Optimization in Big Data Research (III) Alternating Direction of Method of Multipliers - ADMM

Jianyong Sun
School of Mathematics and Statistics
Xi'an Jiaotong University

Xi'an, 2018

Outline

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(6) Consensus
(7) Summary

8 Conclusions and Research Avenues

Table of Contents

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(-) Consensus
(7) Summary
(8) Conclusions and Research Avenues

- convex equality constrained optimization problem

$$
\begin{array}{rc}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- f is separable

$$
f(x)=f_{1}\left(x_{1}\right)+\cdots+f_{N}\left(x_{N}\right), x=\left(x_{1}, \cdots, x_{N}\right)
$$

- N large

Goals: robust methods for

- arbitrary-scale optimization
- big data
- dynamic optimization on large-scale network
- decentralized optimization
- parallel computing, by passing relatively small messages.

Table of Contents

(1) Introduction

(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(6) Consensus
(7) Summary

8 Conclusions and Research Avenues

- convex equality constrained optimization problem

$$
\begin{array}{rc}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- Lagrangian: $L(x, y)=f(x)+y^{\top}(A x-b)$
- dual function: $g(y)=\inf _{x} L(x, y)$
- dual problem:

$$
\text { maximize } g(y)
$$

- recover:

$$
x^{*}=\arg \min _{x} L\left(x, y^{*}\right)
$$

Dual descent

- gradient method for dual problem: $y_{k+1}=y_{k}+\alpha_{k} \nabla g\left(y_{k}\right)$
- $\nabla g\left(y_{k}\right)=A \tilde{x}-b$, where $\tilde{x}=\arg \min _{x} L\left(x, y_{k}\right)$
- dual ascent method is

$$
\begin{aligned}
x_{k+1} & :=\arg \min _{x} L\left(x, y_{k}\right) \rightarrow x \text {-minimization } \\
y_{k+1} & :=y_{k}+\alpha_{k}\left(A x_{k+1}-b\right) \rightarrow \text { dual update }
\end{aligned}
$$

- works, but with lots of strong assumptions
- f be convex, finite and have compact lower level sets.

Dual Decomposition

- if f is separable, then L is separable

$$
L(x, y)=L_{1}\left(x_{1}, y\right)+\cdots+L_{N}\left(x_{N}, y\right)-y^{\top} b
$$

where $L_{i}\left(x_{i}, y\right)=f_{i}\left(x_{i}\right)+y^{\top} A_{i} x_{i}$ and $A=\left[A_{1}, A_{2}, \cdots, A_{N}\right]$

- x-minimization in dual ascent splits into N separate minimizations

$$
x_{i, k+1}:=\arg \min _{x_{i}} L_{i}\left(x_{i}, y_{k}\right)
$$

which can be done in parallel.

Dual Decomposition

- dual decomposition

$$
\begin{aligned}
x_{i}^{k+1} & :=\arg \min _{x_{i}} L_{i}\left(x_{i}, y^{k}\right), i=1,2, \cdots, N \\
y^{k+1} & :=y^{k}+\alpha_{k}\left(\sum_{i=1}^{N} A_{i} x_{i}^{k+1}-b\right)
\end{aligned}
$$

- update x_{i} in parallel, gather $A_{i} x_{i}^{k+1}$; scatter y^{k} (limited communication among parallel processes)
- To solve a large problem by dual decomposition
- by iteratively solving the x-minimization subproblems (in parallel)
- dual variable update provides coordination
- works, but with lots of assumptions; often slow.

