Gradient Descent and Subgradient

Jianyong Sun
Xi'an Jiaotong University
jy.sun@xjtu.edu.cn

Gradient Descent

Consider unconstrained, smooth convex optimization

$$
\min _{x} f(x)
$$

i.e. f is convex and differentiable with $\operatorname{dom}(f)=\mathbb{R}^{n}$. Denote the optimal criterion value by $f^{\star}=\min _{x} f(x)$, and a solution by x^{\star}.

Gradient Descent: choose initial point $x^{(0)} \in \mathbb{R}^{n}$, repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right), k=1,2, \cdots
$$

stop at some point

Gradient descent interpretation

At each iteration, consider the expansion

$$
f(y) \approx f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

Quadratic approximation: replacing usual Hessian matrix $\nabla^{2} f(x)$ by $\frac{1}{t} I$

$$
\begin{array}{ll}
f(x)+\nabla f(x)^{T}(y-x) & \text { linear approximation to } f \\
\frac{1}{2 t}\|y-x\|_{2}^{2} & \text { proximity term to } x \text { with weight } 1 /(2 t)
\end{array}
$$

Choose next point $y=x^{+}$to minimize the quadratic approximation

$$
x^{+}=x-t \nabla f(x)
$$

i.e.

$$
x^{+}=\arg \min f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

Blue point is x, red point is

$$
x^{+}=\underset{y}{\operatorname{argmin}} f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2 t}\|y-x\|_{2}^{2}
$$

Outline

- How to choose step sizes
- Convergence analysis
- Gradient Boosting
- Stochastic Gradient descent

Fixed step size

Simply take $t_{k}=t$ for all $k=1,2, \cdots$, can diverge if t is too big and can be slow if t is too small, but convergence nicely if t is "just right".

Consider $f(x)=\left(10 x_{1}^{2}+x_{2}^{2}\right) / 2$ for different step size.
Convergence analysis will give us a precise idea of "just right".

Backtracking line search

One way to adaptively choose the step size is to use backtracking line search:

- First fix parameters $0<\beta<1$ and $0<\alpha \leq 1 / 2$
- At each iteration, start with $t=t_{\text {init }}$, and while

$$
f(x-t \nabla f(x))>f(x)-\alpha t\|\nabla f(x)\|_{2}^{2}
$$

shrink $t=\beta t$. Else perform gradient descent update

$$
x^{+}=x-t \nabla f(x)
$$

Simply and tends to work well in practice (further simplification, just take $\alpha=\frac{1}{2}$. Try backtracking line search with $\alpha=\beta=0.5$ for the example function.

Backtracking interpretation

Figure: The curve shows f, restricted to the line over which we search. The lower dashed line shows the linear extrapolation of f, and the upper dashed line has a slope a factor of α smaller. The backtracking condition is that f lies below the upper dashed line, i.e., $0 \leq t \leq t_{0}$. For us $\Delta(x)=-\nabla f(x)$

Exact line search

Could also choose step to do the best we can along direction of negative gradient, called exact line search

$$
t=\arg \min _{s \geq 0} f(x-s \nabla f(x))
$$

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as efficient as backtracking, and it's usually not worth it.

Convergence analysis

Assume that f convex and differentiable, with $\operatorname{dom}(f)=\mathbb{R}^{n}$, and additionally

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2} \text { for any } x, y
$$

i.e. ∇f is Lipschitz continuous with constant $L>0$

Theorem

Gradient descent with fixed size $t \leq 1 / L$ satisfies

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 t k}
$$

We say gradient descent has convergence rate $O(1 / k)$, i.e. to get $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ we need $O(1 / \epsilon)$ iterations.

Proof

Key steps:

- ∇f Lipschitz with constant $L \Rightarrow$

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}, \forall x, y
$$

- Plugging in $y=x^{+}=x-t \nabla f(x)$

$$
f\left(x^{+}\right) \leq f(x)-\left(1-\frac{L t}{2}\right) t\|\nabla f(x)\|_{2}^{2}
$$

- Taking $0<t \leq 1 / L$, using convexity of f,

$$
\begin{aligned}
& f^{\star} \geq f(x)+\nabla f(x)^{T}\left(x^{\star}-x\right), \\
& f\left(x^{+}\right) \leq f^{\star}+\nabla f(x)^{T}\left(x-x^{\star}\right)-\frac{t}{2}\|\nabla f(x)\|_{2}^{2} \\
&=f^{\star}+\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x^{+}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

Proof

- Summing over all iterations till k

$$
\begin{aligned}
\sum_{i=1}^{k} f\left(x^{(i)}\right)-f\left(x^{\star}\right) & \leq \frac{1}{2 t} \sum\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

- Since $f\left(x^{(k)}\right)$ is non-increasing (i.e. $f\left(x^{(0)}\right) \leq f\left(x^{(1)}\right) \leq \cdots$)

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{1}{k} \sum_{i=1}^{k} f\left(x^{(i)}\right)-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 t k}
$$

Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, $\operatorname{dom}(f)=\mathbb{R}^{n}$ and ∇f is Lipschitz continuous with constant $L>0$

