

Jianyong Sun (XJTU) Subgradient 1 / 60

Gradient Descent

Consider unconstrained, smooth convex optimization

min
x

f (x)

i.e. f is convex and differentiable with dom(f) = Rn. Denote the optimal
criterion value by f ? = minx f (x), and a solution by x?.

Gradient Descent: choose initial point x (0) ∈ Rn, repeat

x (k) = x (k−1) − tk∇f (x (k−1)), k = 1, 2, · · ·

stop at some point

Jianyong Sun (XJTU) Subgradient 2 / 60

Jianyong Sun (XJTU) Subgradient 3 / 60

Gradient descent interpretation

At each iteration, consider the expansion

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation: replacing usual Hessian matrix ∇2f (x) by 1
t I

f (x) +∇f (x)T (y − x) linear approximation to f
1
2t ‖y − x‖22 proximity term to x with weight 1/(2t)

Choose next point y = x+ to minimize the quadratic approximation

x+ = x − t∇f (x)

i.e.

x+ = arg min f (x) +∇f (x)T (y − x) +
1

2t
‖y − x‖22

Jianyong Sun (XJTU) Subgradient 4 / 60

Blue point is x , red point is

x+ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2t
‖y − x‖22

Jianyong Sun (XJTU) Subgradient 5 / 60

Outline

How to choose step sizes

Convergence analysis

Gradient Boosting

Stochastic Gradient descent

Jianyong Sun (XJTU) Subgradient 6 / 60

Fixed step size

Simply take tk = t for all k = 1, 2, · · · , can diverge if t is too big and can
be slow if t is too small, but convergence nicely if t is “just right”.

Consider f (x) = (10x21 + x22)/2 for different step size.

Convergence analysis will give us a precise idea of “just right”.

Jianyong Sun (XJTU) Subgradient 7 / 60

Backtracking line search

One way to adaptively choose the step size is to use backtracking line
search:

First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

At each iteration, start with t = tinit, and while

f (x − t∇f (x)) > f (x)− αt‖∇f (x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x − t∇f (x)

Simply and tends to work well in practice (further simplification, just take
α = 1

2 . Try backtracking line search with α = β = 0.5 for the example
function.

Jianyong Sun (XJTU) Subgradient 8 / 60

Backtracking interpretation

Figure: The curve shows f , restricted to the line over which we search. The lower
dashed line shows the linear extrapolation of f , and the upper dashed line has a
slope a factor of α smaller. The backtracking condition is that f lies below the
upper dashed line, i.e.,0 ≤ t ≤ t0. For us ∆(x) = −∇f (x)

Jianyong Sun (XJTU) Subgradient 9 / 60

Exact line search

Could also choose step to do the best we can along direction of negative
gradient, called exact line search

t = arg min
s≥0

f (x − s∇f (x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as efficient as
backtracking, and it’s usually not worth it.

Jianyong Sun (XJTU) Subgradient 10 / 60

Convergence analysis

Assume that f convex and differentiable, with dom(f) = Rn, and
additionally

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2 for any x , y

i.e. ∇f is Lipschitz continuous with constant L > 0

Theorem

Gradient descent with fixed size t ≤ 1/L satisfies

f (x (k))− f ? ≤ ‖x
(0) − x?‖22

2tk

We say gradient descent has convergence rate O(1/k), i.e. to get
f (x (k))− f ? ≤ ε we need O(1/ε) iterations.

Jianyong Sun (XJTU) Subgradient 11 / 60

Proof

Key steps:

∇f Lipschitz with constant L⇒

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖22, ∀x , y

Plugging in y = x+ = x − t∇f (x)

f (x+) ≤ f (x)−
(

1− Lt

2

)
t‖∇f (x)‖22

Taking 0 < t ≤ 1/L, using convexity of f ,
f ? ≥ f (x) +∇f (x)T (x? − x),

f (x+) ≤ f ? +∇f (x)T (x − x?)− t

2
‖∇f (x)‖22

= f ? +
1

2t
(‖x − x?‖22 − ‖x+ − x?‖22)

Jianyong Sun (XJTU) Subgradient 12 / 60

Proof

Summing over all iterations till k

k∑
i=1

f (x (i))− f (x?) ≤ 1

2t

∑
(‖x (i−1) − x?‖22 − ‖x (i) − x?‖22)