Table of Contents

(1) Introduction

(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(b) Consensus
(7) Summary

8 Conclusions and Research Avenues

Method of Multipliers

- a method to make dual ascent robust
- based on augmented Lagrangian (Hestense, Powell 1969), given $\rho>0$

$$
L_{\rho}(x, y)=f(x)+y^{\top}(A x-b)+\frac{\rho}{2}\|A x-b\|_{2}^{2}
$$

- method of multipliers can be formalized as

$$
\begin{aligned}
x^{k+1} & :=\arg \min _{x} L_{\rho}\left(x, y^{k}\right) \\
y^{k+1} & :=y^{k}+\rho\left(A x^{k+1}-b\right)
\end{aligned}
$$

compared to dual decomposition

- converges under much more relaxed conditions (f can be nondifferentiable, can take on value $+\infty$, etc.), but
- quadratic penalty destroys splitting of the x-update, so decomposition is not attainable, thus no good for large scale optimization

Table of Contents

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(6) Consensus
(7) Summary
(8) Conclusions and Research Avenues

Alternating Direction Method of Multipliers (ADMM)

- ADMM problem form (assume f, g are convex)

$$
\begin{aligned}
& \operatorname{minimize} f(x)+g(z) \\
& \text { subject to } A x+B z=c
\end{aligned}
$$

- $L_{\rho}(x, z, y)=f(x)+g(z)+y^{\top}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}$
- ADMM

$$
\begin{aligned}
x^{k+1} & :=\arg \min _{x} L_{\rho}\left(x, z^{k}, y^{k}\right) \rightarrow x \text {-minimization } \\
z^{k+1} & :=\arg \min _{z} L_{\rho}\left(x^{k+1}, z, y^{k}\right) \rightarrow z \text {-minimization } \\
y^{k+1} & :=y^{k}+\rho\left(A x^{k+1}+B z^{k+1}-c\right) \rightarrow \text { dual update }
\end{aligned}
$$

- minimize over x and z jointly, ADMM reduces to method of multipliers
- decomposition becomes available on x-minimization and z-minimization
- optimality conditions for differentiable f, g are satisfied by ADMM
- primal feasibility: $A x+B z-c=0$
- dual feasibility: $\nabla f(x)+A^{\top} y=0, \nabla g(z)+B^{\top} z=0$

ADMM with scaled dual variables

- combine linear and quadratic terms in augmented Lagrangian

$$
\begin{aligned}
L_{\rho}(x, z, y) & =f(x)+g(z)+y^{\top}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2} \\
= & f(x)+g(z)+\frac{\rho}{2}\|A x+B z-c+u\|_{2}^{2}+\text { const } .
\end{aligned}
$$

with $u=(1 / \rho) y$. This holds because (let $r=A x+B z-c$)

$$
y^{\top} r+\frac{\rho}{2}\|r\|_{2}^{2}=\frac{\rho}{2}\left\|r+\frac{1}{\rho} y\right\|_{2}^{2}-\frac{\rho}{2}\|y\|_{2}^{2}=\frac{\rho}{2}\|r+u\|_{2}^{2}-\frac{\rho}{2}\|u\|_{2}^{2}
$$

- ADMM (scaled dual form)

$$
\begin{aligned}
x^{k+1} & :=\arg \min _{x}\left(f(x)+(\rho / 2)\left\|A x+B z^{k}-c+u^{k}\right\|_{2}^{2}\right. \\
z^{k+1} & :=\arg \min _{z}\left(g(z)+(\rho / 2)\left\|A x^{k+1}+B z-c+u^{k}\right\|_{2}^{2}\right. \\
u^{k+1} & :=u^{k}+\left(A x^{k+1}+B z^{k+1}-c\right)
\end{aligned}
$$

Convergence

- assumptions: f, g convex, closed, proper, L_{0} has a saddle point
- then ADMM converges

Related Algorithms

- operator splitting methods
- proximal point algorithm
- Dykstra's alternating projections algorithm
- proximal methods
- Bregman iterative methods
- ...