Same rate for a step size chosen by backtracking search

Theorem

Gradient descent with backtracking line search satisfies

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 t_{\min } k}
$$

where $t_{\text {min }}=\min \{1, \beta / L\}$
If β is not too small, then we don't lose much compared to fixed step size (β / L vs $1 / L$)

Convergence analysis under strong convexity

Reminder: strong convexity of f means $f(x)-\frac{m}{2}\|x\|_{2}^{2}$ is convex for some $m>0$. If f is twice differentiable, then this is equivalent to

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}, \forall x, y
$$

Under Lipschitz assumption as before, and also strong convexity

Theorem

Gradient descent with fixed step size $t \leq 2 /(m+L)$ or with backtracking line search satisfies

$$
f\left(x^{(k)}\right)-f^{\star} \leq c^{k} \frac{L}{2}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

where $0<c<1$

Convergence analysis under strong convexity

I.e. rate with strong convexity is $O\left(c^{k}\right)$, exponentially fast!
I.e. to get $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$, need $O(\log (1 / \epsilon))$ iterations, called linear convergence

Constant c depends adversely on condition number L / m (higher condition number \rightarrow slow rate)

A look at the conditions

Look at the conditions for a simple problem $f(\beta)=\frac{1}{2}\|y-X \beta\|_{2}^{2}$
Lipschitz continuity of ∇f :

- This means $\nabla^{2} f(x) \preceq L \mathbb{I}$
- As $\nabla^{2} f(\beta)=X^{T} X$, we have $L=\sigma_{\text {max }}^{2}(X)$

Strong convexity of f

- This means $\nabla^{2} f(x) \succeq m \mathbb{I}$
- As $\nabla^{2} f(\beta)=X^{\top} X$, we have $m=\sigma_{\text {min }}^{2}(X)$
- If X is wide-i.e. X is $n \times p$ with $p>n$-then $\sigma_{\min }(X)=0$ and f cannot be strongly convex
- Even if $\sigma_{\min }(X)>0$, can have a very large condition number $L / m=\sigma_{\max }(X) / \sigma_{\text {min }}(X)$

A function f having Lipschitz gradient and being strongly convex satisfies

$$
m I \preceq \nabla^{2} f(x) \preceq L I \text { for all } x \in \mathbb{R}^{n}
$$

for constants $L>m>0$
Think of f being sandwiched between two quadratics
May seem like a strong condition to hold globally (for all $x \in \mathbb{R}^{n}$). But a careful look at proofs show that we only need Lipschitz gradients/strong convexity over the sublevel set

$$
S=\left\{x: f(x) \leq f\left(x^{(0)}\right)\right\}
$$

which is less restrictive.

Can we do better?

Gradient descent has $O(1 / \epsilon)$ convergence rate over problem class of convex, differential functions with Lipschitz gradients

First-order method, iterative method, update $x^{(k)}$ in

$$
x^{(0)}+\operatorname{span}\left\{\nabla f\left(x^{(0)}\right), \nabla f\left(x^{(1)}\right), \cdots, \nabla f\left(x^{(k-1)}\right)\right\}
$$

Theorem

For any $k \leq(n-1) / 2$ and any starting point $x^{(0)}$, there is a function f in the problem class such that any first-order method satisfies

$$
f\left(x^{(k)}\right)-f^{\star} \geq \frac{3 L\left\|x^{(0)}-x^{\star}\right\|}{32(k+1)^{2}}
$$

Curtsey to Nesterov.
Can we obtain rate $O\left(1 / k^{2}\right)$ or $O(1 / \sqrt{\epsilon})$?

Practicalities

Stopping rule: stop when $\|\nabla f(x)\|_{2}$ is small

- Recall $\nabla f\left(x^{\star}\right)=0$ at solution x^{\star}
- If f is strong convex with parameter m, then

$$
\|\nabla f(x)\|_{2} \leq \sqrt{2 m \epsilon} \Rightarrow f(x)-f\left(x^{\star}\right) \leq \epsilon
$$

Pros and cons of gradient descent

- Pros: simple, each iteration is cheap (usually)
- fast for well-conditioned, strongly convex problems
- Cons: often be slow, because many interesting problems aren't strongly convex or well-conditioned
- cannot handle nondifferentiable functions

Gradient Boosting

Given observations $y=\left(y_{1}, y_{2}, \cdots, y_{n}\right) \in \mathbb{R}^{n}$, predicator measurements $x_{i} \in \mathbb{R}^{p}, i=1, \cdots, n$

Want to construct a flexible (nonlinear) model for outcome based on predicators. Weighted sum of trees

$$
u_{i}=\sum_{j=1}^{m} \beta_{j} T_{j}\left(x_{i}\right), i=1, \cdots, n
$$

Each tree T_{j} inputs predicator measurements x_{i}, output prediction. Trees are typically grow pretty short.

