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Gradient Descent

Consider unconstrained, smooth convex optimization

min
x

f (x)

i.e. f is convex and differentiable with dom(f ) = Rn. Denote the optimal
criterion value by f ? = minx f (x), and a solution by x?.

Gradient Descent: choose initial point x (0) ∈ Rn, repeat

x (k) = x (k−1) − tk∇f (x (k−1)), k = 1, 2, · · ·

stop at some point
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Gradient descent interpretation

At each iteration, consider the expansion

f (y) ≈ f (x) +∇f (x)T (y − x) +
1

2t
‖y − x‖22

Quadratic approximation: replacing usual Hessian matrix ∇2f (x) by 1
t I

f (x) +∇f (x)T (y − x) linear approximation to f
1
2t ‖y − x‖22 proximity term to x with weight 1/(2t)

Choose next point y = x+ to minimize the quadratic approximation

x+ = x − t∇f (x)

i.e.

x+ = arg min f (x) +∇f (x)T (y − x) +
1

2t
‖y − x‖22

Jianyong Sun (XJTU) Subgradient 4 / 60



Blue point is x , red point is

x+ = argmin
y

f (x) +∇f (x)T (y − x) +
1

2t
‖y − x‖22
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Outline

How to choose step sizes

Convergence analysis

Gradient Boosting

Stochastic Gradient descent
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Fixed step size

Simply take tk = t for all k = 1, 2, · · · , can diverge if t is too big and can
be slow if t is too small, but convergence nicely if t is “just right”.

Consider f (x) = (10x21 + x22 )/2 for different step size.

Convergence analysis will give us a precise idea of “just right”.
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Backtracking line search

One way to adaptively choose the step size is to use backtracking line
search:

First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

At each iteration, start with t = tinit, and while

f (x − t∇f (x)) > f (x)− αt‖∇f (x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x − t∇f (x)

Simply and tends to work well in practice (further simplification, just take
α = 1

2 . Try backtracking line search with α = β = 0.5 for the example
function.
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Backtracking interpretation

Figure: The curve shows f , restricted to the line over which we search. The lower
dashed line shows the linear extrapolation of f , and the upper dashed line has a
slope a factor of α smaller. The backtracking condition is that f lies below the
upper dashed line, i.e.,0 ≤ t ≤ t0. For us ∆(x) = −∇f (x)
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Exact line search

Could also choose step to do the best we can along direction of negative
gradient, called exact line search

t = arg min
s≥0

f (x − s∇f (x))

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as efficient as
backtracking, and it’s usually not worth it.
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Convergence analysis

Assume that f convex and differentiable, with dom(f ) = Rn, and
additionally

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2 for any x , y

i.e. ∇f is Lipschitz continuous with constant L > 0

Theorem

Gradient descent with fixed size t ≤ 1/L satisfies

f (x (k))− f ? ≤ ‖x
(0) − x?‖22

2tk

We say gradient descent has convergence rate O(1/k), i.e. to get
f (x (k))− f ? ≤ ε we need O(1/ε) iterations.
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Proof

Key steps:

∇f Lipschitz with constant L⇒

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖22, ∀x , y

Plugging in y = x+ = x − t∇f (x)

f (x+) ≤ f (x)−
(

1− Lt

2

)
t‖∇f (x)‖22

Taking 0 < t ≤ 1/L, using convexity of f ,
f ? ≥ f (x) +∇f (x)T (x? − x),

f (x+) ≤ f ? +∇f (x)T (x − x?)− t

2
‖∇f (x)‖22

= f ? +
1

2t
(‖x − x?‖22 − ‖x+ − x?‖22)
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Proof

Summing over all iterations till k

k∑
i=1

f (x (i))− f (x?) ≤ 1

2t

∑
(‖x (i−1) − x?‖22 − ‖x (i) − x?‖22)

≤ 1

2t
‖x (0) − x?‖22

Since f (x (k)) is non-increasing (i.e. f (x (0)) ≤ f (x (1)) ≤ · · · )

f (x (k))− f ? ≤ 1

k

k∑
i=1

f (x (i))− f ? ≤ ‖x
(0) − x?‖22

2tk

Jianyong Sun (XJTU) Subgradient 12 / 60



Convergence analysis for backtracking

Same assumptions, f is convex and differentiable, dom(f ) = Rn and ∇f is
Lipschitz continuous with constant L > 0