≤ 1

2t
‖x (0) − x?‖22

Since f (x (k)) is non-increasing (i.e. f (x (0)) ≤ f (x (1)) ≤ · · ·)

f (x (k))− f ? ≤ 1

k

k∑
i=1

f (x (i))− f ? ≤ ‖x
(0) − x?‖22

2tk

Jianyong Sun (XJTU) Subgradient 12 / 60

Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, dom(f) = Rn and ∇f is
Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem

Gradient descent with backtracking line search satisfies

f (x (k))− f ? ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

If β is not too small, then we don’t lose much compared to fixed step size
(β/L vs 1/L)

Jianyong Sun (XJTU) Subgradient 13 / 60

Convergence analysis under strong convexity

Reminder: strong convexity of f means f (x)− m
2 ‖x‖

2
2 is convex for some

m > 0. If f is twice differentiable, then this is equivalent to

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
‖y − x‖22,∀x , y

Under Lipschitz assumption as before, and also strong convexity

Theorem

Gradient descent with fixed step size t ≤ 2/(m + L) or with backtracking
line search satisfies

f (x (k))− f ? ≤ ck
L

2
‖x (0) − x?‖22

where 0 < c < 1

Jianyong Sun (XJTU) Subgradient 14 / 60

Convergence analysis under strong convexity

I.e. rate with strong convexity is O(ck), exponentially fast!

I.e. to get f (x (k))− f ? ≤ ε, need O(log(1/ε)) iterations, called linear
convergence

Constant c depends adversely on condition number L/m (higher condition
number → slow rate)

Jianyong Sun (XJTU) Subgradient 14 / 60

A look at the conditions

Look at the conditions for a simple problem f (β) = 1
2‖y − Xβ‖22

Lipschitz continuity of ∇f :

This means ∇2f (x) � LI
As ∇2f (β) = XTX , we have L = σ2max(X)

Strong convexity of f

This means ∇2f (x) � mI
As ∇2f (β) = XTX , we have m = σ2min(X)

If X is wide—i.e. X is n × p with p > n—then σmin(X) = 0 and f
cannot be strongly convex

Even if σmin(X) > 0, can have a very large condition number
L/m = σmax(X)/σmin(X)

Jianyong Sun (XJTU) Subgradient 15 / 60

A function f having Lipschitz gradient and being strongly convex satisfies

mI � ∇2f (x) � LI for all x ∈ Rn

for constants L > m > 0

Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all x ∈ Rn). But a
careful look at proofs show that we only need Lipschitz gradients/strong
convexity over the sublevel set

S = {x : f (x) ≤ f (x (0))}

which is less restrictive.

Jianyong Sun (XJTU) Subgradient 16 / 60

Can we do better?

Gradient descent has O(1/ε) convergence rate over problem class of
convex, differential functions with Lipschitz gradients

First-order method, iterative method, update x (k) in

x (0) + span{∇f (x (0)),∇f (x (1)), · · · ,∇f (x (k−1))}

Theorem

For any k ≤ (n − 1)/2 and any starting point x (0), there is a function f in
the problem class such that any first-order method satisfies

f (x (k))− f ? ≥ 3L‖x (0) − x?‖
32(k + 1)2

Curtsey to Nesterov.

Can we obtain rate O(1/k2) or O(1/
√
ε)?

Jianyong Sun (XJTU) Subgradient 17 / 60

Practicalities

Stopping rule: stop when ‖∇f (x)‖2 is small

Recall ∇f (x?) = 0 at solution x?

If f is strong convex with parameter m, then

‖∇f (x)‖2 ≤
√

2mε⇒ f (x)− f (x?) ≤ ε

Pros and cons of gradient descent

Pros: simple, each iteration is cheap (usually)

fast for well-conditioned, strongly convex problems

Cons: often be slow, because many interesting problems aren’t
strongly convex or well-conditioned

cannot handle nondifferentiable functions

Jianyong Sun (XJTU) Subgradient 18 / 60

Gradient Boosting

Given observations y = (y1, y2, · · · , yn) ∈ Rn, predicator measurements
xi ∈ Rp, i = 1, · · · , n

Want to construct a flexible (nonlinear) model for outcome based on
predicators. Weighted sum of trees

ui =
m∑
j=1

βjTj(xi), i = 1, · · · , n

Each tree Tj inputs predicator measurements xi , output prediction. Trees
are typically grow pretty short.

