Optimization in Big Data Research (lll)
Alternating Direction of Method of
Multipliers - ADMM

Jianyong Sun
School of Mathematics and Statistics
Xi'an Jiaotong University

Xi'an, 2018

Outline

© Introduction

© Dual problem

© Method of Multipliers
O ADMM

© Special cases

@ Consensus

@ Summary

@ Conclusions and Research Avenues

Introduction

Table of Contents

© Introduction

Introduction

@ convex equality constrained optimization problem

minimize f(x)
subjectto Ax=0b

@ f is separable
f(x) =ala) +-- + i), x = (xa, -+, xw)

o N large

Introduction

Goals: robust methods for
@ arbitrary-scale optimization

o big data
e dynamic optimization on large-scale network

@ decentralized optimization
o parallel computing, by passing relatively small messages.

Dual problem

Table of Contents

© Dual problem

Dual problem

@ convex equality constrained optimization problem

minimize f(x)
subjectto Ax=b

Lagrangian: L(x,y) = f(x) + yT(Ax — b)
dual function: g(y) = infx L(x,y)

dual problem:
maximize g(y)

@ recover:
x* = argmin,L(x,y")

Dual problem

Dual descent
@ gradient method for dual problem: yi11 = yx + axVg(yk)
e Vg(yk) = AX — b, where X = arg min, L(x, yx)
@ dual ascent method is

Xk+1 = argmin,L(x,yx) — x-minimization

Yk+1 = Ykt ak(AXk+1 = b) — dual update

@ works, but with lots of strong assumptions
o f be convex, finite and have compact lower level sets.

Dual problem

Dual Decomposition

@ if f is separable, then L is separable
L(x,y) = Li(xt,y) + -+ Ln(xw, ¥) — yTb

where Li(x;,y) = fi(x;) + yTAix; and A = [A1, A2, - -+, Ap]

@ x-minimization in dual ascent splits into NV separate
minimizations

X k1 := argmin, L;(x;, yk)

which can be done in parallel.

Dual problem

Dual Decomposition

@ dual decomposition

il arg min L,‘(X,',yk), i=12--- N

1

N
Y=y b [D AT b
i=1

@ update x; in parallel, gather A,-x,-k+1; scatter y* (limited
communication among parallel processes)
@ To solve a large problem by dual decomposition

o by iteratively solving the x-minimization subproblems (in
parallel)
o dual variable update provides coordination

@ works, but with lots of assumptions; often slow.

Method of Multipliers

Table of Contents

© Method of Multipliers

Method of Multipliers

Method of Multipliers
@ a method to make dual ascent robust

@ based on augmented Lagrangian (Hestense, Powell 1969),
given p > 0

Ly(x, y) = F(x) + yT(Ax— b) + £l Ax — b|}

@ method of multipliers can be formalized as

xk1 = argmin Lp(x,yk)
X

yk+1 A yk —l—p(AXk+1 ¥ b)

Method of Multipliers

compared to dual decomposition

@ converges under much more relaxed conditions (f can be
nondifferentiable, can take on value +oo, etc.), but

@ quadratic penalty destroys splitting of the x-update, so
decomposition is not attainable, thus no good for large scale
optimization

Table of Contents

O ADMM

ADMM

Alternating Direction Method of Multipliers (ADMM)

@ ADMM problem form (assume f, g are convex)

minimize f(x) + g(z)
subject to Ax + Bz =c¢

o Ly(x,2,y) = f(x)+g(2) +yT(Ax+Bz—c)+§||Ax+ Bz —c|}3

e ADMM
xk1 = arg minXLp(x,zk,yk) — x-minimization
2= argmin, L,(x*t1 z,y*) — z-minimization
yhtt vy K+ p(Ax*T 4 BzK1 — ¢) - dual update

ADMM

@ minimize over x and z jointly, ADMM reduces to method of
multipliers
@ decomposition becomes available on x-minimization and
z-minimization
@ optimality conditions for differentiable f, g are satisfied by
ADMM
e primal feasibility: Ax+ Bz—c=0
o dual feasibility: Vf(x)+ ATy =0, Vg(z)+ BTz=0

