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Overview

© Proximal gradient descent
© Projected gradient descent

© Accelerated proximal gradient

@ Duality
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utline

Proximal gradient descent
Convergence analysis
ISTA, matrix completion

Acceleration
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Decomposable functions

Suppose
min £(x) = £(x) + h(x)

@ g is convex and differentiable, dom(g) = R”
@ h is convex, not necessarily differentiable

If f were differentiable, then gradient descent update would be
xT=x—1t-Vf(x)

Recall motivation: minimize quadratic approximation to f around x,
replace V2f(x) by %l

1
xt = argmin f(x) + VF(x)T(x — z) + 2—t||x —z|3

fe(2)
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Decomposable functions

In our case f is not differentiable, but f = g + h, g is differentiable, Why
do not we make quadratic approximation to g, leave f alone?

l.e. update
xT = argming(z) + h(z2)
= argming(x) + V() (x — 2) + 5l — 2[5 + h(2)
= argmin -z — (x— ¢+ Vg3 + h(2)
Here

1 .
EHZ —(x—t-Vg(x))||3 stay close to gradient update for g

h(z)  also make h small
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Proximal gradient descent

Define proximal mapping
prox,(x) = argmin %HX —z||5 + h(2)
Proximal gradient descent: choose initial point x(©) repeat
xF) = prox,, <x(k_1) — Vg <x(k_1)>) k=12 --.
To make this update step look familiar, can rewrite it as
x(K) = x(k=1) ¢ G, (X(k—l))
where G; is the generalized gradient of f

Golx) = X — proxt(xt— tVg(x))
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What good did this do?

You have a right to be suspicious, - - -, may look like we just swap one
minimization problem for another

Key point is that prox,(-) can be computed analytically for a lot of
important functions h. Note

@ Mapping prox,(-) doesn't depend on g at all, only on h

@ Smooth part g can be complicated, we only need to compute its
gradients

Convergence analysis will be in terms of number of iterations of the
algorithm. Keep in mind that each iteration evaluates prox,(-) once, this
can be cheap or expensive, depending on h
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Example: ISTA

Given y € R" X € R™P, recall lasso criterion

1
F(8) = 5lly = XBl3 + Bl
< N——
&(b) (&)

Prox mapping is now
1
prox,(8) = argmin |8 — 2|3 + Al|z[[x = Sx.(5)
where S,() is the soft-thresholding operator
Bi— X if B>\

[Sx(B)]i=4 0 if —A<B <A
Bi+ N if Bi<—\
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Example: ISTA

Recall Vg(8) = —XT(y — XB), hence proximal gradient update is

BT = Su(B+tXT(y — XB))

Often called the iterative soft-thresholding algorithm (ISTA)L. Very simple
algorithm to compute a lasso solution.
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Figure: Example of proximal gradient (ISTA) vs. subgradient convergence rate

!Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding algorithm for

: Jia;yo;g Sun (;(J-TIJS- Short title




Convergence analysis

With criterion f(x) = g(x) + h(x), we assume

e g is convex and differentiable, dom(g) = R" and Vg is Lipschitz
continuous with constant L > 0

@ h is convex, prox,(x) can be evaluated.

Proximal gradient descent with fixed step size t < 1/L satisfies

IIX( ) — x5

FO) = Dtk

Proximal gradient descent has convergence rate O(1/k) or O(1/¢)

Same as gradient descent! But remember, this counts for the number of
iterations, not operations.
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Backtracking line search

Similar to gradient decent, but operates on g. We fix a parameter
0 < B < 1. At each iteration, start with t = 1, and while

t
g(x — tGi(x)) > g(x) — t98(x)T Gulx) + 5 | Gelx)I3
shrink t = §t, Else perform prox gradient update.