Same rate for a step size chosen by backtracking search

Theorem

Gradient descent with backtracking line search satisfies

f (x (k))− f ? ≤ ‖x
(0) − x?‖22
2tmink

where tmin = min{1, β/L}

If β is not too small, then we don’t lose much compared to fixed step size
(β/L vs 1/L)
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Convergence analysis under strong convexity

Reminder: strong convexity of f means f (x)− m
2 ‖x‖

2
2 is convex for some

m > 0. If f is twice differentiable, then this is equivalent to

f (y) ≥ f (x) +∇f (x)T (y − x) +
m

2
‖y − x‖22,∀x , y

Under Lipschitz assumption as before, and also strong convexity

Theorem

Gradient descent with fixed step size t ≤ 2/(m + L) or with backtracking
line search satisfies

f (x (k))− f ? ≤ ck
L

2
‖x (0) − x?‖22

where 0 < c < 1
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Convergence analysis under strong convexity

I.e. rate with strong convexity is O(ck), exponentially fast!

I.e. to get f (x (k))− f ? ≤ ε, need O(log(1/ε)) iterations, called linear
convergence

Constant c depends adversely on condition number L/m (higher condition
number → slow rate)
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A look at the conditions

Look at the conditions for a simple problem f (β) = 1
2‖y − Xβ‖22

Lipschitz continuity of ∇f :

This means ∇2f (x) � LI
As ∇2f (β) = XTX , we have L = σ2max(X )

Strong convexity of f

This means ∇2f (x) � mI
As ∇2f (β) = XTX , we have m = σ2min(X )

If X is wide—i.e. X is n × p with p > n—then σmin(X ) = 0 and f
cannot be strongly convex

Even if σmin(X ) > 0, can have a very large condition number
L/m = σmax(X )/σmin(X )
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A function f having Lipschitz gradient and being strongly convex satisfies

mI � ∇2f (x) � LI for all x ∈ Rn

for constants L > m > 0

Think of f being sandwiched between two quadratics

May seem like a strong condition to hold globally (for all x ∈ Rn). But a
careful look at proofs show that we only need Lipschitz gradients/strong
convexity over the sublevel set

S = {x : f (x) ≤ f (x (0))}

which is less restrictive.
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Can we do better?

Gradient descent has O(1/ε) convergence rate over problem class of
convex, differential functions with Lipschitz gradients

First-order method, iterative method, update x (k) in

x (0) + span{∇f (x (0)),∇f (x (1)), · · · ,∇f (x (k−1))}

Theorem

For any k ≤ (n − 1)/2 and any starting point x (0), there is a function f in
the problem class such that any first-order method satisfies

f (x (k))− f ? ≥ 3L‖x (0) − x?‖
32(k + 1)2

Curtsey to Nesterov.

Can we obtain rate O(1/k2) or O(1/
√
ε)?
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Practicalities

Stopping rule: stop when ‖∇f (x)‖2 is small

Recall ∇f (x?) = 0 at solution x?

If f is strong convex with parameter m, then

‖∇f (x)‖2 ≤
√

2mε⇒ f (x)− f (x?) ≤ ε

Pros and cons of gradient descent

Pros: simple, each iteration is cheap (usually)

fast for well-conditioned, strongly convex problems

Cons: often be slow, because many interesting problems aren’t
strongly convex or well-conditioned

cannot handle nondifferentiable functions
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Gradient Boosting

Given observations y = (y1, y2, · · · , yn) ∈ Rn, predicator measurements
xi ∈ Rp, i = 1, · · · , n

Want to construct a flexible (nonlinear) model for outcome based on
predicators. Weighted sum of trees

ui =
m∑
j=1

βjTj(xi ), i = 1, · · · , n

Each tree Tj inputs predicator measurements xi , output prediction. Trees
are typically grow pretty short.
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Pick a loss function L that reflects setting, e.g. for continuous y , could
take L(yi , ui ) = (yi − ui )

2

Want to solve

min
β

n∑
i=1

L

yi ,
M∑
j=1

βjTj(xi )


Indexes all trees of a fixed size (e.g. depth = 5), so M is huge.

Space is simply too big to compute.

Gradient boosting: basically a version of gradient descent that is forced to
work with trees.