ADMM

ADMM with scaled dual variables

@ combine linear and quadratic terms in augmented Lagrangian
Ly(x:2,y) = F(x)+(2)+y(Ax+Bz—c)+5 | Ax+Bz—c|[3
= f(x)+g(z) + gHAx + Bz — ¢ + ul)? + const.
with u = (1/p)y. This holds because (let r = Ax + Bz — ¢)
P P 1 p P P
v+ BB = Bl + 13 = Sy13 = Sl + 13 — Sl

o ADMM (scaled dual form)

XK1= argmin, (f(x) + (p/2)||Ax + Bz — ¢ + u*||3
2= argming (g(2) + (p/2)| A + Bz — ¢ + u¥|}
vkt = uR 4 (AT 4 BZK ()

ADMM

Convergence
@ assumptions: f, g convex, closed, proper, Ly has a saddle point
@ then ADMM converges

Related Algorithms

operator splitting methods

proximal point algorithm

Dykstra's alternating projections algorithm

°
°

@ proximal methods

@ Bregman iterative methods
°

ADMM

Common Patterns
e x-update step requires minimizing f(x) + (p/2)||Ax — v||?
(with v = BzK — ¢ + u¥, which is constant during x-update)
@ similar for z-update

@ several special cases come up often, can simplify update by
exploit structure in these cases

Decomposition

@ suppose f is block-separable
f(x) = fla) + 20e) + -+ fin(xn), x =[x, -+, xw]

@ A is block-separable, i.e. ATA is block-diagnoal

@ then x-update splits into NV parallel updates of x;

Special cases

Table of Contents

© Special cases

Special cases

Proximal Operator

@ consider x-minimization when A =/
xT = arg min, (f(x) + ng - vH%) = proxs ,(v)

where v=—-Bz+c—u

@ some special cases

f = Ic(indicator fct. of C) x™ := M¢(v)(projection onto C)
f =\l l(fx norm) x" =S, ,(vi)(soft thresholding)

where C is closed, non-empty and convex, and

Salv) = (v—a)s = (~v —a),

Special cases

Quadratic Objective
@ f(x)=1/2xTPx+ q"™x+r
o xt = (P+ pATA)"L(pATv — q)

@ use matrix inversion lemma when computationally
advantageous

(P+pATA)Y L = P71 — pP7LAT(I + pAPTIAT) 1 AP

@ (direct method) cache factorization P+ pATA or | + pAP~LAT

o (iterative method) warm start, early stopping, reducing
tolerances.

Special cases

Constrained convex optimization

@ consider ADMM for generic problem

minimize f(x)

subject to x € C
o ADMM form: take g to be indicator of C, i.e. g(z) = Ic(2)

minimize f(x) + g(z)

subject to x —z =10

@ algorithm
Xkt = argmin, (f(x)+g||x—zk+uk\|%>
o (xR 4 k)
Fa S S B S

Special cases

Lasso

@ lasso problem

.
minimize > [|Ax — bl|3 + AlIx|l1

o ADMM form
.. /. 2
minimize §||Ax — b|l5 + Allz|l1
subjectto x—z=0
@ algorithm
XKL= (ATA+ p)"YATh + pzk — u¥)
k1l 3 S,\/p(ka + u¥/p)

uk+1 — uk —|—p(Xk+1 _zk+1)

Special cases

Sparse inverse covariance selection

@ S : empirical covariance of samples from N(0, %), with ¥~1
sparse (i.e., Gaussain Markov random field)

@ estimate ¥~ ! via ¢; regularized maximum likelihood
minimize x Tr(SX) — logdet X + A|| X||1
o ADMM form
minimize Tr(SX) — logdet X + A||Z||1
subjectto X —Z=0
@ algorithm
XK1= argminy Tr(SX) — logdet X + (p/2)|| X — ZK + UX||2
= Sy (XK + U /p)
Uk+1 — Uk +p(Xk+1 . Zk+l)

Zk+1

Special cases

Analytical Solution for X-update

o first-order optimality condition

S—X14rpX-ZK+ U =0

X — X et 7% _ U S
e eigendecomposition p(ZK — UK) — S = QAQT
e form diagonal matrix X = QTXQ with

L At/ A2 +4p
Kig =S
2p

o let XK1 .= QXQT

@ cost of X-update is an eigendecomposition

Consensus

Table of Contents

@ Consensus

Consensus

Consensus optimization
@ to solve problem with N objective terms

N
minimize Z fi(x)
i=1

e.g. fi is the loss function for the ith block (mini-batch) of
training data

o ADMM form
N
minimize Z il
i=1
subject to x; —z=0
here

e x;s are local variables

o z is the global variable

e x; — z = 0 are consistency or consensus constraints
e can add regularization using a g(z) term.