Under same assumptions, we get the same rate

Theorem

Proximal gradient descent with backtracking line search satisfies

0) _ *||2
(Y _ £ < [Ix x*|I3
f(x\")—r*< ST

where tmin = min{1, 3/L}
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Example: matrix completion

Given a matrix Y € R™*", and only observe entries Y}, (i, ) € Q.
Suppose we want to fill in missing entries (e.g. for a recommender
system), so we solve a matrix completion problem:

. _ R.\2
Ben?Rl"r’]X"2 > (Yy =Byl + AlIBler
(i))eQ

Here || B|tr is the trace (or nuclear) norm of B

1Bl =) _oi(B
i=1

where r = rank(B) and ¢1(X) > --- > 0,(X) > 0 are the singular values.
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Define Pq, projection operator onto observed set

o= {3 (258

Then the criterion is

1
f(B) = 5l1Pa(Y) = Pa(B)I[E + AlIB]l:r

g(B) h(B)

Two ingredients needed for proximal gradient descent
e Gradient calculation Vg(B) = —(Pq(Y) — Pa(B))

@ Prox function

o1
prox,(B) = argmin —||B — Z||% + \|| Z||«r
ZeRan 2t
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Claim: prox,(B) = Sx¢(B), matrix soft-thresholding at the level A. here
Sx(B) is defined by
S\(B) = UL\VT

where B = UZ V' is an SVD, and ¥, is diagonal with
(Xa)ii = max{X; — \,0}
Why? Note that prox,(B) = Z where Z satisfies
0€Z—-B+At-0|Z||w
Fact: if Z=UZVT, then
N Zllw = {UVT + W : |W|op <1, U™W =0, WV =0}
where [|Allop = max{||Aull2 : ||ull2 = 1}, Now plug in Z = 5)+(B) and

check that we can get 0.
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Hence proximal gradient update step is
8 = Sie( B+ t(Pal(Y) - Pa())

Note that Vg(B) is Lipschtz continuous with L = 1, so we can choose
fixed step size t = 1. Update step is now

B = S\(Pa(Y) + Pa(B))
where P (B) projects onto unobserved set, Po(B) + P3(B) = B

This is the soft-impute algorithm?

2Mazumder et al. (2011) “Spectral regularization algorithm for learning large

incomplete matrices”
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Special cases

Proximal gradient descent also called composite gradient descent or
generalized gradient descent

Why “general”? This refers to the several special cases, when minimizing
f=g+h

@ h =0 — gradient descent

@ h = Ic — projected gradient descent

@ g = 0 — proximal minimization algorithm

Therefore these algorithms all have O(1/¢) convergence rate.
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Projected gradient descent

Given closed, convex set C € R"

)r(neig g(x) = min g(x) + Ic(x)

0 xecC

is the indictor function of C. Hence
o x¢C

where l¢(x) = {

1
prox,(x) = argmin o lx — 2|3 + Ic(2)
> 2t

= argmin||x — z|3
zeC

l.e. prox,(x) = Pc(x), projection operator onto C
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Projected gradient descent

Therefore proximal gradient update step is
xT = Pc(x — tVg(x))

i.e. perform usual gradient update and then project onto C, called
projected gradient descent.
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Note: projected subgradient method works too.
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Proximal minimization algorithm

Consider for h convex (not necessarily differentiable)
min h(x)
X

Proximal gradient update step is just

1
xT = argmin —||x — z||3 + h(2)
, 2t

Called proximal minimization algorithm. Faster than subgradient method,
but not implementable unless we know prox in closed form.
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What happens if we can’t evaluate prox?

Theory for proximal gradient, with f = g + h, assumes that prox function
can be evaluated, i.e. assumes that minimization

1
prox,(x) = argmin 2—t||x —z||3 + h(2)
z

can be done exactly. In general, not clear what happens if we just
minimize this approximately.

But, if you can precisely control the errors in approximating the prox
operator, then you can recover the original convergence rate3

In practice, if prox evaluation is done approximately, then it should be
done to decently high accuracy.