First think of optimization as minu f (u) over predicted values ui , subject
to u coming from trees.
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Start with initial model, e.g. fit a single tree u(0) = T0, Repeat:

Compute negative gradient d at latest prediction u(k−1):

di = −
[
∂L(yi , ui )

∂ui

] ∣∣∣∣
ui=u

(k−1)
i

, i = 1, 2, · · · , n

Find a tree Tk that is close to di , i.e. according to

min
treeT

n∑
i=1

(di − T (xi ))2

Not hard to (approximately) solve for a single tree

Compute step size αk and update our predictor

u(k) = u(k−1) + αkTk

Note: predictions are weighted sum of trees as desired.
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Stochastic gradient descent (SGD)
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Stochastic Gradient Descent

Consider minimizing a sum of functions

min
x

m∑
i=1

fi (x)

As ∇
∑

fi (x) =
∑
∇fi (x), gradient descent would repeat

x (k) = x (k−1) − tk ·
m∑
i=1

∇fi (x (k−1)), k = 1, 2, · · ·

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats

x (k) = x (k−1) − tkg
(k−1)
ik

, k = 1, 2, · · ·

where ik ∈ {1, · · · ,m} is some chosen index at iteration k
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Two rules for choosing index ik at iteration k :

Cyclic rule: choose ik = 1, 2, · · · ,m, 1, 2, · · · ,m, · · ·
Randomized rule: choose ik ∈ {1, 2, · · · ,m} uniformly at random

Randomized rule is more common in practice

What’s the difference between stochastic and batch method?
Computationally, m stochastic steps ≈ one batch step. But what about
progress?

Cyclic rule: m steps: x (k+m) = x (k) − t
∑m

i=1∇fi (x (k+i−1))

Batch method: one step: x (k+1) = x (k) − t
∑m

i=1∇fi (x (k))
Difference in directions:

∑m
i=1∇fi (x (k+i−1))−∇fi (x (k))

So SGD should converge if each ∇fi (x) does not vary widely at x

Rule of thumb: SGD thrives far from optimum, struggles close to optimum
...
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SGD and beyond

More on Stochastic gradient descent, Momentum, Adagrad, RSProp,
Adaptive moment estimation (ADAM), etc.
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Subgradient
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Subgradients

If ∇f (x) is Lipschitz, gradient descent as convergence rate O(1/ε), but
GD requires f is differentiable and it can be slow to converge

Subgradients

Examples

Subgradient rules

Optimality characterizations
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Subgradients

Recall that for convex and differentiable f

f (y) ≥ f (x) +∇f (x)T (y − x) for all x , y

I.e. linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f (y) ≥ f (x) + gT (y − x) for all y

Always exists

If f differentiable at x , then g = ∇f (x) uniquely

Actually, same definition works for nonconvex f (however,
subgradient needs not exist)

Jianyong Sun (XJTU) Subgradient 28 / 60



Examples

Consider f : R→ R

Consider f (x) = |x |, its subgradient

for x 6= 0, unique subgradient g = sign(x)

for x = 0, subgradient g is any element of [−1, 1]

Consider f (x) = ‖x‖2, its subgradient

For x 6= 0, unique subgradient g = x/‖x‖2
For x = 0, subgradient g is any element of {x : ‖x‖2 ≤ 1}
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Consider f (x) = ‖x‖1, x ∈ Rn, its subgradient

for xi 6= 0, unique subgradient gi = sign(x)

for xi = 0, subgradient gi is any element of [−1, 1]

Let f1, f2 : Rn → R be convex and differentiable, and consider
f (x) = max{f1(x), f2(x)}

For f1(x) > f2(x), unique subgradient ∇f1(x)

For f2(x) > f1(x), unique subgradient ∇f2(x)

For f1(x) = f2(x), subgradient g is any point on the line segment
between ∇f1(x) and ∇f2(x)

g = {α∇f1(x) + (1− α)∇f2(x), ∀α ∈ [0, 1]}
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Subdifferential

Set of all subgradients of convex f is called the Subdifferential

∂f (x) = {g ∈ Rn : g is a subgradient of f at x}

∂f (x) is convex and closed, even for nonconvex function

Nonempty (can be empty for nonconvex f )

If f is differentiable at x , then ∂f (x) = ∇f (x)

If ∂f (x) = {g}, then f is differentiable at x and ∇f (x) = g

Jianyong Sun (XJTU) Subgradient 32 / 60



Connection to convex geometry

Consider convex set C ⊆ Rn, consider indicator function, IC : Rn → R

IC =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C , ∂IC (x) = NC (x), the normal cone of C at x , that is