Pick a loss function L that reflects setting, e.g. for continuous y, could take $L\left(y_{i}, u_{i}\right)=\left(y_{i}-u_{i}\right)^{2}$

Want to solve

$$
\min _{\beta} \sum_{i=1}^{n} L\left(y_{i}, \sum_{j=1}^{M} \beta_{j} T_{j}\left(x_{i}\right)\right)
$$

Indexes all trees of a fixed size (e.g. depth $=5$), so M is huge.

Space is simply too big to compute.

Gradient boosting: basically a version of gradient descent that is forced to work with trees.

First think of optimization as $\min _{u} f(u)$ over predicted values u_{i}, subject to u coming from trees.

Start with initial model, e.g. fit a single tree $u^{(0)}=T_{0}$, Repeat:

- Compute negative gradient d at latest prediction $u^{(k-1)}$:

$$
d_{i}=-\left.\left[\frac{\partial L\left(y_{i}, u_{i}\right)}{\partial u_{i}}\right]\right|_{u_{i}=u_{i}^{(k-1)}}, i=1,2, \cdots, n
$$

- Find a tree T_{k} that is close to d_{i}, i.e. according to

$$
\min _{\text {tree } T} \sum_{i=1}^{n}\left(d_{i}-T\left(x_{i}\right)\right)^{2}
$$

Not hard to (approximately) solve for a single tree

- Compute step size α_{k} and update our predictor

$$
u^{(k)}=u^{(k-1)}+\alpha_{k} T_{k}
$$

Note: predictions are weighted sum of trees as desired.

Stochastic gradient descent (SGD)

Stochastic Gradient Descent

Consider minimizing a sum of functions

$$
\min _{x} \sum_{i=1}^{m} f_{i}(x)
$$

As $\nabla \sum f_{i}(x)=\sum \nabla f_{i}(x)$, gradient descent would repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k-1)}\right), k=1,2, \cdots
$$

In comparison, stochastic gradient descent or SGD (or incremental gradient descent) repeats

$$
x^{(k)}=x^{(k-1)}-t_{k} g_{i_{k}}^{(k-1)}, k=1,2, \cdots
$$

where $i_{k} \in\{1, \cdots, m\}$ is some chosen index at iteration k

Two rules for choosing index i_{k} at iteration k :

- Cyclic rule: choose $i_{k}=1,2, \cdots, m, 1,2, \cdots, m, \cdots$
- Randomized rule: choose $i_{k} \in\{1,2, \cdots, m\}$ uniformly at random Randomized rule is more common in practice

What's the difference between stochastic and batch method? Computationally, m stochastic steps \approx one batch step. But what about progress?

- Cyclic rule: m steps: $x^{(k+m)}=x^{(k)}-t \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k+i-1)}\right)$
- Batch method: one step: $x^{(k+1)}=x^{(k)}-t \sum_{i=1}^{m} \nabla f_{i}\left(x^{(k)}\right)$
- Difference in directions: $\sum_{i=1}^{m} \nabla f_{i}\left(x^{(k+i-1)}\right)-\nabla f_{i}\left(x^{(k)}\right)$

So SGD should converge if each $\nabla f_{i}(x)$ does not vary widely at x
Rule of thumb: SGD thrives far from optimum, struggles close to optimum

SGD and beyond

More on Stochastic gradient descent, Momentum, Adagrad, RSProp, Adaptive moment estimation (ADAM), etc.

Subgradient

Subgradients

If $\nabla f(x)$ is Lipschitz, gradient descent as convergence rate $O(1 / \epsilon)$, but GD requires f is differentiable and it can be slow to converge

- Subgradients
- Examples
- Subgradient rules
- Optimality characterizations

Subgradients

Recall that for convex and differentiable f

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \text { for all } x, y
$$

I.e. linear approximation always underestimates f

A subgradient of a convex function f at x is any $g \in \mathbb{R}^{n}$ such that

$$
f(y) \geq f(x)+g^{T}(y-x) \text { for all } y
$$

- Always exists
- If f differentiable at x, then $g=\nabla f(x)$ uniquely
- Actually, same definition works for nonconvex f (however, subgradient needs not exist)

Examples

Consider $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f\left(x_{1}\right)+g_{1}^{T}\left(x-x_{1}\right)\left\{\begin{array}{c}
f(x) \\
f\left(x_{2}\right)+g_{2}^{T}\left(x-x_{2}\right) \\
f\left(x_{2}\right)+g_{3}^{T}\left(x-x_{2}\right)
\end{array}\right.
$$

Consider $f(x)=|x|$, its subgradient

- for $x \neq 0$, unique subgradient $g=\operatorname{sign}(x)$
- for $x=0$, subgradient g is any element of $[-1,1]$

Consider $f(x)=\|x\|_{2}$, its subgradient

- For $x \neq 0$, unique subgradient $g=x /\|x\|_{2}$
- For $x=0$, subgradient g is any element of $\left\{x:\|x\|_{2} \leq 1\right\}$

Consider $f(x)=\|x\|_{1}, x \in \mathbb{R}^{n}$, its subgradient

- for $x_{i} \neq 0$, unique subgradient $g_{i}=\operatorname{sign}(x)$
- for $x_{i}=0$, subgradient g_{i} is any element of $[-1,1]$

Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and differentiable, and consider $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$

- For $f_{1}(x)>f_{2}(x)$, unique subgradient $\nabla f_{1}(x)$
- For $f_{2}(x)>f_{1}(x)$, unique subgradient $\nabla f_{2}(x)$
- For $f_{1}(x)=f_{2}(x)$, subgradient g is any point on the line segment between $\nabla f_{1}(x)$ and $\nabla f_{2}(x)$

$$
g=\left\{\alpha \nabla f_{1}(x)+(1-\alpha) \nabla f_{2}(x), \forall \alpha \in[0,1]\right\}
$$

Subdifferential

Set of all subgradients of convex f is called the Subdifferential

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n}: g \text { is a subgradient of } f \text { at } x\right\}
$$

- $\partial f(x)$ is convex and closed, even for nonconvex function
- Nonempty (can be empty for nonconvex f)
- If f is differentiable at x, then $\partial f(x)=\nabla f(x)$
- If $\partial f(x)=\{g\}$, then f is differentiable at x and $\nabla f(x)=g$

Connection to convex geometry

Consider convex set $C \subseteq \mathbb{R}^{n}$, consider indicator function, $I_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
I_{C}=\left\{\begin{array}{cl}
0 & \text { if } x \in C \\
\infty & \text { if } x \notin C
\end{array}\right.
$$

For $x \in C, \partial I_{C}(x)=\mathcal{N}_{C}(x)$, the normal cone of C at x, that is

$$
\mathcal{N}_{C}(x)=\left\{g \in \mathbb{R}^{n}: g^{T} x \geq g^{T} y \text { for all } y \in C\right\}
$$

Why? By definition of subgradient g

$$
I_{C}(y) \geq I_{C}(x)+g^{T}(y-x) \text { for all } y
$$

That is

- For $y \notin C, I_{C}(y)=\infty$
- For $y \in C$, this means $0 \geq g^{T}(y-x)$

Subgradient calculus

Basic rules for convex functions

- Scaling: $\partial(a f)=a \partial(f)$ provided $a>0$
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(x)=f(A x+b)$, then

$$
\partial g(x)=A^{T} \partial f\left(A^{T} x+b\right)
$$

- Finite pointwise maximization: if $f(x)=\max _{i=1, \cdots, m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv}\left(\bigcup_{i: f_{i}(x)=f(x)} \partial f_{i}(x)\right)
$$

convex hull of union of subgradiential of all active functions at x

Subgradient calculus

- General pointwise maximization: if $f(x)=\max _{i \in S} f_{i}(x)$, then

$$
\partial f(x) \subset c l\left\{\operatorname{conv}\left(\bigcup_{i: f_{i}(x)=f(x)} \partial f_{i}(x)\right)\right\}
$$

under some regularity conditions (on S and f_{i}), we can get an equality above.

- Norms: $f(x)=\|x\|_{p}$, let q be such that $1 / p+1 / q=1$, then

$$
\|x\|_{p}=\max _{\|z\|_{q} \leq 1} z^{T} x
$$

Hence

$$
\partial f(x)=\underset{\|z\|_{q} \leq 1}{\operatorname{argmax}} z^{T} x
$$

Why subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function.

Optimality condition

For any f (convex or not),

$$
f\left(x^{\star}\right)=\min _{x} f(x) \Leftrightarrow 0 \in \partial f(x)
$$

i.e. x^{\star} is a minimizer if and only if 0 is a subgradient of f at x^{\star}. This is called the subgradient optimality condition.

Why $? g=0$ being a subgradient means that for all y :

$$
f(y) \geq f\left(x^{\star}\right)+0^{T}(y-x)=f\left(x^{\star}\right)
$$

Note the implication for a convex and differentiable function f with $\partial f(x)=\{\nabla f(x)\}$

Derivation of first-order optimality condition

Recall that for f convex and differentiable, the problem

$$
\min f(x) \text { subject to } x \in C
$$

is solved at x if and only if

$$
\nabla f(x)^{T}(y-x) \geq 0 \text { for all } y \in C
$$

Intuitively says that gradient increase as we move away from x. How to see this? First recast problem as

$$
\min _{x} f(x)+I_{C}(x)
$$

Now apply subgradient optimality

$$
0 \in \partial\left(f(x)+I_{C}(x)\right)
$$

Derivation of first-order optimality condition

But

$$
\begin{aligned}
0 \in \partial\left(f(x)+I_{C}(x)\right) & \Longleftrightarrow 0 \in\left\{\nabla f(x)+\mathcal{N}_{C}(x)\right\} \\
& \Longleftrightarrow-\nabla f(x) \in \mathcal{N}_{C}(x) \\
& \Longleftrightarrow-\nabla f(x)^{T} x \geq-\nabla f(x)^{T} y \text { for all } y \in C \\
& \Longleftrightarrow \nabla f(x)^{T}(y-x) \geq 0 \text { for all } y \in C
\end{aligned}
$$

as desired.