3Schimidt et al. (2011), “Convergence rates of inexact proximal gradient methods for
convex optimization”
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Acceleration

Turns out we can accelerate proximal gradient descent in order to achieve
the optimal O(1/+/€) convergence rate. Four ideas (three acceleration
methods) by Nesterov

@ 1983: original acceleration idea for smooth function
@ 1988: another acceleration idea for smooth function

@ 2005: smoothing techniques for nonsmooth functions, coupled with
original acceleration idea

@ 2007: acceleration idea for composite functions*

We will follow Beck and Teboulle (2008), extension of Nesterov (1983) to
composite functions®

“Each step uses entire history of previous steps and makes two prox calls
Each step uses information from two last steps and makes one prox call:
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Accelerated proximal gradient method

Our problem, as before
min g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose initial point x(0) = x(=1) € R" repeat

k—2
(kfl) (k—1) _ (k72)
Vo= X g )
xW) = prox,(v — t,Vg(v))

fork=1,2,---,
@ First step k = 1 is just usual proximal gradient update
o After that v = x(k=1) 4 I,%&(X(k_l) — x(k=2)) carries some
“momentum” from previous iterations

@ h =0 gives accelerated gradient method.
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Accelerated proximal gradient method
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Convergence Analysis

As usual, we are minimizing f(x) = g(x) + h(x), assuming

e g is convex, differentiable, dom(f) = R", and Vg is Lipschitz
continuous with constant L > 0

@ his convex, prox function can be evaluated.

Accelerated proximal gradient method with fixed step size t < 1/L satisfies

2||x(0) —x*H2
(k) _fr < il LR |22
) - < t(k +1)2

Achieves the optimal rate O(1/k?) for first-order methods! i.e. a rate of

O(1/+/¢)
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Backtracking line search

Fix 8 < 1,ty = 1, at iteration k, start with t = t,_1, and while
1
g(x") > g(v)+ Ve(v) (xT —v) + 27_L||X+ —v|3
shrink t = 3t, and let x* = prox,(v — tVg(v)). Else keep x*

Under same assumptions, we get the same rate

Theorem

Accelerated proximal gradient method with backtracking line search
satisfies
. 2 20x9 = x|

<= 20

(k)y _
f(X ) f - tmin(k+1)2

where tmin = min{l, 3/L}.
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FISTA

Recall lasso problem
min 2 ly — XB[3+ All8]
PR y 2 1
and ISTA (iterative soft-thresholding algorithm)
B = sy, <B(k_1) FuXT(y - Xﬁ(k—l))), k=1,2,---

Sx(+) being vector soft-thresholding. Applying acceleration gives us FISTA
(F is for Fast)® for k = 1,2,3,---

k—2
(k1) _ g(k-2)
+ (8D - gl

B0 = Sy (v uXT(y - X))

®Back and Teboulle (2008) actually call their general acceleration technique (for
general g, h) FISA, which may be somewhat confusing
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Is acceleration always useful?

Acceleration can be a very effective speedup tool ... but should it always
be useful?

In practice, the speedup of using acceleration is diminished in the presence
of warm starts. l.e. suppose want to solve lasso problem for tuning
parameter values

)\1>)\2>"'>)\T

@ When solving for Ay, initialize x(%9) = 0, record solution %(\1)

@ When solving for \;, initialize x(?) = £(\;_1), the recorded solution
for /\j—l

Over a fine enough grid of A values, proximal gradient descent can often
perform just as well without aceleration.
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Sometimes backtracking and acceleration can be disavantageous! Recall
matrix completion problem, the proximal gradient update is

B* = 5,(B+ t(Pa(Y) - P&(B)))

where S, is the matrix soft-thresholding operator ... requires SVD

@ One backtracking loop evaluates generalized gradient G;(x), i.e.
evaluates prox,(x), across various values of t. For matrix completion,
this means multiple SVDs...

@ Acceleration changes argument we pass to prox: v — tVg(v) instead
of x — tVg(x). For matrix completion (and t = 1)

B —Vg(B) = Pa(Y) + P5(B) = fast SVD
—— =

sparse low rank
V —Vg(V)=Po(Y)+ PS(V) = slow SVD
—— ——
sparse not necessarily low rank
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Duality

Duality in linear programs
Lagrangian

Lagrange dual function
Lagrange dual problem

Examples

Weak and strong duality
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Duality in linear programs

Suppose we want to find lower bound on the optimal value in convex
problem

< mi
B_)r(nelgf(x)

E.g., consider the following simple LP

min x+y
X?y
subjectto x+y >2
x,y =20

What is a lower bound? Easy, take B = 2.
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Duality in linear programs