Consensus

Consensus optimization via ADMM
o Ly(x,2,y) = 1L (F0) + i (xi — 2) + (p/2)||xi — 2|I3)

o ADMM
; T
N argmmx.(fi(Xi)-i-(yik) (5 = 2) + (p/DIxi — 2413
k+1 A1 k+1
K= NZ +(1/p)yf)
Yt =yl - 2

@ if regularization term included, averaging in z update is
followed by prox, ,

Consensus

The z-update can be written as

1
P e 7

p

V4

Similarly, averaging the y-update, we have

FRHL = gk 4 p(RKFT — ZkHL

k+1

substituting zk*1 to y**1 leads to y**! = 0, which means

the dual variables have average value zero after the first iteration

Consensus

Consensus optimization via ADMM

e using >, y¥ =0, algorithm simplifies to

. T v X
x,-kJr1 = argmin, (fi(x;) + (yik) (xi =)+ (p/2)lIxi — %¥13)
Yt =y p(= &

where 3% = (1/N) Zixik
@ in each iteration

o gather x* and average to get x*

scatter the average %k to processors

update y* locally (in each processor, in parallel)
update x; locally

® 6 o

Consensus

Statistical interpretation
@ f; is negative log-likelihood for parameter x given ith data
block
k41 - . . =
o x/*is an MAP estimate under prior N'(X* + 2y, pl)
@ prior mean is previous iteration’s consensus shifted by 'price’ of
processor i disagreeing with previous consensus

@ processors only need to support a Gaussian MAP method

e type or number of data in each block not relevant
e consensus protocol yields global maximum-likelihood estimate

Consensus

Consensus classification
o data (examples) (a;, b;),i=1,---,N,a; € R" b; € {+1,-1}
@ linear classifier sign(a™w + v), with weight w, offset v
@ margin for ith example is bj(a] w + v); want margin to be
positive
@ loss for ith example is ¢(b;j(alw + v))

e / is loss function, could be hinge, logistic, probit, exponential,
etc...

choose w, v to minimize

1 N
= U(bi(a]w + v)) + r(w)
i=1

split data and use ADMM consensus to solve

Consensus

In case of SVM with hinge loss and ¢»-regularization, the ADMM

algorithm
XK1 = arg min (].T(A,‘X,' +1)4 + ng,- X, W u,kH%)
k+1 P a
M= = +a
(1/)\) + Np()
R I

1

Interpretation

@ each x;-update involves fitting a SVM to local data A; with an
offset in the regularization term

@ the dual variable z gathers the solutions for consensus

@ the dual variable u update the offset

Consensus

Consensus SVM example
@ hinge loss ¢(u) = (1 — u)4+ with ¢> regularization
@ toy problem with n =2, N = 400 to illustrate

@ examples split into 20 groups, in worst possible way: each
group contains only positive or negative examples

Figure: training iterations 1,5, 40

Table of Contents

@ Summary

o ADMM gives simple single-processor algorithms that can be
competitive with state-of-the-art

@ can be used to coordinate many processors, each solving a
substantial problem, to solve a very large problem

Conclusions and Rese

Table of Contents

@ Conclusions and Research Avenues

Conclusions and Rese

@ big data techniques
e computational statistics, machine learning
o especially on large data sets
o data fusion
@ heterogeneous and homogeneous data sets
@ stream data
@ small data learning
@ optimization
o loss function — data associated, summation form,
task-specific, determined by data modelling

	Introduction
	Dual problem
	Method of Multipliers
	ADMM
	Special cases
	Consensus
	Summary
	Conclusions and Research Avenues