Jianyong Sun (XJTU) Subgradient 19 / 60

Pick a loss function L that reflects setting, e.g. for continuous y , could
take L(yi , ui) = (yi − ui)

2

Want to solve

min
β

n∑
i=1

L

yi ,
M∑
j=1

βjTj(xi)

Indexes all trees of a fixed size (e.g. depth = 5), so M is huge.

Space is simply too big to compute.

Gradient boosting: basically a version of gradient descent that is forced to
work with trees.

First think of optimization as minu f (u) over predicted values ui , subject
to u coming from trees.

Jianyong Sun (XJTU) Subgradient 20 / 60

Start with initial model, e.g. fit a single tree u(0) = T0, Repeat:

Compute negative gradient d at latest prediction u(k−1):

di = −
[
∂L(yi , ui)

∂ui

] ∣∣∣∣
ui=u

(k−1)
i

, i = 1, 2, · · · , n

Find a tree Tk that is close to di , i.e. according to

min
treeT

n∑
i=1

(di − T (xi))2

Not hard to (approximately) solve for a single tree

Compute step size αk and update our predictor

u(k) = u(k−1) + αkTk

Note: predictions are weighted sum of trees as desired.

Jianyong Sun (XJTU) Subgradient 21 / 60

Stochastic gradient descent (SGD)

Jianyong Sun (XJTU) Subgradient 22 / 60

Stochastic Gradient Descent

Consider minimizing a sum of functions

min
x

m∑
i=1

fi (x)

As ∇
∑

fi (x) =
∑
∇fi (x), gradient descent would repeat

x (k) = x (k−1) − tk ·
m∑
i=1

∇fi (x (k−1)), k = 1, 2, · · ·

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats

x (k) = x (k−1) − tkg
(k−1)
ik

, k = 1, 2, · · ·

where ik ∈ {1, · · · ,m} is some chosen index at iteration k

Jianyong Sun (XJTU) Subgradient 23 / 60

Two rules for choosing index ik at iteration k :

Cyclic rule: choose ik = 1, 2, · · · ,m, 1, 2, · · · ,m, · · ·
Randomized rule: choose ik ∈ {1, 2, · · · ,m} uniformly at random

Randomized rule is more common in practice

What’s the difference between stochastic and batch method?
Computationally, m stochastic steps ≈ one batch step. But what about
progress?

Cyclic rule: m steps: x (k+m) = x (k) − t
∑m

i=1∇fi (x (k+i−1))

Batch method: one step: x (k+1) = x (k) − t
∑m

i=1∇fi (x (k))
Difference in directions:

∑m
i=1∇fi (x (k+i−1))−∇fi (x (k))

So SGD should converge if each ∇fi (x) does not vary widely at x

Rule of thumb: SGD thrives far from optimum, struggles close to optimum
...

Jianyong Sun (XJTU) Subgradient 24 / 60

SGD and beyond

More on Stochastic gradient descent, Momentum, Adagrad, RSProp,
Adaptive moment estimation (ADAM), etc.

Jianyong Sun (XJTU) Subgradient 25 / 60

Subgradient

Jianyong Sun (XJTU) Subgradient 26 / 60

Subgradients

If ∇f (x) is Lipschitz, gradient descent as convergence rate O(1/ε), but
GD requires f is differentiable and it can be slow to converge

Subgradients

Examples

Subgradient rules

Optimality characterizations

Jianyong Sun (XJTU) Subgradient 27 / 60

Subgradients

Recall that for convex and differentiable f

f (y) ≥ f (x) +∇f (x)T (y − x) for all x , y

I.e. linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f (y) ≥ f (x) + gT (y − x) for all y

Always exists

If f differentiable at x , then g = ∇f (x) uniquely

Actually, same definition works for nonconvex f (however,
subgradient needs not exist)

Jianyong Sun (XJTU) Subgradient 28 / 60

Examples

Consider f : R→ R

Consider f (x) = |x |, its subgradient

for x 6= 0, unique subgradient g = sign(x)

for x = 0, subgradient g is any element of [−1, 1]