Try again:
min x -+ 3y r+y =2
L
Dy >
subject to x4y > 2 + 2y 20
- R P
ry =0 = T+dy22
Lower bound B = 2
More generally:
min pr -+ qy a+bh=p
KT
subject to @+ y > 2 ate=q
a, boe =10
.y =0
Lower bound I3 = 2a, for any
a, b, ¢ satisfying above
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Duality in linear programs

What's the best we can do? Maximize our lower bound over all possible
a, b, c:

miny px + qy maXg p.c 2a
subjecto x+y>2 subjectto a+b=p
x>0 at+c=gq
y >0 a,b,c>0
primal LP dual LP

Note: the number of dual variables is the number of primal constraints.
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Duality in linear programs

Try another one:

miny
subjec to

primal LP

px + qy
x>0
y<1
3x+y=2

maxa,bvc
subject to

dual LP

Note: in the dual problem, c is unconstrained.
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Duality in linear programs

Given c e R" Ae R™" b e R™ G € R™*" he R"
Primal Linear Programs (LP)

min cTx
X

subjectto Ax=0b

Gx <h
Its Dual LP is
max —bTu—hTv
a,b
subjectto —ATu—G'v=c
v>0
Jianyong Sun (XJTU)

Short title 27 / 37



Duality in linear programs

Explanation # 1: for any v and v > 0, and x primal feasible,
u(Ax —b) +vT(Gx — h) <0,ie,

(~ATu—-G"™v)>-b"u—h'v

Soif c=—ATu— GTv, we get a bound on primal optimal value.

Explanation # 2: for any v and v > 0, and x primal feasible
c™x>c"x+u"(Ax — b) + v (Gx — h) := L(x, u, V)

So if C denotes primal feasible set, f* primal value, then for any u and
v >0,

f*>minlL > min L =
2 min (x,u,v) > min (x,u,v):=g(u,v)
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Duality in linear programs

In other words, g(u, v) is a lower bound on f* for any v and v > 0.

Note that

( ) = —bTu—h"v if c=-ATu—-GTv
EWY) =) _x otherwise

Now we can maximize g(u, v) over u and v > 0 to get the tightest bound,
and this gives exactly the dual LP as before.

This last perspective is actually completely general and applies to arbitrary
optimization problems (even nonconvex ones).
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Consider general minimization problem

min

f

x€RNM (X)

subject to  hi(x) <0,i=1,---,m
EJ(X) =0, =1,

Need not to be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x,u,v) =

+Zu,h(x —l—ZVJ
New variables v € R™, v € R" with u > 0

Jianyong Sun (XJTU)
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Important property: for any v and v > 0,
f(x) > L(x, u,v) at each feasible x

why? For feasible x

L(x,u,v)="f(x)+ uj hi(x) + vili(x) < f(x
( ) = f(x) ,z; (x) 2}11() (x)
>0 J =0
i st
1\'7//

=1 —0.5 lx)- 0.5 1

Figure: Solid line is f, dashed line is h, feasible set s [—0.46, 0.46], each dotted
line shows L(x, u, v) for difference v > 0 and v (reproduced from B & V)
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Lagrange dual function

Let C denote primal feasible set, * denote primal optimal value.
Minimizing L(x, u, v) over all x € R" gives a lower bound

£ > minL > min L =
=z minL(x,u,v) > min L(x, u,v) := g(u,v)

We call g(u, v) the Lagrange dual function, and it gives a lower bound on
f* for any v and v > 0, called dual feasible u, v

Figure: Solid line is g(\), dual variable X is our u, dashed horizontal line is *
(reproduced from B & V)
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Quadratic programming

Consider quadratic programming (QP)

min %XTQX +cTx
xeRn
subjectto Ax=b,x>0

where @ > 0. Lagrangian
1
L(x,u,v) = EXTQX +cTx—uTx+vT(Ax — b)
Lagrange dual function

1
glu,v) = m]ilg L(x,u,v)= —§(c —u+ATV)TQ  (c—u+ATv) bV
xeR"

For any u > 0 and any v, this is a lower bound on primal optimal value f*
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Quadratic programming