Note: the condition $0 \in \partial\left(f(x)+I_{C}(x)\right)$ is a fully general condition for optimality in a convex problem. But this is not always easy to work with KKT conditions.

Example: lasso optimality condition

Given $y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}$, lasso problem can be paramterized as

$$
\min _{\beta} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

where $\lambda \geq 0$. Subgradient optimality says

$$
\begin{aligned}
0 \in \partial\left(\frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right) & \Leftrightarrow 0 \in-X^{T}(y-X \beta)+\lambda \partial\|\beta\|_{1} \\
& \Leftrightarrow X^{T}(y-X \beta)=\lambda v
\end{aligned}
$$

for some $v \in \partial\|\beta\|_{1}$, i.e.

$$
v_{i} \in \begin{cases}\{1\} & \text { if } \beta_{i}>0 \\ \{-1\} & \text { if } \beta_{i}<0, i=1, \cdots, p \\ \lceil-1,1\rceil & \text { if } \beta_{i}=0\end{cases}
$$

Example: lasso optimality condition

Write X_{1}, \cdots, X_{p} for columns of X. Then subgradient optimality reads

$$
\begin{cases}X_{i}^{T}(y-X \beta)=\lambda \cdot \operatorname{sign}\left(\beta_{i}\right) & \text { if } \beta_{i} \neq 0 \\ \left|X_{i}^{\top}(y-X \beta)\right| \leq \lambda & \text { if } \beta_{i}=0\end{cases}
$$

Note that the subgradient optimality condition do not directly lead to an expression for a lasso solution,....,however they do provide a way to check lasso optimality.

They are also helpful to in understanding the lasso estimator, e.g. if $\left|X_{i}^{\top}(y-X \beta)\right| \leq \lambda$, then $\beta_{i}=0$.

Example: soft-thresholding

Simplified lasso problem with $X=I$,

$$
\min _{\beta} \frac{1}{2}\|y-\beta\|_{2}^{2}+\lambda\|\beta\|_{1}
$$

This can be solved directly using subgradient optimality. Solution is $\beta=S_{\lambda}(y)$, where S_{λ} is the soft-thresholding operator

$$
\left[S_{\lambda}(y)\right]_{i}= \begin{cases}y_{i}-\lambda & \text { if } y_{i}>\lambda \\ 0 & \text { if }-\lambda \leq y_{i} \leq \lambda \\ y_{i}+\lambda & \text { if } y_{i}<-\lambda\end{cases}
$$

Check: from last slide, subgradient optimality conditions are

$$
\begin{cases}y_{i}-\beta_{i}=\lambda \cdot \operatorname{sign}\left(\beta_{i}\right) & \text { if } \beta_{i} \neq 0 \\ \left|y_{i}-\beta_{i}\right| \leq \lambda & \text { if } \beta_{i}=0\end{cases}
$$

Now plug in $\beta=S_{\lambda}(y)$ and check these are satisfied

- When $y_{i}>\lambda, \beta_{i}=y_{i}-\lambda>0$, so $y_{i}-\beta_{i}=\lambda=\lambda \cdot 1$ since $\operatorname{sign}\left(\beta_{i}\right)=1$
- When $y_{i}<-\lambda$, argument is similar
- When $\left|y_{i}\right| \leq \lambda, \beta_{i}=0$, and $\left|y_{i}-\beta_{i}\right|=\left|y_{i}\right| \leq \lambda$

Figure: soft-thresholding in one variable

Example: distance to a convex set

Recall the distance function to a closed, convex set C

$$
\operatorname{dist}(x, C)=\min _{y \in C}\|y-x\|_{2}
$$

This is a convex function, what are its subgradients?
Write $\operatorname{dist}(x, C)=\left\|x-P_{C}(x)\right\|_{2}$, where $P_{C}(x)$ is the projection of x onto C :

$$
P_{C}(x)=\underset{y \in C}{\operatorname{argmin}}\|y-x\|_{2}
$$

It turns out that when $\operatorname{dist}(x, C)>0$

$$
\partial \operatorname{dist}(x, C)=\left\{\frac{x-P_{C}(x)}{\left\|x-P_{C}(x)\right\|_{2}}\right\}
$$

Only has one element, so in fact $\operatorname{dist}(x, C)$ is differentiable and this is its gradient.

Write $u=P_{C}(x)$, by first-order optimality condition for a projection

$$
(x-u)^{T}(y-u) \leq 0 \text { for all } y \in C
$$

Hence

$$
C \subseteq H=\left\{y:(x-u)^{T}(y-u) \leq 0\right\}
$$

Claim:

$$
\operatorname{dist}(x, C) \geq \frac{(x-u)^{T}(y-u)}{\|x-u\|_{2}} \text { for all } y
$$

Check: first for $y \in H$, the RHS is ≤ 0
Now for $y \notin H$, we have $(x-u)^{T}(y-u)=\|x-u\|_{2}\|y-u\|_{2} \cos \theta$ where θ is the angle between $x-u$ and $y-u$. Thus

$$
\frac{(x-u)^{T}(y-u)}{\|x-u\|_{2}}=\|y-u\|_{2} \cos \theta=\operatorname{dist}(y, H) \leq \operatorname{dist}(y, C)
$$

as desired.