Consider f (x) = ‖x‖2, its subgradient

For x 6= 0, unique subgradient g = x/‖x‖2
For x = 0, subgradient g is any element of {x : ‖x‖2 ≤ 1}

Jianyong Sun (XJTU) Subgradient 29 / 60

Consider f (x) = ‖x‖1, x ∈ Rn, its subgradient

for xi 6= 0, unique subgradient gi = sign(x)

for xi = 0, subgradient gi is any element of [−1, 1]

Let f1, f2 : Rn → R be convex and differentiable, and consider
f (x) = max{f1(x), f2(x)}

For f1(x) > f2(x), unique subgradient ∇f1(x)

For f2(x) > f1(x), unique subgradient ∇f2(x)

For f1(x) = f2(x), subgradient g is any point on the line segment
between ∇f1(x) and ∇f2(x)

g = {α∇f1(x) + (1− α)∇f2(x), ∀α ∈ [0, 1]}

Jianyong Sun (XJTU) Subgradient 30 / 60

Jianyong Sun (XJTU) Subgradient 31 / 60

Subdifferential

Set of all subgradients of convex f is called the Subdifferential

∂f (x) = {g ∈ Rn : g is a subgradient of f at x}

∂f (x) is convex and closed, even for nonconvex function

Nonempty (can be empty for nonconvex f)

If f is differentiable at x , then ∂f (x) = ∇f (x)

If ∂f (x) = {g}, then f is differentiable at x and ∇f (x) = g

Jianyong Sun (XJTU) Subgradient 32 / 60

Connection to convex geometry

Consider convex set C ⊆ Rn, consider indicator function, IC : Rn → R

IC =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C , ∂IC (x) = NC (x), the normal cone of C at x , that is

NC (x) =
{
g ∈ Rn : gT x ≥ gT y for all y ∈ C

}
Why? By definition of subgradient g

IC (y) ≥ IC (x) + gT (y − x) for all y

That is

For y /∈ C , IC (y) =∞
For y ∈ C , this means 0 ≥ gT (y − x)

Jianyong Sun (XJTU) Subgradient 33 / 60

Subgradient calculus

Basic rules for convex functions

Scaling: ∂(af) = a∂(f) provided a > 0

Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)

Affine composition: if g(x) = f (Ax + b), then

∂g(x) = AT∂f (AT x + b)

Finite pointwise maximization: if f (x) = maxi=1,··· ,m fi (x), then

∂f (x) = conv

 ⋃
i :fi (x)=f (x)

∂fi (x)

convex hull of union of subgradiential of all active functions at x

Jianyong Sun (XJTU) Subgradient 34 / 60

Subgradient calculus

General pointwise maximization: if f (x) = maxi∈S fi (x), then

∂f (x) ⊂ cl

conv

 ⋃
i :fi (x)=f (x)

∂fi (x)

under some regularity conditions (on S and fi), we can get an equality
above.

Norms: f (x) = ‖x‖p, let q be such that 1/p + 1/q = 1, then

‖x‖p = max
‖z‖q≤1

zT x

Hence
∂f (x) = argmax

‖z‖q≤1
zT x

Jianyong Sun (XJTU) Subgradient 34 / 60

Why subgradients?

Subgradients are important for two reasons:

Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

Convex optimization: if you can compute subgradients, then you can
minimize (almost) any convex function.

Jianyong Sun (XJTU) Subgradient 35 / 60

Optimality condition

For any f (convex or not),

f (x?) = min
x

f (x)⇔ 0 ∈ ∂f (x)

i.e. x? is a minimizer if and only if 0 is a subgradient of f at x?. This is
called the subgradient optimality condition.

Why? g = 0 being a subgradient means that for all y :

f (y) ≥ f (x?) + 0T (y − x) = f (x?)