Common Patterns

- x-update step requires minimizing $f(x)+(\rho / 2)\|A x-v\|^{2}$ (with $v=B z^{k}-c+u^{k}$, which is constant during x-update)
- similar for z-update
- several special cases come up often, can simplify update by exploit structure in these cases

Decomposition

- suppose f is block-separable

$$
f(x)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{N}\left(x_{N}\right), x=\left[x_{1}, \cdots, x_{N}\right]
$$

- A is block-separable, i.e. $A^{\top} A$ is block-diagnoal
- then x-update splits into N parallel updates of x_{i}

Table of Contents

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(6) Consensus
(7) Summary
(Conclusions and Research Avenues

Proximal Operator

- consider x-minimization when $A=I$

$$
x^{+}=\arg \min _{x}\left(f(x)+\frac{\rho}{2}\|x-v\|_{2}^{2}\right)=\operatorname{prox}_{f, \rho}(v)
$$

where $v=-B z+c-u$

- some special cases
$f=I_{C}($ indicator fct. of $C) \quad x^{+}:=\Pi_{C}(v)($ projection onto $C)$

$$
f=\lambda\|\cdot\|_{1}\left(\ell_{1} \text { norm }\right) \quad x_{i}^{+}:=S_{\lambda / \rho}\left(v_{i}\right)(\text { soft thresholding })
$$

where C is closed, non-empty and convex, and

$$
S_{a}(v)=(v-a)_{+}-(-v-a)_{+}
$$

Quadratic Objective

- $f(x)=1 / 2 x^{\top} P x+q^{\top} x+r$
- $x^{+}:=\left(P+\rho A^{\top} A\right)^{-1}\left(\rho A^{\top} v-q\right)$
- use matrix inversion lemma when computationally advantageous

$$
\left(P+\rho A^{\top} A\right)^{-1}=P^{-1}-\rho P^{-1} A^{\top}\left(I+\rho A P^{-1} A^{\top}\right)^{-1} A P^{-1}
$$

- (direct method) cache factorization $P+\rho A^{\top} A$ or $I+\rho A P^{-1} A^{\top}$
- (iterative method) warm start, early stopping, reducing tolerances.

Constrained convex optimization

- consider ADMM for generic problem

$$
\begin{aligned}
& \operatorname{minimize} f(x) \\
& \text { subject to } x \in \mathcal{C}
\end{aligned}
$$

- ADMM form: take g to be indicator of \mathcal{C}, i.e. $g(z)=I_{C}(z)$

$$
\begin{aligned}
& \operatorname{minimize} f(x)+g(z) \\
& \text { subject to } x-z=0
\end{aligned}
$$

- algorithm

$$
\begin{aligned}
x^{k+1} & :=\arg \min _{x}\left(f(x)+\frac{\rho}{2}\left\|x-z^{k}+u^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & :=\Pi_{C}\left(x^{k+1}+u^{k}\right) \\
u^{k+1} & :=u^{k}+x^{k+1}-z^{k+1}
\end{aligned}
$$

Lasso

- lasso problem

$$
\operatorname{minimize} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- ADMM form

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|z\|_{1} \\
& \text { subject to } x-z=0
\end{aligned}
$$

- algorithm

$$
\begin{aligned}
x^{k+1} & :=\left(A^{\top} A+\rho /\right)^{-1}\left(A^{\top} b+\rho z^{k}-u^{k}\right) \\
z^{k+1} & :=S_{\lambda / \rho}\left(x^{k+1}+u^{k} / \rho\right) \\
u^{k+1} & :=u^{k}+\rho\left(x^{k+1}-z^{k+1}\right)
\end{aligned}
$$

Sparse inverse covariance selection

- S : empirical covariance of samples from $\mathcal{N}(0, \Sigma)$, with Σ^{-1} sparse (i.e., Gaussain Markov random field)
- estimate Σ^{-1} via ℓ_{1} regularized maximum likelihood

$$
\text { minimize } x \operatorname{Tr}(S X)-\log \operatorname{det} X+\lambda\|X\|_{1}
$$

- ADMM form

$$
\begin{aligned}
& \text { minimize } \operatorname{Tr}(S X)-\log \operatorname{det} X+\lambda\|Z\|_{1} \\
& \text { subject to } X-Z=0
\end{aligned}
$$