Under the claim, we have for any y,

$$
\begin{aligned}
\operatorname{dist}(x, C) & \geq \frac{(x-u)^{T}(y-x+x-u)}{\|x-u\|_{2}} \\
& =\|x-u\|_{2}+\left(\frac{x-u}{\|x-u\|_{2}}(y-x)\right)^{T}
\end{aligned}
$$

Hence $g=(x-u) /\|x-u\|_{2}$ is a subgradient of $\operatorname{dist}(x, C)$ at x

Subgradient method

Now consider f convex with $\operatorname{dom}(f)=\mathbb{R}^{n}$, but not necessarily differentiable

Subgradient method: like gradient descent, but replacing gradients with subgradients, i.e. initialize $x^{(0)}$, repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} g^{(k-1)}, k=1,2, \cdots
$$

where $g^{(k-1)} \in \partial f\left(x^{(k-1)}\right)$, any subgradient of f at $x^{(k-1)}$

Subgradient method is not necessarily a descent method, so we keep track of the best iterate $x_{\text {best }}^{(k)}$ among $x^{(0)}, \cdots, x^{(k)}$ so far, i.e.

$$
f\left(x_{\text {best }}^{(k)}\right)=\min _{i=0, \cdots, k} f\left(x^{(i)}\right)
$$

Step size choices

- Fixed step sizes $t_{k}=t$ for all $k=1,2,3, \cdots$
- Diminishing step size: choose to meet conditions

$$
\sum_{k=1}^{\infty} t_{k}^{2}<\infty, \sum_{t=1}^{\infty}=\infty
$$

i.e. square summable but not summable

- Other options, but important difference to gradient descent: step sizes are typically pre-specified, not adaptively computed.

Convergence analysis

Assume that f convex and $\operatorname{dom}(f)=\mathbb{R}^{n}$, and also that f is Lipschitz continuous with constant $G>0$, i.e.

$$
|f(x)-f(y)| \leq G\|x-y\|_{2} \text { for all } x, y
$$

Theorem

For a fixed size t, subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leq f^{\star}+G^{2} t / 2
$$

Theorem

For diminishing step sizes, subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f^{\star}
$$

Basic inequality

Can prove both results from the same basic inequalities. Key steps:

- Using definition of subgradient

$$
\begin{array}{r}
\left\|x^{(k)}-x^{\star}\right\|_{2}^{2} \leq \\
\left\|x^{(k-1)}-x^{\star}\right\|_{2}^{2}-2 t_{k}\left(f\left(x^{(k-1)}\right)-f\left(x^{\star}\right)\right)+t_{k}^{2}\left\|g^{(k-1)}\right\|_{2}^{2}
\end{array}
$$

- Iterating last inequality

$$
\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-2 \sum_{i=1}^{t} t_{i}\left(f\left(x^{(i-1)}\right)-f\left(x^{\star}\right)\right)+\sum_{i=1}^{t} t_{i}^{2}\left\|g^{(i-1)}\right\|_{2}^{2}
$$

Basic inequality

- Using $\left\|x^{(k)}-x^{\star}\right\|_{2}^{2} \geq 0$, and letting $R=\left\|x^{0}-x^{\star}\right\|_{2}^{2}$

$$
0 \leq R^{2}-2 \sum_{i=1}^{t} t_{i}\left(f\left(x^{(i-1)}\right)-f\left(x^{\star}\right)\right)+G^{2} \sum_{i=1}^{t} t_{i}^{2}
$$

- Introducing $f\left(x_{\text {best }}^{(k)}\right)=\min _{i=0, \cdots, k} f\left(x^{(i)}\right)$, and rearraning

$$
f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{\star}\right) \leq \frac{R^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}}
$$

We call this basic inequality
For different step size choices, convergence results can be directly obtained from this bound.

Convergence rate

The basic inequality tells us that after k steps, we have

$$
f\left(x_{\text {best }}^{(k)}\right)-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}}
$$

With fixed step size t, this gives

$$
f\left(x_{\text {best }}^{(k)}\right)-f^{\star} \leq \frac{R^{2}}{2 k t}+\frac{G^{2} t}{2}
$$

For this to be $\leq \epsilon$, let's make each term $\leq \epsilon / 2$. Therefore, choose $t=\epsilon / G^{2}$ and $k=R^{2} / t \cdot 1 / \epsilon=R^{2} G^{2} / \epsilon$
i.e. subgradient method has convergence rate $O\left(1 / \epsilon^{2}\right)$, compare this to $O(1 / \epsilon)$ rate of gradient descent.

