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convex equality constrained optimization problem

minimize f (x)

subject to Ax = b

f is separable

f (x) = f1(x1) + · · ·+ fN(xN), x = (x1, · · · , xN)

N large
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Goals: robust methods for
arbitrary-scale optimization

big data
dynamic optimization on large-scale network

decentralized optimization
parallel computing, by passing relatively small messages.
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convex equality constrained optimization problem

minimize f (x)

subject to Ax = b

Lagrangian: L(x , y) = f (x) + yᵀ(Ax − b)

dual function: g(y) = infx L(x , y)

dual problem:
maximize g(y)

recover:
x∗ = argminxL(x , y∗)
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Dual descent
gradient method for dual problem: yk+1 = yk + αk∇g(yk)

∇g(yk) = Ax̃ − b, where x̃ = argminxL(x , yk)

dual ascent method is

xk+1 := argminxL(x , yk)→ x-minimization
yk+1 := yk + αk(Axk+1 − b)→ dual update

works, but with lots of strong assumptions
f be convex, finite and have compact lower level sets.
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Dual Decomposition
if f is separable, then L is separable

L(x , y) = L1(x1, y) + · · ·+ LN(xN , y)− yᵀb

where Li (xi , y) = fi (xi ) + yᵀAixi and A = [A1,A2, · · · ,AN ]

x-minimization in dual ascent splits into N separate
minimizations

xi ,k+1 := argminxiLi (xi , yk)

which can be done in parallel.
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Dual Decomposition
dual decomposition

xk+1
i := argmin

xi
Li (xi , y

k), i = 1, 2, · · · ,N

yk+1 := yk + αk

(
N∑
i=1

Aix
k+1
i − b

)

update xi in parallel, gather Aix
k+1
i ; scatter yk (limited

communication among parallel processes)
To solve a large problem by dual decomposition

by iteratively solving the x-minimization subproblems (in
parallel)
dual variable update provides coordination

works, but with lots of assumptions; often slow.
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Method of Multipliers
a method to make dual ascent robust
based on augmented Lagrangian (Hestense, Powell 1969),
given ρ > 0

Lρ(x , y) = f (x) + yᵀ(Ax − b) +
ρ

2
‖Ax − b‖22

method of multipliers can be formalized as

xk+1 := argmin
x

Lρ(x , yk)

yk+1 := yk + ρ(Axk+1 − b)
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compared to dual decomposition
converges under much more relaxed conditions (f can be
nondifferentiable, can take on value +∞, etc.), but
quadratic penalty destroys splitting of the x-update, so
decomposition is not attainable, thus no good for large scale
optimization
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Alternating Direction Method of Multipliers (ADMM)
ADMM problem form (assume f , g are convex)

minimize f (x) + g(z)

subject to Ax + Bz = c

Lρ(x , z , y) = f (x)+g(z)+yᵀ(Ax +Bz−c)+ ρ
2‖Ax +Bz−c‖22

ADMM

xk+1 := argminxLρ(x , zk , yk)→ x-minimization
zk+1 := argminzLρ(xk+1, z , yk)→ z-minimization
yk+1 := yk + ρ(Axk+1 + Bzk+1 − c)→ dual update
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minimize over x and z jointly, ADMM reduces to method of
multipliers
decomposition becomes available on x-minimization and
z-minimization
optimality conditions for differentiable f , g are satisfied by
ADMM

primal feasibility: Ax + Bz − c = 0
dual feasibility: ∇f (x) + Aᵀy = 0, ∇g(z) + Bᵀz = 0
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ADMM with scaled dual variables
combine linear and quadratic terms in augmented Lagrangian

Lρ(x , z , y) = f (x)+g(z)+yᵀ(Ax+Bz−c)+
ρ

2
‖Ax+Bz−c‖22

= f (x) + g(z) +
ρ

2
‖Ax + Bz − c + u‖22 + const.