NC (x) =
{
g ∈ Rn : gT x ≥ gT y for all y ∈ C

}
Why? By definition of subgradient g

IC (y) ≥ IC (x) + gT (y − x) for all y

That is

For y /∈ C , IC (y) =∞
For y ∈ C , this means 0 ≥ gT (y − x)
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Subgradient calculus

Basic rules for convex functions

Scaling: ∂(af ) = a∂(f ) provided a > 0

Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)

Affine composition: if g(x) = f (Ax + b), then

∂g(x) = AT∂f (AT x + b)

Finite pointwise maximization: if f (x) = maxi=1,··· ,m fi (x), then

∂f (x) = conv

 ⋃
i :fi (x)=f (x)

∂fi (x)


convex hull of union of subgradiential of all active functions at x
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Subgradient calculus

General pointwise maximization: if f (x) = maxi∈S fi (x), then

∂f (x) ⊂ cl

conv

 ⋃
i :fi (x)=f (x)

∂fi (x)


under some regularity conditions (on S and fi ), we can get an equality
above.

Norms: f (x) = ‖x‖p, let q be such that 1/p + 1/q = 1, then

‖x‖p = max
‖z‖q≤1

zT x

Hence
∂f (x) = argmax

‖z‖q≤1
zT x
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Why subgradients?

Subgradients are important for two reasons:

Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

Convex optimization: if you can compute subgradients, then you can
minimize (almost) any convex function.
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Optimality condition

For any f (convex or not),

f (x?) = min
x

f (x)⇔ 0 ∈ ∂f (x)

i.e. x? is a minimizer if and only if 0 is a subgradient of f at x?. This is
called the subgradient optimality condition.

Why? g = 0 being a subgradient means that for all y :

f (y) ≥ f (x?) + 0T (y − x) = f (x?)

Note the implication for a convex and differentiable function f with
∂f (x) = {∇f (x)}

Jianyong Sun (XJTU) Subgradient 36 / 60



Derivation of first-order optimality condition

Recall that for f convex and differentiable, the problem

min f (x) subject to x ∈ C

is solved at x if and only if

∇f (x)T (y − x) ≥ 0 for all y ∈ C

Intuitively says that gradient increase as we move away from x . How to
see this? First recast problem as

min
x

f (x) + IC (x)

Now apply subgradient optimality

0 ∈ ∂(f (x) + IC (x))
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Derivation of first-order optimality condition

But

0 ∈ ∂(f (x) + IC (x)) ⇐⇒ 0 ∈ {∇f (x) +NC (x)}
⇐⇒ −∇f (x) ∈ NC (x)

⇐⇒ −∇f (x)T x ≥ −∇f (x)T y for all y ∈ C

⇐⇒ ∇f (x)T (y − x) ≥ 0 for all y ∈ C

as desired.

Note: the condition 0 ∈ ∂(f (x) + IC (x)) is a fully general condition for
optimality in a convex problem. But this is not always easy to work with
KKT conditions.
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Example: lasso optimality condition

Given y ∈ Rn,X ∈ Rn×p, lasso problem can be paramterized as

min
β

1

2
‖y − Xβ‖22 + λ‖β‖1

where λ ≥ 0. Subgradient optimality says

0 ∈ ∂
(

1

2
‖y − Xβ‖22 + λ‖β‖1

)
⇔ 0 ∈ −XT (y − Xβ) + λ∂‖β‖1

⇔ XT (y − Xβ) = λv

for some v ∈ ∂‖β‖1, i.e.

vi ∈


{1} if βi > 0
{−1} if βi < 0, i = 1, · · · , p
d−1, 1e if βi = 0
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Example: lasso optimality condition

Write X1, · · · ,Xp for columns of X . Then subgradient optimality reads{
XT
i (y − Xβ) = λ · sign(βi ) if βi 6= 0
|XT

i (y − Xβ)| ≤ λ if βi = 0

Note that the subgradient optimality condition do not directly lead to an
expression for a lasso solution,....,however they do provide a way to check
lasso optimality.