Example: regularized logistic regression

Given $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{p} \times\{0,1\}$ for $i=1, \cdots, n$. consider the logistic regression loss

$$
f(\beta)=\sum_{i=1}^{n}\left(-y_{i} x_{i}^{T} \beta+\log \left(1+\exp \left(x_{i}^{T} \beta\right)\right)\right)
$$

This is a smooth and convex with

$$
\nabla f(\beta)=\sum_{i=1}^{n}\left(y_{i}-p_{i}(\beta)\right) x_{i}
$$

where

$$
p_{i}(\beta)=\frac{\exp \left(x_{i}^{\top} \beta\right)}{1+\exp \left(x_{i}^{\top} \beta\right)}, i=1, \cdots, n
$$

We will consider the regularized problem

$$
\min _{\beta} f(\beta)+\lambda \cdot P(\beta)
$$

where $P(\beta)=\|\beta\|_{2}^{2}$ (ridge penalty) or $\|\beta\|_{1}$ (lasso_penalty)

Example: regularized logistic regression

Ridge problem: use gradients; lasso problem: use subgradients. Data example with $n=1000, p=20$

Step sizes hand-tuned to be favorable for each method (comparison is apparently not perfect)

Polyak step sizes

Polyak step sizes: when the optimal value f^{\star} is known, take

$$
t_{k}=\frac{f\left(x^{(k-1)}\right)-f^{\star}}{\left\|g^{(k-1)}\right\|_{2}^{2}}, k=1,2, \cdots
$$

can be motivated from the first step in subgradient proof

$$
\left\|x^{(k)}-x^{\star}\right\|_{2}^{2} \leq\left\|x^{(k-1)}-x^{\star}\right\|_{2}^{2}-2 t_{k}\left(f\left(x^{(k-1)}\right)-f^{\star}\right)+t_{k}^{2}\left\|g^{(k-1)}\right\|_{2}^{2}
$$

Polyak step sizes minimizes the RHS.

With Polyak step sizes, can show subgradient method converges to optimal value, but the rate is still $O\left(1 / \epsilon^{2}\right)$

Can we do better?

Pros: broad applicability, Cons: convergence rate $O\left(1 / \epsilon^{2}\right)$ over problem classes of convex, Lipschitz function is really slow.

Non-smooth first-order methods: iterative methods updating $x^{(k)}$ in

$$
x^{(0)}+\operatorname{span}\left\{g^{(0)}, g^{(1)}, \cdots, g^{(k-1)}\right\}
$$

where subgradients $g^{(0)}, g^{(1)}, \cdots, g^{(k-1)}$ come from weak oracle.

Theorem

For any $k \leq n-1$ and starting point $x^{(0)}$, there is a function in the problem class such that any non-smooth first-order method satisfies

$$
f\left(x^{(k)}\right)-f^{\star} \geq \frac{R G}{2(1+\sqrt{k+1})}
$$

Example: intersection of sets

Suppose we want to find $x^{\star} \in C_{1} \cap \cdots \cap C_{m}$, i.e. in intersection of closed, convex sets C_{1}, \cdots, C_{m}

First define

$$
\begin{aligned}
f_{i}(x) & =\operatorname{dist}\left(x, C_{i}\right), i=1, \cdots, m \\
f(x) & =\max _{i=1,2, \cdots, m} f_{i}(x)
\end{aligned}
$$

and now solve

$$
\min _{x} f(x)
$$

Note that $f^{\star}=0 \Rightarrow x^{\star} \in C_{1} \cap \cdots \cap C_{m}$. Check: is this problem convex?

Recall the gradient of the distance function $\operatorname{dist}(x, C)=\min _{y \in C}\|y-x\|_{2}$ is

$$
\nabla \operatorname{dist}(x, C)=\frac{x-P_{C}(x)}{\left\|x-P_{C}(x)\right\|_{2}}
$$

where $P_{C}(x)$ is the projection of x onto C
Recall that the subgradient rule: if $f(x)=\max _{i=1,2, \cdots, m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv}\left(\bigcup_{i: f_{i}(x)=f(x)} \partial f_{i}(x)\right)
$$

so if $f_{i}(x)=f(x)$ and $g_{i} \in \partial f_{i}(x)$, then $g_{i} \in \partial f(x)$

Put these two facts together for intersection of sets problem, with $f_{i}(x)=\operatorname{dist}\left(x, C_{i}\right)$: if C_{i} is furthest set from $x\left(\right.$ so $\left.f_{i}(x)=f(x)\right)$ and

$$
g_{i}=\nabla f_{i}(x)=\frac{x-P_{C}(x)}{\| x-P_{C}(x)_{-} 2}
$$

then $g_{i} \in \partial f(x)$
Now apply subgradient method, with Polyak size $t_{k}=f\left(x^{(k-1)}\right)$. At iteration k, with C_{i} furthest from $x^{(k-1)}$, we perform update

$$
\begin{aligned}
x^{(k)} & =x^{(k-1)}-f\left(x^{(k-1)}\right) \frac{x^{(k-1)}-P_{C_{i}}\left(x^{(k-1)}\right)}{\left\|x^{(k-1)}-P_{C_{i}}\left(x^{(k-1)}\right)\right\|_{2}} \\
& =P_{C_{i}}\left(x^{(k-1)}\right)
\end{aligned}
$$

Here $f\left(x^{(k-1)}\right)=\operatorname{dist}\left(x^{(k-1)}, C_{i}\right)=\left\|x^{(k-1)}-P_{C_{i}}\left(x^{(k-1)}\right)\right\|_{2}$

Alternating Projection

For two sets, this is the famous alternating projection algorithm, i.e. just keep projecting back and forth

Projected subgradient method

To optimize a convex function f over a convex set C

$$
\min _{x \in C} f(x)
$$

we can use the projected subgradient method. Just like the usual subgradient method, except we project onto C at each iteration

$$
x^{(k)}=P_{C}\left(x^{(k-1)}-t_{k} g^{(k-1)}\right), k=1,2, \cdots
$$

Assuming we can do this projection, we get the same convergence guarantee as the usual subgradient method, with the same step size choices.