Note the implication for a convex and differentiable function f with
∂f (x) = {∇f (x)}

Jianyong Sun (XJTU) Subgradient 36 / 60

Derivation of first-order optimality condition

Recall that for f convex and differentiable, the problem

min f (x) subject to x ∈ C

is solved at x if and only if

∇f (x)T (y − x) ≥ 0 for all y ∈ C

Intuitively says that gradient increase as we move away from x . How to
see this? First recast problem as

min
x

f (x) + IC (x)

Now apply subgradient optimality

0 ∈ ∂(f (x) + IC (x))

Jianyong Sun (XJTU) Subgradient 37 / 60

Derivation of first-order optimality condition

But

0 ∈ ∂(f (x) + IC (x)) ⇐⇒ 0 ∈ {∇f (x) +NC (x)}
⇐⇒ −∇f (x) ∈ NC (x)

⇐⇒ −∇f (x)T x ≥ −∇f (x)T y for all y ∈ C

⇐⇒ ∇f (x)T (y − x) ≥ 0 for all y ∈ C

as desired.

Note: the condition 0 ∈ ∂(f (x) + IC (x)) is a fully general condition for
optimality in a convex problem. But this is not always easy to work with
KKT conditions.

Jianyong Sun (XJTU) Subgradient 37 / 60

Example: lasso optimality condition

Given y ∈ Rn,X ∈ Rn×p, lasso problem can be paramterized as

min
β

1

2
‖y − Xβ‖22 + λ‖β‖1

where λ ≥ 0. Subgradient optimality says

0 ∈ ∂
(

1

2
‖y − Xβ‖22 + λ‖β‖1

)
⇔ 0 ∈ −XT (y − Xβ) + λ∂‖β‖1

⇔ XT (y − Xβ) = λv

for some v ∈ ∂‖β‖1, i.e.

vi ∈

{1} if βi > 0
{−1} if βi < 0, i = 1, · · · , p
d−1, 1e if βi = 0

Jianyong Sun (XJTU) Subgradient 38 / 60

Example: lasso optimality condition

Write X1, · · · ,Xp for columns of X . Then subgradient optimality reads{
XT
i (y − Xβ) = λ · sign(βi) if βi 6= 0
|XT

i (y − Xβ)| ≤ λ if βi = 0

Note that the subgradient optimality condition do not directly lead to an
expression for a lasso solution,....,however they do provide a way to check
lasso optimality.

They are also helpful to in understanding the lasso estimator, e.g. if
|XT

i (y − Xβ)| ≤ λ, then βi = 0.

Jianyong Sun (XJTU) Subgradient 38 / 60

Example: soft-thresholding

Simplified lasso problem with X = I ,

min
β

1

2
‖y − β‖22 + λ‖β‖1

This can be solved directly using subgradient optimality. Solution is
β = Sλ(y), where Sλ is the soft-thresholding operator

[Sλ(y)]i =

yi − λ if yi > λ
0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

Check: from last slide, subgradient optimality conditions are{
yi − βi = λ · sign(βi) if βi 6= 0
|yi − βi | ≤ λ if βi = 0

Jianyong Sun (XJTU) Subgradient 39 / 60

Now plug in β = Sλ(y) and check these are satisfied

When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ · 1 since
sign(βi) = 1

When yi < −λ, argument is similar

When |yi | ≤ λ, βi = 0, and |yi − βi | = |yi | ≤ λ

Figure: soft-thresholding in one variable

Jianyong Sun (XJTU) Subgradient 40 / 60

Example: distance to a convex set

Recall the distance function to a closed, convex set C

dist(x ,C) = min
y∈C
‖y − x‖2

This is a convex function, what are its subgradients?

Write dist(x ,C) = ‖x − PC (x)‖2, where PC (x) is the projection of x onto
C :

PC (x) = argmin
y∈C

‖y − x‖2

It turns out that when dist(x ,C) > 0

∂dist(x ,C) =

{
x − PC (x)

‖x − PC (x)‖2

}
Only has one element, so in fact dist(x ,C) is differentiable and this is its
gradient.

Jianyong Sun (XJTU) Subgradient 41 / 60

Write u = PC (x), by first-order optimality condition for a projection

(x − u)T (y − u) ≤ 0 for all y ∈ C

Hence
C ⊆ H = {y : (x − u)T (y − u) ≤ 0}

Claim:

dist(x ,C) ≥ (x − u)T (y − u)

‖x − u‖2
for all y

Check: first for y ∈ H, the RHS is ≤ 0
Now for y /∈ H, we have (x − u)T (y − u) = ‖x − u‖2‖y − u‖2 cos θ where
θ is the angle between x − u and y − u. Thus

(x − u)T (y − u)

‖x − u‖2
= ‖y − u‖2 cos θ = dist(y ,H) ≤ dist(y ,C)

as desired.