They are also helpful to in understanding the lasso estimator, e.g. if
|XT

i (y − Xβ)| ≤ λ, then βi = 0.
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Example: soft-thresholding

Simplified lasso problem with X = I ,

min
β

1

2
‖y − β‖22 + λ‖β‖1

This can be solved directly using subgradient optimality. Solution is
β = Sλ(y), where Sλ is the soft-thresholding operator

[Sλ(y)]i =


yi − λ if yi > λ
0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

Check: from last slide, subgradient optimality conditions are{
yi − βi = λ · sign(βi ) if βi 6= 0
|yi − βi | ≤ λ if βi = 0
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Now plug in β = Sλ(y) and check these are satisfied

When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ · 1 since
sign(βi ) = 1

When yi < −λ, argument is similar

When |yi | ≤ λ, βi = 0, and |yi − βi | = |yi | ≤ λ

Figure: soft-thresholding in one variable
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Example: distance to a convex set

Recall the distance function to a closed, convex set C

dist(x ,C ) = min
y∈C
‖y − x‖2

This is a convex function, what are its subgradients?

Write dist(x ,C ) = ‖x − PC (x)‖2, where PC (x) is the projection of x onto
C :

PC (x) = argmin
y∈C

‖y − x‖2

It turns out that when dist(x ,C ) > 0

∂dist(x ,C ) =

{
x − PC (x)

‖x − PC (x)‖2

}
Only has one element, so in fact dist(x ,C ) is differentiable and this is its
gradient.
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Write u = PC (x), by first-order optimality condition for a projection

(x − u)T (y − u) ≤ 0 for all y ∈ C

Hence
C ⊆ H = {y : (x − u)T (y − u) ≤ 0}

Claim:

dist(x ,C ) ≥ (x − u)T (y − u)

‖x − u‖2
for all y

Check: first for y ∈ H, the RHS is ≤ 0
Now for y /∈ H, we have (x − u)T (y − u) = ‖x − u‖2‖y − u‖2 cos θ where
θ is the angle between x − u and y − u. Thus

(x − u)T (y − u)

‖x − u‖2
= ‖y − u‖2 cos θ = dist(y ,H) ≤ dist(y ,C )

as desired.
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Under the claim, we have for any y ,

dist(x ,C ) ≥ (x − u)T (y − x + x − u)

‖x − u‖2

= ‖x − u‖2 +

(
x − u

‖x − u‖2
(y − x)

)T

Hence g = (x − u)/‖x − u‖2 is a subgradient of dist(x ,C ) at x
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Subgradient method

Now consider f convex with dom(f ) = Rn, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients with
subgradients, i.e. initialize x (0), repeat

x (k) = x (k−1) − tkg
(k−1), k = 1, 2, · · ·

where g (k−1) ∈ ∂f (x (k−1)), any subgradient of f at x (k−1)

Subgradient method is not necessarily a descent method, so we keep track

of the best iterate x
(k)
best among x (0), · · · , x (k) so far, i.e.

f (x
(k)
best) = min

i=0,··· ,k
f (x (i))

Jianyong Sun (XJTU) Subgradient 43 / 60



Step size choices

Fixed step sizes tk = t for all k = 1, 2, 3, · · ·
Diminishing step size: choose to meet conditions

∞∑
k=1

t2k <∞,
∞∑
t=1

=∞

i.e. square summable but not summable

Other options, but important difference to gradient descent: step
sizes are typically pre-specified, not adaptively computed.
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Convergence analysis

Assume that f convex and dom(f ) = Rn, and also that f is Lipschitz
continuous with constant G > 0, i.e.

|f (x)− f (y)| ≤ G‖x − y‖2 for all x , y

Theorem

For a fixed size t, subgradient method satisfies

lim
k→∞

f (x
(k)
best) ≤ f ? + G 2t/2

Theorem

For diminishing step sizes, subgradient method satisfies

lim
k→∞

f (x
(k)
best) = f ?
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Basic inequality

Can prove both results from the same basic inequalities. Key steps:

Using definition of subgradient

‖x (k) − x?‖22 ≤
‖x (k−1) − x?‖22 − 2tk(f (x (k−1))− f (x?)) + t2k‖g (k−1)‖22

Iterating last inequality

‖x (k) − x?‖22 ≤

‖x (0) − x?‖22 − 2
t∑

i=1

ti (f (x (i−1))− f (x?)) +
t∑

i=1

t2i ‖g (i−1)‖22
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Basic inequality

Using ‖x (k) − x?‖22 ≥ 0, and letting R = ‖x0 − x?‖22

0 ≤ R2 − 2
t∑

i=1

ti (f (x (i−1))− f (x?)) + G 2
t∑

i=1

t2i

Introducing f (x
(k)
best) = mini=0,··· ,k f (x (i)), and rearraning

f (x
(k)
best)− f (x?) ≤

R2 + G 2
∑k

i=1 t
2
i

2
∑k

i=1 ti

We call this basic inequality

For different step size choices, convergence results can be directly obtained
from this bound.
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Convergence rate