- algorithm

$$
\begin{aligned}
X^{k+1} & :=\arg \min _{X} \operatorname{Tr}(S X)-\log \operatorname{det} X+(\rho / 2)\left\|X-Z^{k}+U^{k}\right\|_{F}^{2} \\
Z^{k+1} & :=S_{\lambda / \rho}\left(X^{k+1}+U^{k} / \rho\right) \\
U^{k+1} & :=U^{k}+\rho\left(X^{k+1}-Z^{k+1}\right)
\end{aligned}
$$

Analytical Solution for X-update

- first-order optimality condition

$$
S-X^{-1}+\rho\left(X-Z^{k}+U^{k}\right)=0
$$

i.e.

$$
\rho X-X^{-1}=\rho\left(Z^{k}-U^{k}\right)-S
$$

- eigendecomposition $\rho\left(Z^{k}-U^{k}\right)-S=Q \wedge Q^{\top}$
- form diagonal matrix $\tilde{X}=Q^{\top} X Q$ with

$$
\tilde{X}_{i i}=\frac{\lambda_{i}+\sqrt{\lambda_{i}^{2}+4 \rho}}{2 \rho}
$$

- let $X^{k+1}:=Q \tilde{X} Q^{\top}$
- cost of X-update is an eigendecomposition

Table of Contents

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(6) Consensus
(7) Summary
(8) Conclusions and Research Avenues

Consensus optimization

- to solve problem with N objective terms

$$
\operatorname{minimize} \sum_{i=1}^{N} f_{i}(x)
$$

e.g. f_{i} is the loss function for the i th block (mini-batch) of training data

- ADMM form

$$
\begin{aligned}
& \operatorname{minimize} \sum_{i=1}^{N} f_{i}\left(x_{i}\right) \\
& \text { subject to } x_{i}-z=0
\end{aligned}
$$

here

- x_{i} s are local variables
- z is the global variable
- $x_{i}-z=0$ are consistency or consensus constraints
- can add regularization using a $g(z)$ term.

Consensus optimization via ADMM

- $L_{\rho}(x, z, y)=\sum_{i=1}^{N}\left(f_{i}\left(x_{i}\right)+y_{i}^{\top}\left(x_{i}-z\right)+(\rho / 2)\left\|x_{i}-z\right\|_{2}^{2}\right)$
- ADMM

$$
\begin{aligned}
x_{i}^{k+1} & :=\arg \min _{x_{i}}\left(f_{i}\left(x_{i}\right)+\left(y_{i}^{k}\right)^{\top}\left(x_{i}-z^{k}\right)+(\rho / 2)\left\|x_{i}-z^{k}\right\|_{2}^{2}\right. \\
z^{k+1} & :=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}^{k+1}+(1 / \rho) y_{i}^{k}\right) \\
y_{i}^{k+1} & :=y_{i}^{k}+\rho\left(x_{i}^{k+1}-z^{k+1}\right)
\end{aligned}
$$

- if regularization term included, averaging in z update is followed by prox ${ }_{g, \rho}$

The z-update can be written as

$$
z^{k+1}=\bar{x}^{k+1}+\frac{1}{\rho} \bar{y}^{k}
$$

Similarly, averaging the y-update, we have

$$
\bar{y}^{k+1}=\bar{y}^{k}+\rho\left(\bar{x}^{k+1}-z^{k+1}\right)
$$

substituting z^{k+1} to \bar{y}^{k+1} leads to $\bar{y}^{k+1}=0$, which means
the dual variables have average value zero after the first iteration