Jianyong Sun (XJTU) Subgradient 42 / 60

Under the claim, we have for any y ,

dist(x ,C) ≥ (x − u)T (y − x + x − u)

‖x − u‖2

= ‖x − u‖2 +

(
x − u

‖x − u‖2
(y − x)

)T

Hence g = (x − u)/‖x − u‖2 is a subgradient of dist(x ,C) at x

Jianyong Sun (XJTU) Subgradient 42 / 60

Subgradient method

Now consider f convex with dom(f) = Rn, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients with
subgradients, i.e. initialize x (0), repeat

x (k) = x (k−1) − tkg
(k−1), k = 1, 2, · · ·

where g (k−1) ∈ ∂f (x (k−1)), any subgradient of f at x (k−1)

Subgradient method is not necessarily a descent method, so we keep track

of the best iterate x
(k)
best among x (0), · · · , x (k) so far, i.e.

f (x
(k)
best) = min

i=0,··· ,k
f (x (i))

Jianyong Sun (XJTU) Subgradient 43 / 60

Step size choices

Fixed step sizes tk = t for all k = 1, 2, 3, · · ·
Diminishing step size: choose to meet conditions

∞∑
k=1

t2k <∞,
∞∑
t=1

=∞

i.e. square summable but not summable

Other options, but important difference to gradient descent: step
sizes are typically pre-specified, not adaptively computed.

Jianyong Sun (XJTU) Subgradient 44 / 60

Convergence analysis

Assume that f convex and dom(f) = Rn, and also that f is Lipschitz
continuous with constant G > 0, i.e.

|f (x)− f (y)| ≤ G‖x − y‖2 for all x , y

Theorem

For a fixed size t, subgradient method satisfies

lim
k→∞

f (x
(k)
best) ≤ f ? + G 2t/2

Theorem

For diminishing step sizes, subgradient method satisfies

lim
k→∞

f (x
(k)
best) = f ?

Jianyong Sun (XJTU) Subgradient 45 / 60

Basic inequality

Can prove both results from the same basic inequalities. Key steps:

Using definition of subgradient

‖x (k) − x?‖22 ≤
‖x (k−1) − x?‖22 − 2tk(f (x (k−1))− f (x?)) + t2k‖g (k−1)‖22

Iterating last inequality

‖x (k) − x?‖22 ≤

‖x (0) − x?‖22 − 2
t∑

i=1

ti (f (x (i−1))− f (x?)) +
t∑

i=1

t2i ‖g (i−1)‖22

Jianyong Sun (XJTU) Subgradient 46 / 60

Basic inequality

Using ‖x (k) − x?‖22 ≥ 0, and letting R = ‖x0 − x?‖22

0 ≤ R2 − 2
t∑

i=1

ti (f (x (i−1))− f (x?)) + G 2
t∑

i=1

t2i

Introducing f (x
(k)
best) = mini=0,··· ,k f (x (i)), and rearraning

f (x
(k)
best)− f (x?) ≤

R2 + G 2
∑k

i=1 t
2
i

2
∑k

i=1 ti

We call this basic inequality

For different step size choices, convergence results can be directly obtained
from this bound.

Jianyong Sun (XJTU) Subgradient 46 / 60

Convergence rate

The basic inequality tells us that after k steps, we have

f (x
(k)
best)− f ? ≤

R2 + G 2
∑k

i=1 t
2
i

2
∑k

i=1 ti

With fixed step size t, this gives

f (x
(k)
best)− f ? ≤ R2

2kt
+

G 2t

2

For this to be ≤ ε, let’s make each term ≤ ε/2. Therefore, choose
t = ε/G 2 and k = R2/t · 1/ε = R2G 2/ε

i.e. subgradient method has convergence rate O(1/ε2), compare this to
O(1/ε) rate of gradient descent.