The basic inequality tells us that after k steps, we have

f (x
(k)
best)− f ? ≤

R2 + G 2
∑k

i=1 t
2
i

2
∑k

i=1 ti

With fixed step size t, this gives

f (x
(k)
best)− f ? ≤ R2

2kt
+

G 2t

2

For this to be ≤ ε, let’s make each term ≤ ε/2. Therefore, choose
t = ε/G 2 and k = R2/t · 1/ε = R2G 2/ε

i.e. subgradient method has convergence rate O(1/ε2), compare this to
O(1/ε) rate of gradient descent.
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Example: regularized logistic regression

Given (xi , yi ) ∈ Rp × {0, 1} for i = 1, · · · , n. consider the logistic
regression loss

f (β) =
n∑

i=1

(
−yixTi β + log(1 + exp(xTi β))

)
This is a smooth and convex with

∇f (β) =
n∑

i=1

(yi − pi (β))xi

where

pi (β) =
exp(xTi β)

1 + exp(xTi β)
, i = 1, · · · , n

We will consider the regularized problem

min
β

f (β) + λ · P(β)

where P(β) = ‖β‖22 (ridge penalty) or ‖β‖1 (lasso penalty)
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Example: regularized logistic regression

Ridge problem: use gradients; lasso problem: use subgradients.
Data example with n = 1000, p = 20

Step sizes hand-tuned to be favorable for each method (comparison is
apparently not perfect)
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Polyak step sizes

Polyak step sizes: when the optimal value f ? is known, take

tk =
f (x (k−1))− f ?

‖g (k−1)‖22
, k = 1, 2, · · ·

can be motivated from the first step in subgradient proof

‖x (k) − x?‖22 ≤ ‖x (k−1) − x?‖22 − 2tk(f (x (k−1))− f ?) + t2k‖g (k−1)‖22

Polyak step sizes minimizes the RHS.

With Polyak step sizes, can show subgradient method converges to
optimal value, but the rate is still O(1/ε2)
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Can we do better?

Pros: broad applicability, Cons: convergence rate O(1/ε2) over problem
classes of convex, Lipschitz function is really slow.

Non-smooth first-order methods: iterative methods updating x (k) in

x (0) + span{g (0), g (1), · · · , g (k−1)}

where subgradients g (0), g (1), · · · , g (k−1) come from weak oracle.

Theorem

For any k ≤ n − 1 and starting point x (0), there is a function in the
problem class such that any non-smooth first-order method satisfies

f
(
x (k)

)
− f ? ≥ RG

2(1 +
√
k + 1)
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Example: intersection of sets

Suppose we want to find x? ∈ C1 ∩ · · · ∩ Cm, i.e. in intersection of closed,
convex sets C1, · · · ,Cm

First define

fi (x) = dist(x ,Ci ), i = 1, · · · ,m
f (x) = max

i=1,2,··· ,m
fi (x)

and now solve
min
x

f (x)

Note that f ? = 0⇒ x? ∈ C1 ∩ · · · ∩ Cm. Check: is this problem convex?

Jianyong Sun (XJTU) Subgradient 51 / 60



Recall the gradient of the distance function dist(x ,C ) = miny∈C ‖y − x‖2
is

∇dist(x ,C ) =
x − PC (x)

‖x − PC (x)‖2
where PC (x) is the projection of x onto C

Recall that the subgradient rule: if f (x) = maxi=1,2,··· ,m fi (x), then

∂f (x) = conv

 ⋃
i :fi (x)=f (x)

∂fi (x)


so if fi (x) = f (x) and gi ∈ ∂fi (x), then gi ∈ ∂f (x)
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Put these two facts together for intersection of sets problem, with
fi (x) = dist(x ,Ci ): if Ci is furthest set from x (so fi (x) = f (x)) and

gi = ∇fi (x) =
x − PC (x)

‖x − PC (x) 2

then gi ∈ ∂f (x)

Now apply subgradient method, with Polyak size tk = f (x (k−1)). At
iteration k , with Ci furthest from x (k−1), we perform update

x (k) = x (k−1) − f (x (k−1))
x (k−1) − PCi

(x (k−1))

‖x (k−1) − PCi
(x (k−1))‖2

= PCi
(x (k−1))