Projected subgradient method

What sets C are easy to project onto? Lots, e.g.

- Affine images: $\left\{A x+b: x \in \mathbb{R}^{n}\right\}$
- Solution set of linear system: $\{x: A x=b\}$
- Nonnegative orthant: $\mathbb{R}_{+}^{n}=\{x: x \geq 0\}$
- Some norm balls: $\left\{x:\|x\|_{p} \leq 1\right\}$ for $p=1,2, \infty$
- Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C, and P_{C} can turn out to be very hard! E.g. generally hard to project onto arbitrary polyhedron $C=\{x: A x \leq b\}$

Note: projected gradient descent works too.

Stochastic subgradient method

Similar to our setup for stochastic gradient descent. Consider sum of convex functions

$$
\min _{x} \sum_{i=1}^{m} f_{i}(x)
$$

Stochastic subgradient method repeats

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot g_{i_{k}}^{(k-1)}, k=1,2,3, \cdots
$$

where $i_{k} \in\{2, \cdots, m\}$ is some chosen index at iteration k, chosen by either the random or cyclic rule. and $g_{i_{k}}^{(k-1)} \in \partial f_{i}\left(x^{(k-1)}\right)$ (this update direction is used in place of the usual $\sum_{i} g_{i}^{(k-1)}$

Note that when each $f_{i}, i=1, \cdots, m$ is differentiable, this reduces to stochastic gradient descent.

Convergence of stochastic methods

Assume each $f_{i}, i=1, \cdots, m$ is convex and Lipschitz with constant $G>0$

For fixed step sizes $t_{k}=t, k=1,2, \cdots$, , cyclic and randomized stochastic subgradient methods both satisfy

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leq f^{\star}+5 m^{2} G^{2} t / 2
$$

Note: $m G$ can be considered as Lipschitz constant for whole function $\sum_{i} f_{i}$, so this comparable to batch bound.

For diminishing step sizes, cyclic and randomized methods satisfy

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f^{\star}
$$

Convergence of stochastic methods

How about convergence rate?
Looking back carefully, the batch subgradient method rate was $O\left(G_{\text {batch }}^{2} / \epsilon^{2}\right)$, where Lipschitz constant $G_{\text {batch }}^{2}$ is for the whole function

- Cyclic rule: iteration complexity is $O\left(m^{3} G^{2} / \epsilon^{2}\right)$, therefore the number of cycles needed is $O\left(m^{2} G^{2} / \epsilon^{2}\right)$, comparable to batch
- Randomized rule ${ }^{1}$: iteration complexity $O\left(m^{2} G^{2} / \epsilon^{2}\right)$. Thus the number of random cycles needed is $O\left(m G^{2} / \epsilon^{2}\right)$, reduced by a factor of m !
This is a convincing reason to use randomized stochastic methods, for problems where m is big.

[^0]
Example: stochastic logistic regression

Back to the logistic regression problem (now we are talking SGD)

$$
\min _{\beta} f(\beta)=\sum_{i=1}^{n} \underbrace{\left(-y_{i} x_{i}^{T} \beta+\log \left(1+\exp \left(x_{i}^{T} \beta\right)\right)\right)}_{f_{i}(\beta)}
$$

The gradient computation $\nabla f(\beta)=\sum_{i}\left(y_{i}-p_{i}(\beta)\right) x_{i}$ is doable when n is moderate, but not when $n \approx 500$ millon. Recall

- One batch update costs $O(n p), p$ is the number of features
- One stochastic update costs $O(p)$

So clearly, e.g. 10K stochastic steps are much more affordable.

Figure: Blue: batch steps $O(n p)$, Red: stochastic steps $O(p)$

Rule of thumb for stochastic methods

- generally thrive far from optimum
- generally struggle close to optimum.

Improving on the subgradient method

In words, we cannot do better than the $O\left(1 / \epsilon^{2}\right)$ rate of subgradient method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on minimizing composite functions of the form

$$
f(x)=g(x)+h(x)
$$

where g is convex and differentiable, h is convex and nonsmooth but "simple".

For a lot of problems (i.e. function h), we can recover the $O(1 / \epsilon)$ rate of gradient descent with a simple algorithm, having important practical consequences.

Questions?

[^0]: ${ }^{1}$ For randomized rule, result holds in expectation, i.e. bound is on expected number of iterations