Jianyong Sun (XJTU) Subgradient 47 / 60

Example: regularized logistic regression

Given (xi , yi) ∈ Rp × {0, 1} for i = 1, · · · , n. consider the logistic
regression loss

f (β) =
n∑

i=1

(
−yixTi β + log(1 + exp(xTi β))

)
This is a smooth and convex with

∇f (β) =
n∑

i=1

(yi − pi (β))xi

where

pi (β) =
exp(xTi β)

1 + exp(xTi β)
, i = 1, · · · , n

We will consider the regularized problem

min
β

f (β) + λ · P(β)

where P(β) = ‖β‖22 (ridge penalty) or ‖β‖1 (lasso penalty)
Jianyong Sun (XJTU) Subgradient 48 / 60

Example: regularized logistic regression

Ridge problem: use gradients; lasso problem: use subgradients.
Data example with n = 1000, p = 20

Step sizes hand-tuned to be favorable for each method (comparison is
apparently not perfect)

Jianyong Sun (XJTU) Subgradient 48 / 60

Polyak step sizes

Polyak step sizes: when the optimal value f ? is known, take

tk =
f (x (k−1))− f ?

‖g (k−1)‖22
, k = 1, 2, · · ·

can be motivated from the first step in subgradient proof

‖x (k) − x?‖22 ≤ ‖x (k−1) − x?‖22 − 2tk(f (x (k−1))− f ?) + t2k‖g (k−1)‖22

Polyak step sizes minimizes the RHS.

With Polyak step sizes, can show subgradient method converges to
optimal value, but the rate is still O(1/ε2)

Jianyong Sun (XJTU) Subgradient 49 / 60

Can we do better?

Pros: broad applicability, Cons: convergence rate O(1/ε2) over problem
classes of convex, Lipschitz function is really slow.

Non-smooth first-order methods: iterative methods updating x (k) in

x (0) + span{g (0), g (1), · · · , g (k−1)}

where subgradients g (0), g (1), · · · , g (k−1) come from weak oracle.

Theorem

For any k ≤ n − 1 and starting point x (0), there is a function in the
problem class such that any non-smooth first-order method satisfies

f
(
x (k)

)
− f ? ≥ RG

2(1 +
√
k + 1)

Jianyong Sun (XJTU) Subgradient 50 / 60

Example: intersection of sets

Suppose we want to find x? ∈ C1 ∩ · · · ∩ Cm, i.e. in intersection of closed,
convex sets C1, · · · ,Cm

First define

fi (x) = dist(x ,Ci), i = 1, · · · ,m
f (x) = max

i=1,2,··· ,m
fi (x)

and now solve
min
x

f (x)

Note that f ? = 0⇒ x? ∈ C1 ∩ · · · ∩ Cm. Check: is this problem convex?

Jianyong Sun (XJTU) Subgradient 51 / 60

Recall the gradient of the distance function dist(x ,C) = miny∈C ‖y − x‖2
is

∇dist(x ,C) =
x − PC (x)

‖x − PC (x)‖2
where PC (x) is the projection of x onto C

Recall that the subgradient rule: if f (x) = maxi=1,2,··· ,m fi (x), then

∂f (x) = conv

 ⋃
i :fi (x)=f (x)

∂fi (x)

so if fi (x) = f (x) and gi ∈ ∂fi (x), then gi ∈ ∂f (x)

Jianyong Sun (XJTU) Subgradient 52 / 60

Put these two facts together for intersection of sets problem, with
fi (x) = dist(x ,Ci): if Ci is furthest set from x (so fi (x) = f (x)) and

gi = ∇fi (x) =
x − PC (x)

‖x − PC (x) 2

then gi ∈ ∂f (x)

Now apply subgradient method, with Polyak size tk = f (x (k−1)). At
iteration k , with Ci furthest from x (k−1), we perform update

x (k) = x (k−1) − f (x (k−1))
x (k−1) − PCi

(x (k−1))

‖x (k−1) − PCi
(x (k−1))‖2

= PCi
(x (k−1))

Here f (x (k−1)) = dist(x (k−1),Ci) = ‖x (k−1) − PCi
(x (k−1))‖2

Jianyong Sun (XJTU) Subgradient 52 / 60

Alternating Projection

For two sets, this is the famous alternating projection algorithm, i.e. just
keep projecting back and forth

Jianyong Sun (XJTU) Subgradient 53 / 60

Projected subgradient method

To optimize a convex function f over a convex set C

min
x∈C

f (x)

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C at each iteration

x (k) = PC

(
x (k−1) − tkg

(k−1)
)
, k = 1, 2, · · ·

Assuming we can do this projection, we get the same convergence
guarantee as the usual subgradient method, with the same step size
choices.