Consensus optimization via ADMM

- using $\sum_{i} y_{i}^{k}=0$, algorithm simplifies to

$$
\begin{aligned}
& x_{i}^{k+1}:=\arg \min _{x_{i}}\left(f_{i}\left(x_{i}\right)+\left(y_{i}^{k}\right)^{\top}\left(x_{i}-\bar{x}^{k}\right)+(\rho / 2)\left\|x_{i}-\bar{x}^{k}\right\|_{2}^{2}\right) \\
& y_{i}^{k+1}:=y_{i}^{k}+\rho\left(x_{i}^{k+1}-\bar{x}^{k+1}\right) \\
& \text { where } \bar{x}^{k}=(1 / N) \sum_{i} x_{i}^{k}
\end{aligned}
$$

- in each iteration
- gather x_{i}^{k} and average to get \bar{x}^{k}
- scatter the average \bar{x}^{k} to processors
- update y_{i}^{k} locally (in each processor, in parallel)
- update x_{i} locally

Statistical interpretation

- f_{i} is negative log-likelihood for parameter x given i th data block
- x_{i}^{k+1} is an MAP estimate under prior $\mathcal{N}\left(\bar{x}^{k}+\frac{1}{\rho} y_{i}^{k}, \rho l\right)$
- prior mean is previous iteration's consensus shifted by 'price' of processor i disagreeing with previous consensus
- processors only need to support a Gaussian MAP method
- type or number of data in each block not relevant
- consensus protocol yields global maximum-likelihood estimate

Consensus classification

- data (examples) $\left(a_{i}, b_{i}\right), i=1, \cdots, N, a_{i} \in \mathbb{R}^{n}, b_{i} \in\{+1,-1\}$
- linear classifier $\operatorname{sign}\left(a^{\top} w+v\right)$, with weight w, offset v
- margin for i th example is $b_{i}\left(a_{i}^{\top} w+v\right)$; want margin to be positive
- loss for ith example is $\ell\left(b_{i}\left(a_{i}^{\top} w+v\right)\right)$
- ℓ is loss function, could be hinge, logistic, probit, exponential, etc...
- choose w, v to minimize

$$
\frac{1}{N} \sum_{i=1}^{N} \ell\left(b_{i}\left(a_{i}^{\top} w+v\right)\right)+r(w)
$$

- split data and use ADMM consensus to solve

In case of SVM with hinge loss and ℓ_{2}-regularization, the ADMM algorithm

$$
\begin{aligned}
x_{i}^{k+1} & =\arg \min _{x_{i}}\left(1^{\top}\left(A_{i} x_{i}+\mathbf{1}\right)_{+}+\frac{\rho}{2}\left\|x_{i}-z^{k}+u_{i}^{k}\right\|_{2}^{2}\right) \\
z^{k+1} & =\frac{\rho}{(1 / \lambda)+N \rho}\left(\bar{x}^{k+1}+\bar{u}^{k}\right) \\
u_{i}^{k+1} & =u_{i}^{k}+x_{i}^{k+1}-z^{k+1}
\end{aligned}
$$

Interpretation

- each x_{i}-update involves fitting a SVM to local data A_{i} with an offset in the regularization term
- the dual variable z gathers the solutions for consensus
- the dual variable u update the offset

Consensus SVM example

- hinge loss $\ell(u)=(1-u)_{+}$with ℓ_{2} regularization
- toy problem with $n=2, N=400$ to illustrate
- examples split into 20 groups, in worst possible way: each group contains only positive or negative examples

Figure: training iterations $1,5,40$

Table of Contents

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
(4) ADMM
(5) Special cases
(- Consensus
(7) Summary
(8) Conclusions and Research Avenues

- ADMM gives simple single-processor algorithms that can be competitive with state-of-the-art
- can be used to coordinate many processors, each solving a substantial problem, to solve a very large problem

Table of Contents

(1) Introduction
(2) Dual problem
(3) Method of Multipliers
4) ADMM
(5) Special cases

- Consensus
(7) Summary

8 Conclusions and Research Avenues

- big data techniques
- computational statistics, machine learning
- especially on large data sets
- data fusion
- heterogeneous and homogeneous data sets
- stream data
- small data learning
- optimization
- loss function - data associated, summation form, task-specific, determined by data modelling