with u = (1/ρ)y . This holds because (let r = Ax + Bz − c)

yᵀr +
ρ

2
‖r‖22 =

ρ

2
‖r +

1
ρ
y‖22 −

ρ

2
‖y‖22 =

ρ

2
‖r + u‖22 −

ρ

2
‖u‖22

ADMM (scaled dual form)

xk+1 := argminx(f (x) + (ρ/2)‖Ax + Bzk − c + uk‖22
zk+1 := argminz(g(z) + (ρ/2)‖Axk+1 + Bz − c + uk‖22
uk+1 := uk + (Axk+1 + Bzk+1 − c)
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Convergence
assumptions: f , g convex, closed, proper, L0 has a saddle point
then ADMM converges

Related Algorithms
operator splitting methods
proximal point algorithm
Dykstra’s alternating projections algorithm
proximal methods
Bregman iterative methods
...
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Common Patterns
x-update step requires minimizing f (x) + (ρ/2)‖Ax − v‖2
(with v = Bzk − c + uk , which is constant during x-update)
similar for z-update
several special cases come up often, can simplify update by
exploit structure in these cases

Decomposition
suppose f is block-separable

f (x) = f1(x1) + f2(x2) + · · ·+ fN(xN), x = [x1, · · · , xN ]

A is block-separable, i.e. AᵀA is block-diagnoal
then x-update splits into N parallel updates of xi
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Proximal Operator
consider x-minimization when A = I

x+ = argminx
(
f (x) +

ρ

2
‖x − v‖22

)
= proxf ,ρ(v)

where v = −Bz + c − u

some special cases

f = IC (indicator fct. of C ) x+ := ΠC (v)(projection onto C )

f = λ‖ · ‖1(`1 norm) x+i := Sλ/ρ(vi )(soft thresholding)

where C is closed, non-empty and convex, and

Sa(v) = (v − a)+ − (−v − a)+
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Quadratic Objective
f (x) = 1/2xᵀPx + qᵀx + r

x+ := (P + ρAᵀA)−1(ρAᵀv − q)

use matrix inversion lemma when computationally
advantageous

(P + ρAᵀA)−1 = P−1 − ρP−1Aᵀ(I + ρAP−1Aᵀ)−1AP−1

(direct method) cache factorization P + ρAᵀA or I + ρAP−1Aᵀ

(iterative method) warm start, early stopping, reducing
tolerances.
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Constrained convex optimization
consider ADMM for generic problem

minimize f (x)

subject to x ∈ C

ADMM form: take g to be indicator of C, i.e. g(z) = IC (z)

minimize f (x) + g(z)

subject to x − z = 0

algorithm

xk+1 := argminx
(
f (x) +

ρ

2
‖x − zk + uk‖22

)
zk+1 := ΠC(xk+1 + uk)

uk+1 := uk + xk+1 − zk+1
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Lasso
lasso problem

minimize
1
2
‖Ax − b‖22 + λ‖x‖1

ADMM form

minimize
1
2
‖Ax − b‖22 + λ‖z‖1

subject to x − z = 0

algorithm

xk+1 := (AᵀA + ρI )−1(Aᵀb + ρzk − uk)

zk+1 := Sλ/ρ(xk+1 + uk/ρ)

uk+1 := uk + ρ(xk+1 − zk+1)



Introduction Dual problem Method of Multipliers ADMM Special cases Consensus Summary Conclusions and Research Avenues

Sparse inverse covariance selection
S : empirical covariance of samples from N (0,Σ), with Σ−1

sparse (i.e., Gaussain Markov random field)
estimate Σ−1 via `1 regularized maximum likelihood

minimize XTr(SX )− log detX + λ‖X‖1

ADMM form

minimize Tr(SX )− log detX + λ‖Z‖1
subject to X − Z = 0

algorithm

X k+1 := argminXTr(SX )− log detX + (ρ/2)‖X − Z k + Uk‖2F
Z k+1 := Sλ/ρ(X k+1 + Uk/ρ)

Uk+1 := Uk + ρ(X k+1 − Z k+1)
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Analytical Solution for X -update
first-order optimality condition