Jianyong Sun (XJTU) Subgradient 54 / 60

Projected subgradient method

What sets C are easy to project onto? Lots, e.g.

Affine images: {Ax + b : x ∈ Rn}
Solution set of linear system: {x : Ax = b}
Nonnegative orthant: Rn

+ = {x : x ≥ 0}
Some norm balls: {x : ‖x‖p ≤ 1} for p = 1, 2,∞
Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C , and PC can turn
out to be very hard! E.g. generally hard to project onto arbitrary
polyhedron C = {x : Ax ≤ b}

Note: projected gradient descent works too.

Jianyong Sun (XJTU) Subgradient 54 / 60

Stochastic subgradient method

Similar to our setup for stochastic gradient descent. Consider sum of
convex functions

min
x

m∑
i=1

fi (x)

Stochastic subgradient method repeats

x (k) = x (k−1) − tk · g
(k−1)
ik

, k = 1, 2, 3, · · ·

where ik ∈ {2, · · · ,m} is some chosen index at iteration k, chosen by

either the random or cyclic rule. and g
(k−1)
ik

∈ ∂fi (x (k−1)) (this update

direction is used in place of the usual
∑

i g
(k−1)
i

Note that when each fi , i = 1, · · · ,m is differentiable, this reduces to
stochastic gradient descent.

Jianyong Sun (XJTU) Subgradient 55 / 60

Convergence of stochastic methods

Assume each fi , i = 1, · · · ,m is convex and Lipschitz with constant G > 0

For fixed step sizes tk = t, k = 1, 2, · · · ,, cyclic and randomized stochastic
subgradient methods both satisfy

lim
k→∞

f (x
(k)
best) ≤ f ? + 5m2G 2t/2

Note: mG can be considered as Lipschitz constant for whole function∑
i fi , so this comparable to batch bound.

For diminishing step sizes, cyclic and randomized methods satisfy

lim
k→∞

f (x
(k)
best) = f ?

Jianyong Sun (XJTU) Subgradient 56 / 60

Convergence of stochastic methods

How about convergence rate?

Looking back carefully, the batch subgradient method rate was
O(G 2

batch/ε
2), where Lipschitz constant G 2

batch is for the whole function

Cyclic rule: iteration complexity is O(m3G 2/ε2), therefore the
number of cycles needed is O(m2G 2/ε2), comparable to batch

Randomized rule1: iteration complexity O(m2G 2/ε2). Thus the
number of random cycles needed is O(mG 2/ε2), reduced by a factor
of m!

This is a convincing reason to use randomized stochastic methods, for
problems where m is big.

1For randomized rule, result holds in expectation, i.e. bound is on expected number
of iterations

Jianyong Sun (XJTU) Subgradient 56 / 60

Example: stochastic logistic regression

Back to the logistic regression problem (now we are talking SGD)

min
β

f (β) =
n∑

i=1

(
− yix

T
i β + log(1 + exp(xTi β))

)︸ ︷︷ ︸
fi (β)

The gradient computation ∇f (β) =
∑

i

(
yi − pi (β)

)
xi is doable when n is

moderate, but not when n ≈ 500 millon. Recall

One batch update costs O(np), p is the number of features

One stochastic update costs O(p)

So clearly, e.g. 10K stochastic steps are much more affordable.

Jianyong Sun (XJTU) Subgradient 57 / 60

Figure: Blue: batch steps O(np), Red: stochastic steps O(p)

Rule of thumb for stochastic methods

generally thrive far from optimum

generally struggle close to optimum.

Jianyong Sun (XJTU) Subgradient 58 / 60

Improving on the subgradient method

In words, we cannot do better than the O(1/ε2) rate of subgradient
method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f (x) = g(x) + h(x)

where g is convex and differentiable, h is convex and nonsmooth but
“simple”.

For a lot of problems (i.e. function h), we can recover the O(1/ε) rate of
gradient descent with a simple algorithm, having important practical
consequences.

Jianyong Sun (XJTU) Subgradient 59 / 60

Questions?

Jianyong Sun (XJTU) Subgradient 60 / 60

	Gradient Descent