Here f (x (k−1)) = dist(x (k−1),Ci ) = ‖x (k−1) − PCi
(x (k−1))‖2
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Alternating Projection

For two sets, this is the famous alternating projection algorithm, i.e. just
keep projecting back and forth
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Projected subgradient method

To optimize a convex function f over a convex set C

min
x∈C

f (x)

we can use the projected subgradient method. Just like the usual
subgradient method, except we project onto C at each iteration

x (k) = PC

(
x (k−1) − tkg

(k−1)
)
, k = 1, 2, · · ·

Assuming we can do this projection, we get the same convergence
guarantee as the usual subgradient method, with the same step size
choices.
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Projected subgradient method

What sets C are easy to project onto? Lots, e.g.

Affine images: {Ax + b : x ∈ Rn}
Solution set of linear system: {x : Ax = b}
Nonnegative orthant: Rn

+ = {x : x ≥ 0}
Some norm balls: {x : ‖x‖p ≤ 1} for p = 1, 2,∞
Some simple polyhedra and simple cones

Warning: it is easy to write down seemingly simple set C , and PC can turn
out to be very hard! E.g. generally hard to project onto arbitrary
polyhedron C = {x : Ax ≤ b}

Note: projected gradient descent works too.
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Stochastic subgradient method

Similar to our setup for stochastic gradient descent. Consider sum of
convex functions

min
x

m∑
i=1

fi (x)

Stochastic subgradient method repeats

x (k) = x (k−1) − tk · g
(k−1)
ik

, k = 1, 2, 3, · · ·

where ik ∈ {2, · · · ,m} is some chosen index at iteration k, chosen by

either the random or cyclic rule. and g
(k−1)
ik

∈ ∂fi (x (k−1)) (this update

direction is used in place of the usual
∑

i g
(k−1)
i

Note that when each fi , i = 1, · · · ,m is differentiable, this reduces to
stochastic gradient descent.
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Convergence of stochastic methods

Assume each fi , i = 1, · · · ,m is convex and Lipschitz with constant G > 0

For fixed step sizes tk = t, k = 1, 2, · · · ,, cyclic and randomized stochastic
subgradient methods both satisfy

lim
k→∞

f (x
(k)
best) ≤ f ? + 5m2G 2t/2

Note: mG can be considered as Lipschitz constant for whole function∑
i fi , so this comparable to batch bound.

For diminishing step sizes, cyclic and randomized methods satisfy

lim
k→∞

f (x
(k)
best) = f ?
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Convergence of stochastic methods

How about convergence rate?

Looking back carefully, the batch subgradient method rate was
O(G 2

batch/ε
2), where Lipschitz constant G 2

batch is for the whole function

Cyclic rule: iteration complexity is O(m3G 2/ε2), therefore the
number of cycles needed is O(m2G 2/ε2), comparable to batch

Randomized rule1: iteration complexity O(m2G 2/ε2). Thus the
number of random cycles needed is O(mG 2/ε2), reduced by a factor
of m!

This is a convincing reason to use randomized stochastic methods, for
problems where m is big.

1For randomized rule, result holds in expectation, i.e. bound is on expected number
of iterations
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Example: stochastic logistic regression

Back to the logistic regression problem (now we are talking SGD)

min
β

f (β) =
n∑

i=1

(
− yix

T
i β + log(1 + exp(xTi β))

)︸ ︷︷ ︸
fi (β)

The gradient computation ∇f (β) =
∑

i

(
yi − pi (β)

)
xi is doable when n is

moderate, but not when n ≈ 500 millon. Recall

One batch update costs O(np), p is the number of features

One stochastic update costs O(p)

So clearly, e.g. 10K stochastic steps are much more affordable.
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Figure: Blue: batch steps O(np), Red: stochastic steps O(p)

Rule of thumb for stochastic methods

generally thrive far from optimum

generally struggle close to optimum.
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Improving on the subgradient method

In words, we cannot do better than the O(1/ε2) rate of subgradient
method (unless we go beyond nonsmooth first-order methods)

So instead of trying to improve across the board, we will focus on
minimizing composite functions of the form

f (x) = g(x) + h(x)

where g is convex and differentiable, h is convex and nonsmooth but
“simple”.

For a lot of problems (i.e. function h), we can recover the O(1/ε) rate of
gradient descent with a simple algorithm, having important practical
consequences.
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Questions?
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