S − X−1 + ρ(X − Z k + Uk) = 0

i.e.
ρX − X−1 = ρ(Z k − Uk)− S

eigendecomposition ρ(Z k − Uk)− S = QΛQᵀ

form diagonal matrix X̃ = QᵀXQ with

X̃ii =
λi +

√
λ2
i + 4ρ

2ρ

let X k+1 := QX̃Qᵀ

cost of X -update is an eigendecomposition
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Consensus optimization
to solve problem with N objective terms

minimize
N∑
i=1

fi (x)

e.g. fi is the loss function for the ith block (mini-batch) of
training data
ADMM form

minimize
N∑
i=1

fi (xi )

subject to xi − z = 0

here
xi s are local variables
z is the global variable
xi − z = 0 are consistency or consensus constraints
can add regularization using a g(z) term.
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Consensus optimization via ADMM
Lρ(x , z , y) =

∑N
i=1(fi (xi ) + yᵀi (xi − z) + (ρ/2)‖xi − z‖22)

ADMM

xk+1
i := argminxi (fi (xi ) +

(
yki

)ᵀ
(xi − zk) + (ρ/2)‖xi − zk‖22

zk+1 :=
1
N

N∑
i=1

(xk+1
i + (1/ρ)yki )

yk+1
i := yki + ρ(xk+1

i − zk+1)

if regularization term included, averaging in z update is
followed by proxg ,ρ



Introduction Dual problem Method of Multipliers ADMM Special cases Consensus Summary Conclusions and Research Avenues

The z-update can be written as

zk+1 = x̄k+1 +
1
ρ
ȳk

Similarly, averaging the y-update, we have

ȳk+1 = ȳk + ρ(x̄k+1 − zk+1)

substituting zk+1 to ȳk+1 leads to ȳk+1 = 0, which means

the dual variables have average value zero after the first iteration
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Consensus optimization via ADMM
using

∑
i y

k
i = 0, algorithm simplifies to

xk+1
i := argminxi (fi (xi ) +

(
yki

)ᵀ
(xi − x̄k) + (ρ/2)‖xi − x̄k‖22)

yk+1
i := yki + ρ(xk+1

i − x̄k+1)

where x̄k = (1/N)
∑

i x
k
i

in each iteration
gather xki and average to get x̄k

scatter the average x̄k to processors
update yk

i locally (in each processor, in parallel)
update xi locally
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Statistical interpretation
fi is negative log-likelihood for parameter x given ith data
block
xk+1
i is an MAP estimate under prior N (x̄k + 1

ρy
k
i , ρI )

prior mean is previous iteration’s consensus shifted by ’price’ of
processor i disagreeing with previous consensus
processors only need to support a Gaussian MAP method

type or number of data in each block not relevant
consensus protocol yields global maximum-likelihood estimate
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Consensus classification
data (examples) (ai , bi ), i = 1, · · · ,N, ai ∈ Rn, bi ∈ {+1,−1}
linear classifier sign(aᵀw + v), with weight w , offset v
margin for ith example is bi (a

ᵀ
i w + v); want margin to be

positive
loss for ith example is `(bi (a

ᵀ
i w + v))

` is loss function, could be hinge, logistic, probit, exponential,
etc...

choose w , v to minimize

1
N

N∑
i=1

`(bi (a
ᵀ
i w + v)) + r(w)

split data and use ADMM consensus to solve
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In case of SVM with hinge loss and `2-regularization, the ADMM
algorithm

xk+1
i = argmin

xi

(
1ᵀ(Aixi + 1)+ +

ρ

2
‖xi − zk + uki ‖22

)
zk+1 =

ρ

(1/λ) + Nρ
(x̄k+1 + ūk)

uk+1
i = uki + xk+1

i − zk+1

Interpretation
each xi -update involves fitting a SVM to local data Ai with an
offset in the regularization term
the dual variable z gathers the solutions for consensus
the dual variable u update the offset
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Consensus SVM example
hinge loss `(u) = (1− u)+ with `2 regularization
toy problem with n = 2,N = 400 to illustrate
examples split into 20 groups, in worst possible way: each
group contains only positive or negative examples

Figure: training iterations 1, 5, 40
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ADMM gives simple single-processor algorithms that can be
competitive with state-of-the-art
can be used to coordinate many processors, each solving a
substantial problem, to solve a very large problem
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big data techniques
computational statistics, machine learning
especially on large data sets

data fusion
heterogeneous and homogeneous data sets
stream data
small data learning

optimization
loss function — data associated, summation form,
task-specific, determined by data modelling
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