Same problem
min %XTQX +cTx
xeRn
subjectto Ax=b,x>0

but Q = 0. Lagrangian

1
L(x,u,v) = §XTQX +cTx—u"x+vT(Ax — b)

Lagrange dual function

—ec—u+ATV)T Qf(c—u+ATv)—bTv
glu,v) = if c—u+ATv L null(Q)
—00 otherwise

where Q@ denotes generalized inverse of Q. For any u > 0, v, and

c—u+ATv L null(Q), g(u, v) is a nontrivial lower bound on f*
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Quadratic programming

If choose f(x) to be quadratic in 2 variables, subject to x > 0, dual
function g(u) is also quadratic i n2 variables, also subject to u >0

N
ANNNNNNRNY
ANS ‘\\\\\\\\\\\\\\\ SN

Figure: Dual function g(u) provides a bound on f* for every u > 0, largest bound
this gives us: turns out to be exactly f*, coincidence?
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Lagrange dual problem

Consider primal problem

MinycRrn f(x)
subject to  h;(x) g =1,---,m
fj(X) = = e, r

Our constructed dual function g(u, v) satisfies f* > g(u, v) for all u >0
and v. Hence best lower bound is given by maximizing g(u, v) over all
dual feasible u, v, yielding Lagrange dual problem

welen ELY)

subjectto  u >0

Key property, called weak duality: if dual optimal value g*, then
f‘k Z g‘k

Note that this always holds (even if primal problem is nonconvex).
31 /37
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Lagrange dual problem

Another key property: the dual problem is a convex optimization problem
(as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition

glu,v) = mXin f(x)+ Z uihi(x) + Z vilj(x)
i=1 Jj=1

—max ¢ —f(x) — Z uihi(x) — Z vili(x)
i=1 j=1

N~

pointwise maximum of convex functions in (u,v)

i.e. g is concave in (u,v), and u > 0 is a convex constraint, hence dual
problem is a concave maximization problem.
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Example: nonconvex quartic minimization

Define f(x) = x* — 50x3 + 100x (nonconvex), minimize subject to
constraint x > —4.5

Primal Dual
£ 8
g
7 T
g i _
- o
— o ;.
g T
o
8 -
g | T
' T T T T T T T T T T T
-10 -5 0 5 10 0 20 40 60 80 100
X v

Dual function g can be derived explicitly (via closed-form equation for
roots of a cubic equation). Form of g is quite complicated, and would be

hard to tell whether or not g is concave, but it must be!
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Strong duality

In some problems, we have observed that actually

f‘* — g*
which is called strong duality.
Slater’s condition: if the primal is a convex problem (i.e. f and hy,--- , hy
are convex, f1,---, £, are affine, and there exists at least one strictly

feasible x € R", meaning
hi(x) <0,--- ,hm(x) <0 and l1(x)=0,---,4,(x)=0
then strong duality holds.

This is a pretty weak condition. It can be further refined: need strict
inequalities only over functions h; that are not affine.
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For LPs
@ Easy to check that the dual of the dual LP is the primal LP
@ Refined version of Slater’s condition: strong duality holds for an LP if
it is feasible
@ Apply same logic to its dual LP: strong duality holds if it is feasible
@ Hence strong duality holds for LPs, except when both primal and dual
are infeasible.
In other words, we pretty much always have strong duality for LPs.
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Given a minimization problem

o 9
subject to  hj(x) <0,i=1,---,m

i(x)=0,j=1,---,r

we defined the Lagrangian

L(x,u,v) = +Zu,h(x —l—ZVJ

and the Lagrange dual function:
g(u,v) = mXin L(x, u,v)
and the subsequent dual problem is
max g(u,v)
u,v

subjectto u >0
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Important properties

@ Dual problem is always convex, i.e. g is always concave (even if
primal problem is not convex)

@ The primal and dual optimal values, * and g*, always satisfy weak
duality f* > g*
@ Slater’s condition: for convex primal, if there is an x such that

hi(x) <0, ,hm(x) <0 and l1(x)=0,---,4(x)=0

then strong duality holds. Can be further refined to strict inequalities
over the noonaffine h;,i=1,--- , m
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Questions?
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